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Abstract—Optimal joint detection for interfering (nonorthog-  distinct waveform, the amplitude of which is modulated by a
onal) users in a multiple access communication system has, inweight corresponding to the information to be communicated.
general, a computational complexity that is exponential in the ¢ thare js only one user transmitting through an additive white

number of users. For this reason, optimal joint detection has been . . . . . .
thought to be impractical for large numbers of users. A number Gaussian noise channel, optimal detection at the receiver is

of suboptimallow-complexity joint detectors have been proposed €alized by a simple matched filter followed by a quantization
for direct sequence spread spectrum user waveforms that have to the closest weight used in transmission [5]. If, however,
properties suitable for mobile cellular and other systems. There many users were to transmit through the channel, the situation
are, however, other systems, such as satellite systems, for whichCan become far more complex.

other waveforms may be considered. This paper shows that there
are user signature set selections that enablaptimaljoint detection
that is extremely lowin complexity. When a hierarchical cross- A The Problem

correlation structure is imposed on the user waveforms, optimal

detection can be achieved with a tree-structured receiver having ~ Time-bandwidth restrictions on any communication system
complexity that is, in typical cases, dow-order-polynomialin the  limit the dimensionV of the space of possible user waveforms.
number of users. This is a huge savings over thexponential Adopting the commonly-used vector space framework Xhe

complexity needed for the optimal detection of general signals. : : : g
Work in recent literature has shown that a hierarchically dimensional signal space would correspond[PtS, and the

structured signal set can achieve oversaturation (more users than Multiuser joint detection problem may be stated as follows:

dimensions) with no growth in required signal-to-noise ratio. For a given set of user waveforms represented in signal

The proposed tree detector achieves low-complexity optimal joint space by the set of signal vectors, }, s, € RY, the

detection even in this oversaturated case. general uncoded detection problem is to compute an estimate
of weightsb from an observationr € R”,

|. INTRODUCTION
) i K
ULTIPLE access (MA) communlcafuon r_ep_resents an r— Z busk + on
active area of current research since it is the only Pt
means of communication among users in wireless systems —Sh +on (1)

such as mobile and cellular terrestrial systems and satellite-
based systems. In each of these applications, the possib
of many users sharing the available communication chan
offers obvious advantages in terms of flexible and cost-efficient® X is the number of users.
use of the channel. In addition, MA also poses a number of* b € {[b1 -+ bx]" |b; € P}, whereP; is some finite set
challenging research problems including many that fall within ~ of amplitudes, and th&;’s are iid uniform. ForP; having
the domain of signal processing. This paper investigates one M elements, this is M-ary PAM.
of those challenges, namely, the problem of optimal detection® S = [s1, -~ -, sx] is an N x K matrix whose columns
in uncoded MA communications. are user signal vectors as seen at the receiver.

The importance and difficulty of the problem of detection * n is a Gaussian vector of zero mean and identity covari-
in an uncoded MA system has been recognized for some time ance.
[1]-[4]. In particular, consider a pulse-amplitude-modulated ¢ o is the noise standard deviation.
(PAM) communication system in which each user transmits a
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weight used in transmission is optimal for each fs@he In contrast, this paper addresses the problem of finding
restriction to orthogonal signal sets, however, is often notaa optimal joint detection algorithm that can accommodate
satisfactory one. the case ofK > N users in N-dimensional signal space

The assumption of orthogonality among user signals mubat, like the suboptimal detectors, has complexity that is
be abandoned if we are to offer service to more users thanlow-order polynomial in the number of users. The key
orthogonality would allow. In the absence of time-varyingo devising such a detection algorithm is to take advantage
fading, time-varying multipath, or frequency dispersion, it isf the flexibility many MA systems have in choosing the
possible to constrain user signals to be orthogd@ficourse, set of user waveforms so that an advantageous geometric
this choice limits the number of users to the dimension of tistructure is presefdt.In particular, the class of signal sets
signal space available for transmission. “Oversaturating” tiee consider has a hierarchical tree structure that allows for
signal space with users can, in principle, be accomplished wihrich variety of possibilities. For example, this desired tree
minimal impact on system performance, assumingdipéimal structure is present in signals of considerable current interest
detection can be implementédt is, therefore, desirable to in the signal processing and communication literature such as
increase the number of users beyond the orthogonal limitwavelets and wavelet packets. Moreover, we find that Ross
order to enhance both system utilization and throughput. Taad Taylor [6], [8] have developed signal design guidelines
success of such a system requires that the problem of optirtiedt fit X’ > N users in N dimensions while preserving
detection for nonorthogonal signal sets be confronted. the orthogonal minimum distance. The tree hierarchy is a

The challenge, then, is to design optimal detectors for MByproduct of their design.
systems that employ nonorthogonal signal sets. As discussed ifn the next section, the signal set structure of interest is
[2], the optimal joint detector for an arbitrary, nonorthogonalescribed and illustrated. In Section Ill, an overview of the
signal set has exponential complexity in the number of usdrerarchical tree joint detector is given via an example, a
K. This is a catastrophic increase over the linear complexityrmal derivation of the low-complexity optimal detector is
of a bank of matched filters: one for each user. Surprisinglgone, and a calculation of its computational complexity is
though, the convention currently used, even in the case ddrived. Section IV details the processing procedure of the
nonorthogonal users, is a bank of matched filters where foee detection algorithm and steps through a binary example.
each user, the interference from all other users is assunfdw paper is concluded in Section V.
to be a second source of “noise.” With this type of detection,
however, it is understood that the error rate will be higher than I
that obtained by the computationally complex optimal detector.

Indeed, as argued by Lupas and \erid [1], the perfor-
mance loss of the conventional approach, as compared wiit
the optimal, can be significaftThis has motivated several The geometric structure imposed on the signal vectct set
researchers [1]-[4] to consider more complexiboptimal is best described by saying that the set of signaturedreas
detection algorithms that perform joint detection for all usersfructured cross-correlationsThe columns of the matriXs
better performance than the simple matched filtering approawn be assigned to the nodes of a tree like the one shown
is achieved with complexity that is at most polynomial in thén Fig. 1. The tree pictorially conveys the following required
number of users. These methods, however, were intended riglationships among user signal vectors:
pseudo-noise user sign@lthat form a linearly independent « Each vector at a given level of the tree is orthogonal to
set! all other vectors at that level.

2Eorci . <sions 1 be orth | v orth | t- A signal vector is correlated only with its ancestor vectors
orcing user transmissions to be orthogonal or nearly orthogonal, even ai .

the expense of inserting wasteful buffer zones in which no user is permitted and its descendant vectors.
to transmit, is common practice in systems of present. Both linearly dependent and linearly independent sets of

$For example, current MA processing-satellite systems employing narrogignature vectors may be created to have tree-structured cross

beam terrestrial antennas assign each user a disjoint portion of the avail : ; ; : ;
frequency spectrum. This is frequency division multiple access (FDMA). Th frelations. The detector detailed in this paper finds the

satellite uplink channel is well modeled by (1), where the received wavefortimal solution for both cases.
are, simply, translated and attenuated replicas of the transmitted waveforms.The constraint of tree-structured cross-correlations, while

*Moreover, as can be seen in the work of Ross and Taylor [6]-[8], \iery particular, actually allows a considerable amount of

is, indeed, possible to design signal sets having more users than dimensjons:, ..., : L . .
where the minimum interdecision-point distance resulting from use of this Sﬁéilblhty in designing user waveforms. Given a tree, a signal

is the same as that achieved by the orthogonal set. Their design constrain§@il may be constructed to possess the desired cross-correlation

users to have powers no higher than the users in the orthogonal set. structure. The waveforms at the bottom level of the tree
5In particular, for the “near-far” problem (large power variations among

interfering users), the conventional detector fails consistently. 8In contrast with previous work with suboptimal detectors, user signals
6The MA detection literature is heavily concentrated on the mobile cellulare not constrained to be pseudo-noise pulses. As will be discussed in later

problem for which code division multiple access (CDMA)—through the ussections, the structure is used as a guideline for the choice or design of the

of pseudo-noise user signals—exhibits advantages over orthogonal signalsafidual waveforms to be transmitted.

use with the conventional detector. By restricting the user waveforms to bedFor ease of notation, the abstract signal space representation of real signals

pseudo-noise pulses, orthogonality among users is not possible. is used, and hence, all properties imposed on the signal vectors will also be true
7 Although some of these detection algorithms may be applied in the lineaftyr the real waveform counterparts. The signal vector set structure described in

dependent case, they were not intended for the oversaturated problem #md,section, therefore, can be viewed as design guidelines for the waveforms

therefore, give very poor performance. that would be used in practice.

. THE SIGNAL SETS

hSignal Vector Set Structure
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Sk that the following two examples are, simply, two different
realizations of requirements a)-c), in the above discussion.

1) Wavelet Packet SetdiVavelet and wavelet packet wave-
forms may be generated from a tree-structured procedure in
which subspaces (generated by sets of orthogonal signals)
are decomposed into Cartesian products of orthogonal lower
dimensional subspacésThe result is a wavelet or wavelet
packet dictionary consisting of an overcomplete set of basis
functions. A discrete wavelet packet dictionary offers a rich
set of signal vectors from which to select many tree-structured
sets. The use of wavelet packet waveforms has received much

s
N+ attention in recent literature for single user communications
(i.e., bandwidth efficient and covert signal designs, mitiga-
tion of various types of jammers, transmission through non-
Gaussian channels, ef.)An example of a discrete wavelet
81 82 SRR SN packet signal set is shown below as an intensity matrix where
Fig. 1. Example of a general tree showing the correlation structure neecfe@Ch element of the matrix is shown as a pixel in #he 11
among signature vectors within the signature set. image. The values are shown in gray scale where the smallest

is denoted in white and the largest is denoted in black.

comprise an orthogonal set. An orthogonal set is obtained at

any level, i.e., thdth level, by constructing a signal at each

node at this level as a linear combination of the signals at its s =
bottom-most descendant nodes. Since orthogonal signals have

been assigned to the lowest level nodes of the tree, the sets

of bottom-level descendants for distinct nodes atithdevel

are disjoint, and consequently, the signals created at kevel -

are mutually orthogonal. , _ _ Each column ofS is a user signature vector. In order
It follows that the general construction of a signal set W'ttb reveal the tree-structured cross correlations among user

tree-structured cross-correlations requires the following: signatures, the absolute values of the element$%§ are
a) the specification of a tree, displayed below, where 0 and 1 are denoted in white and
b) the specification ohnyorthogonal basisy, sz, -+, sx  black, respectively.
of RY that is then assigned to th& nodes on the
bottom of the tree,
c) the specification of the weights for each of the lin-
ear combinations used to construct signals from their
bottom-level descendants,
d) possibly, the deletion of signals at any of the nodes. s's

This formulation allows for considerable flexibility in design-
ing the signal set sincany choices that satisfy a)—d) will
lead to the desired geometric structure on the signal set. Note
also that d) provides us with the flexibility to capture linearly
independent sets with the desired correlatfon. L .

ST'S is the matrix of cross-correlations between the received
signals of the 11 different users. The wavelet packet signal
In this section, we illustrate examples of two particulagector set can be cast onto a tree with three levels as shown
choices of signal vector sets, one of which involves signals gf Fig. 2.
considerable current interest in the signal processing commu2) Minimum Distance SetsAnother example is the mini-
nity, namely, wavelets and wavelet packets [9], [10], and omgum distance sets developed by Ross and Taylor in [7] and
that was introduced in [6]—[8] directly in the context of designg]. They begin with N orthogonal users iV dimensions.
ing signal vector sets for oversaturated MA systéiilote The set of possible received points based on an M-ary PAM

10 . . ) . . ..MA system with an orthogonal set of signal vectors has
For simplicity, however (and since we wish to emphasize the appllcablhg : o .. . ..
of our methods to the oversaturated case), we will assume that our fréke is associated with it a minimum distance. That is, if the vectors

B. Some Examples of Signature Sets

i.e., that there is a user signature at each node on the tree. The extensio{ssf, so, - - -, sy} are the orthogonal signal set, then there is
our low-complexity optimal detection scheme to the case in which there are
fewer users is immediate. 12For a tutorial treatment of wavelet packets, see the paper by Coifman and

11As we have indicated, however, there are many different signal sets ti¥ickerhauser [10].
can be constructed to have the tree structure we have just described. 13The reader is referred to [11] and [12] and the references therein.
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a specified minimum distance between any two points in the S11
received constellation{>"+_, bzsy | bx € P}. Since the

distance between the elements in this set is directly related

to the probability that the optimal detector makes an error,

maintaining a specified minimum distance is desirable. Ross

and Taylor devise a method for adding additional, energy- S9 510
constrained, linearly dependent users so that the minimum
Euclidean distance between received points is preserved. The
reader is referred to [8] for details of their construction.
Ross ano! Taylor, for a_ntipodal bin_ary modulatid?_m = 8§ Sy Sz s4 S5 Sg S7 Sg
{+1, -1}, fit 3N — 1 unit energy signal vectors intdv
dimensions, wher&/ must be a power of 4. A specific example Fig. 2. Correlation tree for a wavelet packet signature set.
detailed in [8] is repeated below. . L
complexity detector, in principle, enables an oversaturated MA
r 1/2 0 0 0 1/47 system to operate with relatively the same detector complexity
1/2 0 0 0 1/4 and probability of error as its corresponding orthogonal
1/2 0 0 0 1/4 system. A challenging and interesting problem, then, is the
1/2 0 0 0 1/4 study of user packing with tree-structured waveform sets. Any
0 1/2 0 0 1/4 valuable work in this area will be achieved through careful
0 1/2 o0 0 1/4 understanding of the signal design problem and is beyond the
0 1/2 o0 0 1/4 scope of this paper. Our ideas for future work are discussed
g_|he 0 1/2 0 0 1/4 (2) below.
- 0 0 1/2 0 1/4 An interesting and challenging question that is more general
0 0 1/2 0 1/4 than that answered by Ross and Taylor would ask how many
0 0 1/2 0 1/4 users with specified power and performance constraints can
0 0 1/2 0 1/4 be fit into a tree structure of a given dimension. Some rough,
0 0 0 1/2 1/4 preliminary observations show promise in the increase in
0 0 0 1/2 1/4 throughput using tree structured signatures.
0 0 0 1/2 1/4 The first scenario of this is, of course, the work of Ross
L 0 0 0 1/2 1/4] and Taylor that is mentioned above and detailed in [6]. If

. . . . ._users are constrained to be of equal energy, the Ross/Taylor

He_re,ITlG IS th_e 16-D identity matrix. The cross—correlatlonsets realize, in typical cases, a 33% increase in the number of
matrix S*S is given below. . ; L

users relative to the orthogonal system while maintaining the
— ) -1 minimum distance of the orthogonal system. This, by itself, is
substantial for many applications, including military satellite
systems.

A second, more realistic, scenario is where user powers are
unequal (near-far problem). It is easy to come up with simple
examples showing much greater than 33% increases in the
number of users, also while maintaining minimum distance.
For an example starting with two orthogonal users of identical
energy, we realize a 50% increase in the number of users with
no change in the minimum distance by squeezing in a third
user of energy that is 18 dB higher than the first.

A third scenario leads us to user packing with criterion
L Y other than preservation of minimum distance. Specifically, an

T . - . understanding of the relationship between the degradation of
The §tructure 0fS™S reveals that this minimum dlstancemi imum distance (i.e., performance) and the number of ad-
set of signature vectors may be cast onto a three level qu‘

tree for which four children emanate from each parent no ftional users in a tree-structured signature set is not essential
P © the ultimate success of a tree-structured system but would

These signature sets were designed for their minimum distal $Br Shannon-like limits against which to measure system

E;?\pigyég}sitgze hierarchy they possess is a byproduct t toughput. The realization of a system that is allowed graceful

3) Ideas on Future Work for Signal Desigrrom the degradation with the addition of each user might employ

h . o o . aveforms sets based on, for example, wavelet paékets.
above discussion, it is clear that oversaturation is achleval\g\fe P P

with minimal performance loss if optimal detection is used. *The minimum distance for the arbitrarily chosen 11 unit-energy users in
Moreover, as |S detalled |n Sect|0n ”l, for MA Systeméhe 8-D wavelet paCket example in Section II-B is 1.13. If we were to have
. . .used a minimum distance construction, we would have been able to fit only
employlng tree-structured signatures, very low compIeX| users but with a minimum distance of 2. The choice of particular wavelet
optimal detection can be achieved. The existence of this lopacket signature vectors was not in any way optimized for this example.
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lll. THE TREE JOINT DETECTION ALGORITHM node is conditioned on weight decisions of the ancestors and is
a function of weight decisions of the descendants. Since each
A. Overview of the Detector conditional estimate table requires an entry for each possible

ombination of weights at all ancestor nodes, the number
f computations needed to create a table is exponential in
the number of ancestors (since if there arancestors there
are M' possible sets of weight values for these ancestors).
b= arg min ||r — Sb||2. (3) This complexity decreases exponentially ladecreases, i.e.,
bert as the algorithm moves from the bottom to the top of the
For ease of discussion, each user is assumed to employ tfig€, the number of decisions made at each level decreases
same M-ary PAM for the remainder of this paper; this assum@xponentially until there is only one decision associated with
tion is not essential to the operation of the tree algorithm. ARe top node of the tree. The full weight vector estimate for
MA system employing amrbitrary set of signal vectors can all user weights is a byproduct of the last decision at the top

achieve optimal detection through an exhaustive search, i@ the tree.
the detector needs to perfortd” — 1 comparisons to find ~ While the complexity of the procedure as we have described

the best estimate [2]. it to this point is exponential in the number of levels in the
If the signal set has been chosen to have tree-structufe®e (which bounds the number of ancestors of each node),

cross correlations, the optimal detector of (3) can be achievé actual algorithm complexity is, in fact, extremely modest.

through a tree-structured algorithm that offers a huge reductiirfhe tree were of uniform construction, i.e., if there age

in the number of comparisons. In particular, because of tififildren emanating from each node, the number of levels of

structure, a signature at a given node darrelated with the tree islogarithmic in the number of user&’. The overall

all signatures at its ancestor and descendant nodes an@o®@plexity, then, is bounded by a very low-order polynomial

orthogonal to all other signatures on the tree. The weighf K. This is discussed more fully in Section IlI-C.

estimate@n at a given noden will effect the estimates at

descendant and ancestor nodes but will not effect the otlBerDerivation of Tree Detector

The optimal joint detector for the problem stated in (1
chooses the weight vector estimateaccording to the nearest
neighbor or minimum distance rule.

estimates on the tree. o _ _ The global cost that must be minimized in (3) is
Consider the tree structure in Fig. 2 and consider first the
choice of the weight estimates for users 1-4 having signal F(r, b) = ||r — Sb||2. 4)

vectorssy, s», s3, 4. These vectors are mutually orthogonal

and are also orthogonal i, s, s7, sg ands;o but not to In general,F(r, b) is not separable by weight variablés

sg and s11. Since s;—sg and s;p are also correlated with Hence, the solution to (3) is found by the calculation and

s11, the decisions on weight estimates forss ands;, are comparison ofF'(r, b), Vb € P¥.

coupled with those fos;—s4. These estimates can, however, The introduction of tree-structured cross correlations trans-

be decoupled by looking, instead, at #wnditionalestimates. forms the structure of the cost function. The complexity of

Specifically, for each possible pair of weight estimates fdinding the smallest cost may be reduced by making decisions

so and s1;, the optimal weight estimates far, s», s3, s4 In stages. The independence of the conditional decisions

can be independently computed. The result of this calculatidiscussed in the previous section can be seen mathematically.

for s;—s, can then be thought of as producinganditional Specifically, the global cost may be separated into independent

weight estimate tablei.e., for each possible pair of choicegerms. First, (4) may be rewritten as

for the weight estimates fosg and s;;, the optimal weight N

estimates fors;—s, are known. Similarly, for each pair of _ :

possible weight estimates fefy ands; ;, the optimal estimates F(r,b) = ; filx, b)

for s;—sg can be computed. The estimation process may be N

?terated forsg: For eagh possible choice of yveight value for _ Z(r[i] _ t[i])Q (5)

its ancestors;; and with knowledge of the just-constructed =

conditional estimate table for its descendasitss,, the opti-

mal estimate fose may be computed in a manner decoupleheret = Sb, andt[i] is theith element of the vectot. In

from the analogous computation fef,. This gives conditional general, each ternfi(r, b) is a function of all users’ bits.

estimate tables fosy and s;o, Which then can be used to If the signature set were to exhibit tree-structured cross

determine the optimal estimate fey; at the top of the tree. correlations, a rotation matri$z may be constructed from

Conceptually, once this estimate is obtained, it is a simdl@e orthogonal basis vectors that reside on the bottom of the

matter of successive table lookups that propagate down tHee.

tree to determine the optimal estimates firstdgpands;y and si sy

then for their descendants. Sg=
As this simple example illustrates, the tree detection algo-

rithm takes advantage of the tree structure and sweeps througBince the cost function of (4) is a squared Euclidean distance

the tree from bottom to top, creating a conditional weighietween a Gaussian random veat@and a deterministic vector

estimate table at each node. The table of decisions at a gi8in a rotation of this difference vectar—Sb does not change

A (6)

[[scll fIs2ll - [lsw
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its length or probability distribution. Hence, traits to the satellite is the wireless local loop [18]This
T T 5 system may offer more of a challenge with assumptions 1) and
F(r, b) = ||Skr — SpSh|". (7) 2), but since it is conceivable for channel probing to occur
The tree structure is reflected in the position of the zero-valudHing Off hours and periodically during normal operation,
elements ofS%S. In this form, the partition off'(r, b) into ?rgnr:;Ii?tz?ths and attenuations could be known for each

terms is N Our ongoing work investigates the break down of assump-
s tion 2). In particular, although a user's power is often easily
F(r,b)= Z fi(r, b) acquired during the acquisition process, and its envelope
T,l waveform and modulation frequency are assigned, the phase of
_ Z(f[i] — [i])? ®) each user cannot be assigned and may need to be estimated. A
~ user’s phase may be estimated with a tree-structured procedure

as well. The effect phase uncertainty has on bit error rates
where ¥ = S%r, t = SESb, and where the indices € throughout the tree is currently under investigation. Training
{1,2,---, N} correspond to the orthogonal users at theequences may be used to lower the variance of the phase
bottom nodes of the tree. estimate at a cost of higher computations, which may be
For example, the rotated version of the wavelet packet sigm@practical for some systems. Future work includes the study
matrix from Section II-B is of suboptimal ways of obtaining good phase estimates along
5 § with low complexity ways of refining phase estimates for tree-

structured MA. These issues are addressed as part of Learned’s
thesis [13].

C. Computational Complexity

The conceptual description of the tree detector in Section
. . T ) , . [1I-A and the dynamic programming description in Section IlI-
and it is clear that[i] = [Sy;Sb][i] can be written as a linear g jheyitably include many wasteful calculations and storage
combination oft; and the elements dj,;. Here,b,; denotes requirements. The resulting complexity of this “inefficient”

the vector of weights associated with the ancestors of #0dg ¢ sion leads to an upper bound on tree detector complexity
In general, it follows that the “rotated” cost may be sepy a1 is extremely low.
arated into additive te.rms, where each term is a functiong, simplicity of calculation of computational complexity,
of only one of the weightsh;, ¢ € {1,2,---, N} and all ¢ tree is restricted to be of uniform composition in that
of the weights that correspond to its ancestors. Each teffure gre exactly) children emanating from each node. Recall
fi(r, b)in (8) may be explicitly written agi(r, bi, bai)- NOt€ - ihat v is the number of signal space dimensions available
that for, j € {1,2,---, N} andi # j, fi(r, bi, bai) @nd  (the number of nodes at the bottom of the tree), drddis
fi(x; bj; bqj) have no common unknown parameters, givefie number of levels that can be modulated by each user. A
the values foib,; andb,;. It follows that the optimal solution aasure of complexity that is in agreement with the MA joint

may be determined through the optimization of each terquection Jiterature is the number of compareseeded to
conditioned on the values of the weights corresponding to tB@rform the detection algorithfd.

ancestors of the indexof that term. A dynamic program may  1pe complexity is derived by counting the number of

be written to solve this minimization problem. , comparisons needed to execute the tree algorithm. Some facts
1) Some Practical IssuesSome practical issues of imple- sad in the complexity calculation follow:

mentation arise from the assumptions made by the tree detector
algorithm, namely, 1) the channel respoii$é) is capable of * Each node at level hasi — 1 ancestor nodes.
! ' + There areQ!~! nodes at level of the tree.

being estimated, and the set of assigned users sigpdéads . .
to the set of received signals, — H(xz) that exhibit the '{)he tree has a total df levels (counting the top as level

needed tree-structure and .2) knowledge or accurate estimates There areN — Q-1 nodes at the bottom of the tree,
of user timings and received powers are available. These
and thus,L = logg N + 1.

assumptions are valid for many MA scenarios of present. , . . i
For example, the processing satelfftMA uplink channel The algorithm creates a conditional bit estimate table for

is free of both multipath and frequency dispersion, makirgRch node. For a giveh,,, the best ofM possible values
assumption 1) practical using current technology. Assumptigh é» must be found. This requires/ — 1 comparisons for
2) is also reasonable within limitations since users requesi i, _ . . .

f th tellite thr h id hannel. During thi The positions of all transmitters are known and fixed. This service would
acce_sg _rom € satellite _OUQ a side c _a el. During Qb?‘npete with existing wire-line service and might be delivered via an antenna
acquisition stage, the satellite can determine the power amdhe top of buildings that are hooked up to the service.

symbol timing of the user. Another MA system having similar 1"Counting the number of comparisons is equivalent to counting number

of tentative decisions that must be made. Without computational optimization

15At present, processing satellites, employing orthogonal MA, detect eagshthe algorithm, each decision requires the computation of two metrics. Each

user’s transmission, correct errors caught by error correction coding, and tineetric requires several adds and subtracts. To find the order of the complexity
retransmit to close the link. of the tree algorithm, it is sufficient to count the number of compares.
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a single configuration of>,m. Since there aré — 1 ancestors TABLE |
of node n, there areM'~! possible configurations ob,,. NoTATION
The tree detector, therefore, creates a single table at leve[x node index
node n, with (M — 1)M'~ comparisons. There ar@~* [on index of the parent lo foden
tables needed for levél of the tree, and there are a total of| ¥ " o e b eston fo mode m Tt
logg N +1 levels in the tree. It follows that the total numberan =T{pn, 5%, p*n, -, 7 'n} set of indices corresponding to the
of comparisons needed for the tree algorithm is ancestor nodes of node n
en; node index for the i** child of node n
logg N+1 Kn number of children of node n
o 1—1 1—1 en = {eny,eng,...,CRkn} set of indices corresponding to
C(N7 Q7 M) - Z Q (M - 1)M children of node n
=1 dn = {cny,deny, -+, cngn, dengy} | set of indices corresponding to the
(QM)logQ N+1 _ 1 descendant nodes of node n
= (M — ]_) fn={n,dn} the family of indices associated
QM -1 with node n
M-=1 San (San) signature vectors of all ancestors
( ) (NQMIOgQ N+l 1) (descendants) of node n
(QM - 1) ban (bg,) weight estimates for all ancestors
. . (descendants) of node n
For example, if a system were to employ antipodal moduldy, =75, row vector of inner products
tion, P = {+1, —1}, M = 2, and signal sets having quad-tre€ i.» = 5/ Sa row vector of inner products
structure ) = 4) such as the minimum distance wavefornjYemin = SgnSan matrix of inner products
Yanin = Sd" Sin matrix of inner products

sets, the number of comparisons needed for the tree detector
estimate is
then the subvectors on the right-hand side of (11) are given

8N3/2 -1
— (9) by

7

The computational complexity is polynomial in the number P fen, (r|b"’ Pa)

of dimensions. The number of usei& in this special case is ben, (2]bn Pan) =& (12)
K = 4N - 1; hence, the tree detector is also polynomial in = [Paen; (lben; = &, by, ban) |

the number of users, resulting in a computational complexity

o(N,Q=14, M =2)=

3/2 We examine the argument of the minimization in (10) more

of O(K3/2). closely. We may, of course, remove any terms that do not
depend orb,,, and we can multiply by any positive constaft.

IV. SIGNAL PROCESSING FOR THEOPTIMAL TREE DETECTOR As a result, some algebra shows that (10) is equivalent to

This section examines the calculation and interpretation of by (r[ban) = arg max J(by,|r, bay) (13)
key values used in the tree algorithm. bn

where

J(bn|r7 ban) [l b anyn n] nYn,anban (14)
[1 bdn(r|bn7 ban)

A. Calculation of the Estimate

Mathematically, the dependence between ancestors and de-
scendants is revealed as the reduction of the general optimal

estimator of (3) to the tree-structured optimal estimator below. - 5 dn(r|bn7 ban)

For each node: of the tree, calculate the following estimate Yan, dnban (T]bn, ban)] (15)
conditioned on the value of the sbt,,: N
R b - bnYn,dnbdn(r|bn7 ban) (16)
bn(r|ban) = arg blglérll’ ||I‘ — spbn — Sanban - b;l;nYan, dnDadn (r|bn7 ban)' (17)
- Sdann(r|bn, ban)||?. (10) Note that the only explicit processing of the datés for the
termsl,, = sIr andly, = ST r on I|nes (14) and (15%?

The notation used throughout this section is shown in TableThe first bracketed terrrﬁl by — 302y, ] on line (14)

. The set of estimates for all descendants of neti@s already corresponds exactly to the deC|S|0n statistic that would be used

been calculated in the previous steps of the algorithm. Hengg.chooseb,, if there were no other users to consider or if all

Bun (x|, bar) is best defined recursively. For a given set Gther users had orthogonal signals. The remaining terms, then,

values for{b,, ban}, represent thadjustmentsf this decision statistic to reflect the

b b b impact of the nonorthogonality in the signals. The last term
feng (I‘| "y an) . . .

- b, b on line (14) b,yn, anban represents the interaction between

~ bfcn2 (I‘ an)
ban(r|by, ban) = (12) 18or multiply by a negative constant and replace minimization by maxi-
: mization
chnKn (r|bn, ban) 19The calculations of each correspond to processing the datthrough a

filter matched to the signal;. {li}{\' is the set of sufficient statistics needed
2 for optimal detection. Reductions in the calculation of the {ge} X can be
For that same Se.t O{bn ban}’ bcni (r|lln ban) has already obtained by taking advantage of the exact relationships among user signatures
been calculated; if the value found fég,, (r|b, ban) iS &, on the tree. See Learned’s thesis [13] for a detailed discussion.
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TABLE I
TABLE CREATED AT NODE n FOR THE GENERAL BINARY CASE
I bZn = [bpnb;ﬂn“'bp(l*l)n] I bfn(r|baﬂ) | Tin rlbapﬂ) - nn(r| p?ny p ny" bp(l—l)n) ]
H1, 41, +1,--, +1] | bpalr] 4+ 1, +1, 41,44+, +1) Malr]+1, +1,--+, +1)
-1, +1, +1,---, +1] bpa(r] — 1, +1, +1,---, +1)
[+1, =1, +1,---, +1] | bpa(z| +1, =1, +1,---, +1) a(t] =1, +1,---, +1)
(

-1, =1, +1,---, +1] | ba(r] =1, =1, +1,---, +1
1

the choice oft,, and the particular hypothesized choices faand an adaptive component reflecting decision rules already
the ancestor weights. Note that since the valuebgf will  constructed at descendant nodes
be hypothesized, this term can be precomputed. Line (15)
represents a counterpart to the bracketed term on line (14)(r|b,,) =1y, [Bdn(rl +1, ban)
Specifically, if all users other than the ones corresponding to
X +b n(r| =1, ben)]
the weightsb,,, were not present, then

+ 10F (r] + 1, 1an) Yan, anban(r] + 1, bay
12 b — 16T Yoo auba] (18) i*[ an (T )Y dp, anban(r] )
he decisi h db d d b (I‘| - 1 ban)de dnbdn(r| - 1 ban)]
represents the decision statistic that would be used to deter- by TR b
mine the optimal choice dbg,,. Since this iswot the case, this 2[ an Yan, an = Lap][Pan(r| +1, Dan)
term incorporates the decisiobg,(r|b,, ba,) conditioned on — ban(r| =1, ban)]- (23)

the value of{b,,, b, }. Line (16) accounts for the interactions
between these descendant decisions and the possible decididRrticular, note that for nodes at the bottom level of the tree,
b,,. Likewise, line (17) accounts for the interactions betwedhere areno descendants and, consequendly(r|b,,) = 0.
the descendant decisions and the hypothesized decisionsHence, at the lowest level of the tree, the decision rules in (21)
b, at the ancestors of node. Thus, all of the quantities for each of the hypothesized set of vallgs, correspond to
needed in the last three lines (15)—(17) can be computed basethparing, to the fixed threshold given in (22). This nonzero
on the value of,, and the calculations that have already bedhreshold represents the adjustment of the test statistic to reflect
performed at lower levels on the tree. the interference of users at ancestor nodes.

The calculation ot,,(r|b,, ), which is the adaptive portion
B. The Binary Conditional Decision Rule of each threshold, has a child-separable structure.

This section focuses on the binary antipodal signaling case,
i.e., whenP = {+1, —1}. For each choice ob,,, there is en(rPan) = Nen, (t[bPan) + Meny (t]ban)
only one comparison to make for the minimization of (%). + o F Nengen (T[Pan). (24)
The solution to (13) can, therefore, be expresséd as
(+1|r, ban) — J(=1|r, ban) This is easy to see from the structure %, 4.. Note the
B - (19) grouping structure o84, = [Sysen, Sren, ** Sfeny, | That
o . . is, S4,, consists of orthogonal submatrices: one for each child

Substituting the - definition ofJ(b|r, ban) from lines 5,4 s descendants. Furthermore, for each child rogdewe
(14)—(_17) into (19) and performing some algebra, (19) CEH:‘;\veSfcm — {Son, Saen:}, WhereSq,... consists of orthog-
be written as onal submatrices. It is this nesting of orthogonal submatrices

by (r|Ban) = SGN[ln — 6n(Ban) — en(r|ban)]- (20) that givesYy, 4 @ nested block diagonal structure that leads
to the separation of,(r|b,y,) into terms.

In (24), the termy.,, (r|b,,) represents the contribution of
%e ¢th child of noden to the adaptive threshold at node
Hence, the calculation of the adjustment may be done in

b”;“ parts: one for each child of node We use the family notation
ln ; < 6n(Pan) = en(r[ban). (21)  fn = {n, dn} in showing the formula for the terms of (24).
n=—l1
The th_re_sh_old on the right—har_1d side _of (21) has both g, (r|bayn) = 3¥pn, falbsa(r|L, bapn)
deterministic component reflecting the influence of the hy- b (r] = 1, bupn)]
pothesized decisions at ancestor nodes n e .
+ (], Papn)Y pa, paba(r]1, Papn)]

by (x[ban) = sgn|

The conditional decision rule at node for each choice of
ancestor bit vectors,,, corresponds to comparing the matche
filter outputi, to a threshold.

6n(ban) = ¥Yn, anPan (22) b 1.b Y B 1.b
20For the more general M-ary case, there would b€ — 1) comparisons. ( | ) apn) fn, fAn fn(r| - apn)]
2IDividing by 2 in (19) has no effect on the sign and is included to put + %[bapnYapn, i — l?n] b n(r]|1, bopn)

the subsequent expressions into a form that can be compared with standard

results. —b (r] =1, bapn)] (25)
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87 TABLE 1l
TABLE CREATED AT NODE 1 FOR THE EXAMPLE IN FiG. 3

[oF = ]| bi(rfbar) | oteien) |

[+1 +1] | ba(r|+1, +1) = sgn(ls —y15 — y1,7) m(rl +1)
=1 +1] Jbu(r]—1, +1) = sgn(ly + 315 — y1.7)

Sy 86
(+1 —1] | t(r)+1, —1) = sgn(ls — y1,5 + y1,7) mir| = 1)
(-1 =1} |bi(r] =1, —1) = sgn(li + y1,5 +y1,7)
S1 S2 S3 Sy TABLE IV
SPECIFIC INSTANCE OF THE TABLE AT NODE 1 OF OUR EXAMPLE
Fig. 3. Set of tree-structured signature vectors. | oI, = [bsbr] I 51 (vbar) I T (elon) |
[+1 +1] -1 3/2
Implementation of the optimal decision rule may be or- -1 +1] 1
ganized as follows. Starting at the bottom of the tree and +1 —1] 1 9
progressing to the top, construct augmented decision tables [-1 - 1] 1
as illustrated in Table W2
At each bottom noder, the conditional optimal decision
bn(r|bay) is computed by comparing, to the precomputed TABLE V
thresholds,,(b,,,). For each node at this level, calculate and TaBLE CREATED AT NODE 5 IN OUR EXAMPLE
storen, (r|ba, ) to be used at the next level. Move to the parent bl =b7 | bs(rlbr) [ ns(r) |
node pn, calculating the threshold for this node by starting +1 Bys(r+ 1) [ )
with the precomputable portiofi,,(b.,.) and adding to it 1 [ b1

the adjustments, (r|b,,) from each of the children of node
pn. Comparel,,,, to this threshold to make a decision.

For the root noden corresponding to the top level of the ) )
tree,an = 0, ands, (ba,) = 0; there is a single threshold to be Moving to the next level of the tree, consider node 5. The

computed from they's stored at the children of the root nodefollowing conditional estimates are computed:

bs(r| + 1)

C. A Binary Example
Y P =sgn[ls — ys,7 — m(r| +1) — n2(r| + 1)] (28)

This procedure is illustrated for the simple signal set shown
in Fig. 3. Consider node 1 at the lowest level. In this casgygq
the table that is constructed for node 1 for user 1 is shown in
Table IlI. Note that each value ef (r|b7) depends on the two bs(r| — 1)

decisionsh, (r| + 1, +1) and by (r| — 1, +1). — Sqnls 4 ysm — (x| — 1) — (x| -1 (29)

m(r|+1) = 5us,1[ba(x] + 1, +1) wheren; (r| + 1) and 7 (r| — 1) are the quantities in Table
+by(r] = 1, +1)] Il for node 1. Similarly, 72(r| + 1) and n2(r| — 1) are the
1 R corresponding quantities that would be in the table for node
talyrn = b (e[ 41, +1) 2. At this point, note that part of Table Il and part of the

—by(r| - 1, +1)] (26)  corresponding table for node 2 may be discarded, and the
and remaining information may be consolidated into a single table
m(r|—1) = %y(),l[i)l(ﬂ +1,-1) for node 5. Specifically, suppose that(r| + 1) = —1. This

. implies that the best choice fég is —1 if b; = +1. We may
+hu(r] =1, _1)1 discard the first row of Table Il since the first row corresponds
+ 5[~yr,1 — L]bi(x| + 1, —1) to choosing; = +1 whenb; = +1. Similarly, the analogous
—by(r] -1, -1)]. (27) row of the table for node 2 may be discarded. That is, once
the values in (28) and (29) have been computed, the following

vectors may be assembled:
For example, supposg, ; = y5,1 =2andy;, 7 =y7,1 =1

andl; = 5/2. Table IV shows the values of thg’s for this r bs (x| + 1)
case. Similarly, tables are also constructed at the other bottom Bf~(r| +1) = 31(r|gf(r| 1), +1)
[ - [ ) 7

level nodes, 2-4. o (rlbs(r] + 1), +1) |

[ bl =1 ]

22Noticg that_there are half as many valuespefin the table as there are st (r| _ 1) _ 81(1‘|i)5(1‘| _ 1)7 _1) (30)

values ofb,,. Since there is one value of, for each value ofbspn, we 2
organize the values df.,, into pairs corresponding tpE1, bayy]. ba(r|bs(r| — 1), 1) J
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