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On the  Stochastic Stability of Linear Systems 
Containing Colored Multiplicative Noise 
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DAVID N. MARTIN 

Absb.rrEt--The s t a b i i  of hear systems containing colored multiplica- 
tive or state-dependent noise P~OCSSS is considered.  We  present a tech- 
nique for obtaining necessary and  sufficient conditions for the pth moment 
stab~ty of hear systems satisrying certain Lie-algebraic conditions. An 
example is given to illnstrate the technique. 

I. INTRODUCTION 

A  great deal of attention has  been  given to the analysis of linear 
systems containing state-dependent or multiplicative  noise  processes 
[lH13]. Specifically,  the question of the stochastic stability of such 
systems has been studied in  some  detail.  A number of results  have  been 
obtained in the white noise case [5H9], but far less  is  known in the 
colored  noise  case.  Recently,  the introduction of concepts from  the 
theory of  Lie groups and Lie algebras has led to the  development of 
several new techniques for the study of state-dependent noise  systems 
[7H13]. Brockett [A, [8] has used  Lie-theoretic  methods in the study of 
white  noise  processes on spheres, and Willems 191 has used  Lie  theory 
concepts to  derive  extremely  detailed  stability  results for a  specific  class 
of white  noise  systems. In the case of colored  multiplicative  noise, 
Willsky and Marcus [ 101, Willems [ 121, Martin [ 1 I], and Blankenship [ 131 
have used  Lie-theoretic  methods to obtain stochastic stability  results  for 
specific  classes of systems. In this note, we describe  a  technique for the 
analysis of a  class of colored state-dependent noise  systems that satisfy  a 
particular Lie-theoretic condition. We  give an example to illustrate the 
method. 

11. Lme,ut SYSTEMS WITH COLORED MULTIPLICATIVE NOISE 

We are interested in systems of the form 

wheretheA,areknownnxnmatricesand%=(51,...,Uisazero-mean 
Gaussian random process  with 

We assume that 6 is independent of the initial condition x(0). 
We  now  define  the  "pth  power" of (I). Following [8], recall that the 

number of linearly independent homogeneous  polynomials of degreep in 
n variables [i.e., f(cx,, . . . , CXJ = cPf(x,,- . . ,xn)] is given  by 
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If  we denote the vector  consisting of these basic elements (ordered 
lexicographically)  by XIPI ,  then 

where llxll= m. It is clear that if x satisfies the linear differential 
equation 

f ( t ) = A x ( t ) ,  (6)  

then x [ P ]  satisfies  a linear differential equation 

We regard this as the  definition of A[pl.. We note here that AIpp which is 
closely  related to Kronecker  sum matnces [SI, can be computed from A 
in a  relatively straightforward manner (see [13] for a  discussion of an 
algorithm for its computation). Two important properties of ALP] are 
linearity 

(d + BB ) [PI  = &[,I + mlp, (8) 

and the fact that the  eigenvalues of A l p ]  are all  possible  sums of p (not 
necessarily distinct) eigenvalues of A .  

Using this notation, we obtain the "pth power"  of (l), 

which is of the same form as (1). 

In this section, we describe  a technique for studying the question of 
stochastic stability for a  class of systems of the form given  by  (1). The 
next three definitions specify  the type of stability of interest to us, and a 
Liealgebraic condition which  will be used in defining the class of 
systems of interest. 

Definition I :  A vector random process x is  pth-order a~ymptotical!~ 
stable if 

lim @ X I P I (  t ) ]  = 0. 
I-+- 

The process  is pfh-order stable if E[x[Pl(t)] remains bounded Vt. The 
system (1) is pth-order (asymptotically) stable if the solution x is pth- 
order (asymptotically) stable for all initial conditions x(0) independent 
of 4 and such that E[x[P](O)]< 00. 

Definition 2: A Lie urgebra f. of n X n matrices is a  subspace of n X n 
matrices such that 

We  use  the notation { E , , .  * ,Br )R  to denote the Lie  algebra generated 
by E , ; .  . , B,, i.e., the smallest Lie algebra containing B,; - . , Br. 

Definition 3: We associate with any Lie  algebra its d e r i d  series 

e is Abelian if E(")= { O } ,  and is solvable if e(")= { O ]  for some n. 
Theorem 1: A matrix Lie algebra E is  solvable if and only if there 

exists  a nonsingular matrix P (possible  complex-valued)  such that 
PAPe1 is  upper triangular for aU A E e.  
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Proof: See 1141. 
Consider the  system (1). Let 

e = {A&,; .. ,An}A.  (13) 

Willems [9] studied stochastic stability for (1) when  the 5, are white and 
the Lie  algebra e is solvable. In addition, in [I21 he  considered the =[ 0 V2(LO) 1 
colored  noise  case  when f. is assumed to be  Abelian. We  now describe  a 

VALO) d;l(r,s)(a+~l(s)).12(s,~)dr y (o )  (22) 

method for obtaining necessary and sufficient conditions for stochastic where 
stability for the  colored  noise  case  when is solvable. 

Write the solution to (1) in the form a(r2-rl)+1"&(s)dr , i=1,2.  (23) 
11 1 

x(t)=@&t,O)x(O) (I4) Using  the  properties of the Gaussian distribution, we compute 
where @&t,O) is the transition matrix for (I), thought of as an explicit 
function of the  process 5. If E is solvable, we see that we can obtain a ~[@Il(r,O)I=E[nl(l ,O)l=ex~[ a t + i ~ ' ~ ' R I 1 ( s , ~ ) d r d T  (24) 
closed-form  expression for @p This can be seen as follows:  from 1 
Theorem 1, find the matrix P such that each Bi= PA,P - I  is upper 
triangular. Then we can solve the equation 

by straightforward calculations. Then 

@'E(r,O)=P-l*(t,O)P ( 16) 

and @[ involves nothing more  complicated than exponentials of integrals 
of components of 5, polynomials in 5, and various combinations, prcr 
ducts, and integrals of such quantities. Since 5 is Gaussian and indepen- 
dent of x(O), we can evaluate the  expectations of such quantities in 
closed  form, and from (14) we  see that we can obtain a  closed-form 
expression  for E [ x ( t ) ] ,  and hence can determine  first-order  stability 
conditions. This procedure is illustrated in the next  section. We refer  the 
reader to [IS] for an alternate, but computationally equivalent method 
for calculating @e involving the construction of a particular basis  for e.  

Finally, we note that the  above analysis can be directly  extended to 
the determination of necessary and sufficient conditions for pth-order 
asymptotic stability. This is clear, since ,Ip1 consists of the same types of 
functionals of 5. This can also be Seen from  the  evolution equation (9) 
for XIP I .  

where 

Given  a  specific covariance matrix, we can then  study the first-order 
stability propertie of (18) and (19). For example, if 

R , l ( f , s ) = R U ( r , S ) = ~ [ o ~ e - t ~ ~ " ~ + ( r ~ e - k ~ ~ r - ~ ~  1 (28) 

(29) 
Let 

with k,, k, >0, we can use (24)-(27) to show that a  necessary and 
~ l P , = ( ~ o ~ , . A 1 , , ~ ~ , , , . . . ' A n l p l } A .  (17) sufficient condition for first-order asymptotic stability is 

Then one can show [8] that qpl is solvable if !? is, and therefore we can 
use the preceding  analysis to determine first-order stability conditions 
for (9) (i.e., pth-order conditions for the original system). 

The system is first-order stable if equality holds in (30). 
If  we now  consider the system (18) with  system matrices given  by 

and if we assume that the covariance of 5 is given  by (28) and (29), we 
A o = a ( :  -A), A , = ( :  "0). A , = ( :  -A). (19) can show that the system is first-order asymptotically stable if and only 

if 

Suppose p=(.$l,[J is  a  zero-mean Gaussian random process  with 
covariance given  by (2). In this case, we can check that is solvable and 
that 

a < - - ( ; , : ) .  

(20) 
Again, the system  is  first-order stable if equality  holds in (32). 

upper  triangularizes the system. That is, letting y = Px,  we have V. CONCLUSIONS 

In t h i s  note, we have studied the  problem of stochastic stability for 
(21) linear systems  with  colored  multiplicative noise processes. We have 

described and illustrated a  technique for the analysis of systems whose 
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system matrices generate a  solvable  Lie algebra Such  systems  certainly 
represent a  small  subclass of all linear systems containing colored 
multiplicative  noise, and further research is needed to exploit the tech- 
nique described here and to devise  techniques for systems  with  nonsolv- 
able Lie algebras.  Some  results  for  such  systems are reported in [ 1 I ]  and 
1131. 

I61 

171 
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Partial Uniqueness:  Observability 
and Input Identifiability 

TSUNEO YOSHIKAWA AND S .  P. BHATTACHARYYA 

Abstract-Necessary and sufficient conditiom are derived nnder which a 
given set of hear hcb'onals assume unique values over the solution sed 
of a hear equation; the latter property is referred to as partial uniqueness. 
The wefnlness of the conditions obtained for partial uniqueness is dem- 
onstrated by  applying them to various problems of observab~ty and input 
identirLsbility of linear dynamical system. 

I. INTRODUCTION 

There exists  a  variety of problems in linear control theory  which may 
be reduced to the problem of determining conditions under  which  a 
given  set of linear functionals assume unique values  over  the  solution  set 
of a linear equation. We refer to this property of the solutions as 
uniqueness  with  respect to the given  set of linear functionals, or, for 
briefness, partial uniqueness. 

The purpose of this note is to derive  necessary and sufficient  condi- 
tions for partial uniqueness of the solution of a linear equation, and to 
demonstrate their  usefulness  by  applying  them to the problem of partial 
observability, unknown input partial observability, and partial input 
identifiability of linear  dynamical  systems. 
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11. PARTIAL UNIQUENESS 

Consider the linear equation 

Lz=d (1) 

where L: Z +Gj) is a  linear map and Z, si) are linear vector  spaces. 
Denote the solution set of (1) by 5!& i.e., 

~ = { z l z € % , L z = d }  

and assume that (1) is consistent, so Z,, is  nonempty.  Given the linear 
map P: Z -+ W (a hear vector  space), we  wish to determine a necessary 
and sufficient condition under  which for all zl, z2E 4 

Pz, = Pz,. (2) 

If P is one to one, then (2) is  equivalent to the condition that (1) has a 
unique solution.  Hence, for arbitrary P we refer  to (2) as uniqueness  with 
respect to P, or, for briefness, partial uniqueness. The proposition  below 
solves the above problem. 

Proposition: The solution of (1) is unique with  respect to P if and only 
if 

kernel L c kernel P. (31 

Prooj? 
a) Sufficiency . Assume (3) is true and let zlr z2 E Z,,. Then z, - z2E 

kernel L, and hence z1 - z2 E kernel P, i.e., Pz, = Pz,. 
b) Necessity. If (3) fails,  there  exists z * E  Z such that L z * = O  and 

Pz*#O. Let z3€Z0; then z 3 + z * = z 4 ~ Z o  and Pz4=Pz3+Pz*#PzJ. 
Hence (2) fails. I 

Letting L and P denote matrix representations of the respective  maps, 
we have  the  following alternative statements of the  Proposition. 

Corollmy I :  The solution of (1) is  unique  with  respect to P if and 
only if 

rankL=rank [ i]. (4) 

Proof: Equation (4) is equivalent to (3). rn 
CorolZav 2: The solution of (1) is unique with  respect to P if and 

only if there  exists  a T such that 

TL = P. ( 5 )  

If ( 5 )  holds, the unique value of Pz is  given  by 

Pz = Td. (6) 

Prooj? Equation (5 )  is equivalent to (4). If (5 )  holds,  multiplying (1) 
from  the left by T and using (5) yields (6). 

In fact, if there exists at least one matrix T which.  satisfies (S), the 
general solution of ( 5 )  is given  by 

T = P L ' + F ( I - U # )  

where L' denotes a  pseudoinverse of L, and F is an arbitrary matrix of 
appropriate dimension. The unique  value of Pz is  then  given  by 

Pz = PL*d 

We remark that Corollaries 1 and 2 were stated and used in [I]  for a 
particular form of P. The next  section demonstrates some applications of 
the result. 

111. APPLICATIONS 

Throughout this section, we treat the system 

x,+ , = A x ,  + Bu, 

y k = C x k + h k ,  k = 0 , 1 , 2 ; . .  

where x, is the n-dimensional state vector, u, is the r-dimensional 

(7) 

input 


