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Abstract—Optimal joint detection for interfering (nonorthog-
onal) users in a multiple access communication system has, in
general, a computational complexity that is exponential in the
number of users. For this reason, optimal joint detection has been
thought to be impractical for large numbers of users. A number
of suboptimallow-complexity joint detectors have been proposed
for direct sequence spread spectrum user waveforms that have
properties suitable for mobile cellular and other systems. There
are, however, other systems, such as satellite systems, for which
other waveforms may be considered. This paper shows that there
are user signature set selections that enableoptimal joint detection
that is extremely lowin complexity. When a hierarchical cross-
correlation structure is imposed on the user waveforms, optimal
detection can be achieved with a tree-structured receiver having
complexity that is, in typical cases, alow-order-polynomialin the
number of users. This is a huge savings over theexponential
complexity needed for the optimal detection of general signals.

Work in recent literature has shown that a hierarchically
structured signal set can achieve oversaturation (more users than
dimensions) with no growth in required signal-to-noise ratio.
The proposed tree detector achieves low-complexity optimal joint
detection even in this oversaturated case.

I. INTRODUCTION

M ULTIPLE access (MA) communication represents an
active area of current research since it is the only

means of communication among users in wireless systems
such as mobile and cellular terrestrial systems and satellite-
based systems. In each of these applications, the possibility
of many users sharing the available communication channel
offers obvious advantages in terms of flexible and cost-efficient
use of the channel. In addition, MA also poses a number of
challenging research problems including many that fall within
the domain of signal processing. This paper investigates one
of those challenges, namely, the problem of optimal detection
in uncoded MA communications.

The importance and difficulty of the problem of detection
in an uncoded MA system has been recognized for some time
[1]–[4]. In particular, consider a pulse-amplitude-modulated
(PAM) communication system in which each user transmits a
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distinct waveform, the amplitude of which is modulated by a
weight corresponding to the information to be communicated.1

If there is only one user transmitting through an additive white
Gaussian noise channel, optimal detection at the receiver is
realized by a simple matched filter followed by a quantization
to the closest weight used in transmission [5]. If, however,
many users were to transmit through the channel, the situation
can become far more complex.

A. The Problem

Time-bandwidth restrictions on any communication system
limit the dimension of the space of possible user waveforms.
Adopting the commonly-used vector space framework, the-
dimensional signal space would correspond to , and the
multiuser joint detection problem may be stated as follows:
For a given set of user waveforms represented in signal
space by the set of signal vectors, , , the
general uncoded detection problem is to compute an estimate
of weights from an observation ,

(1)

where we have the following:

• is the number of users.
• , where is some finite set

of amplitudes, and the ’s are iid uniform. For having
elements, this is M-ary PAM.

• is an matrix whose columns
are user signal vectors as seen at the receiver.

• is a Gaussian vector of zero mean and identity covari-
ance.

• is the noise standard deviation.

B. Background

One case in which detection is simple is where the user
waveforms are orthogonal. In this case, as in the single-user
case, a matched filter followed by a quantization to the closest

1In binary communications, this weight takes on one of two values. Among
the most popular methods for binary PAM is binary phase-shift-keying (BPSK)
in which the weights aref+1; �1g. For general M-ary PAM, however,M
possible values are allowed for these weights.
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weight used in transmission is optimal for each user.2 The
restriction to orthogonal signal sets, however, is often not a
satisfactory one.

The assumption of orthogonality among user signals must
be abandoned if we are to offer service to more users than
orthogonality would allow. In the absence of time-varying
fading, time-varying multipath, or frequency dispersion, it is
possible to constrain user signals to be orthogonal.3 Of course,
this choice limits the number of users to the dimension of the
signal space available for transmission. “Oversaturating” the
signal space with users can, in principle, be accomplished with
minimal impact on system performance, assuming thatoptimal
detection can be implemented.4 It is, therefore, desirable to
increase the number of users beyond the orthogonal limit in
order to enhance both system utilization and throughput. The
success of such a system requires that the problem of optimal
detection for nonorthogonal signal sets be confronted.

The challenge, then, is to design optimal detectors for MA
systems that employ nonorthogonal signal sets. As discussed in
[2], the optimal joint detector for an arbitrary, nonorthogonal
signal set has exponential complexity in the number of users

. This is a catastrophic increase over the linear complexity
of a bank of matched filters: one for each user. Surprisingly,
though, the convention currently used, even in the case of
nonorthogonal users, is a bank of matched filters where for
each user, the interference from all other users is assumed
to be a second source of “noise.” With this type of detection,
however, it is understood that the error rate will be higher than
that obtained by the computationally complex optimal detector.

Indeed, as argued by Lupas and Verdú in [1], the perfor-
mance loss of the conventional approach, as compared with
the optimal, can be significant.5 This has motivated several
researchers [1]–[4] to consider more complex,suboptimal
detection algorithms that perform joint detection for all users;
better performance than the simple matched filtering approach
is achieved with complexity that is at most polynomial in the
number of users. These methods, however, were intended for
pseudo-noise user signals6 that form a linearly independent
set.7

2Forcing user transmissions to be orthogonal or nearly orthogonal, even at
the expense of inserting wasteful buffer zones in which no user is permitted
to transmit, is common practice in systems of present.

3For example, current MA processing-satellite systems employing narrow-
beam terrestrial antennas assign each user a disjoint portion of the available
frequency spectrum. This is frequency division multiple access (FDMA). The
satellite uplink channel is well modeled by (1), where the received waveforms
are, simply, translated and attenuated replicas of the transmitted waveforms.

4Moreover, as can be seen in the work of Ross and Taylor [6]–[8], it
is, indeed, possible to design signal sets having more users than dimensions
where the minimum interdecision-point distance resulting from use of this set
is the same as that achieved by the orthogonal set. Their design constrains all
users to have powers no higher than the users in the orthogonal set.

5In particular, for the “near-far” problem (large power variations among
interfering users), the conventional detector fails consistently.

6The MA detection literature is heavily concentrated on the mobile cellular
problem for which code division multiple access (CDMA)—through the use
of pseudo-noise user signals—exhibits advantages over orthogonal signals for
use with the conventional detector. By restricting the user waveforms to be
pseudo-noise pulses, orthogonality among users is not possible.

7Although some of these detection algorithms may be applied in the linearly
dependent case, they were not intended for the oversaturated problem and,
therefore, give very poor performance.

In contrast, this paper addresses the problem of finding
an optimal joint detection algorithm that can accommodate
the case of users in -dimensional signal space
that, like the suboptimal detectors, has complexity that is
a low-order polynomial in the number of users. The key
to devising such a detection algorithm is to take advantage
of the flexibility many MA systems have in choosing the
set of user waveforms so that an advantageous geometric
structure is present.8 In particular, the class of signal sets
we consider has a hierarchical tree structure that allows for
a rich variety of possibilities. For example, this desired tree
structure is present in signals of considerable current interest
in the signal processing and communication literature such as
wavelets and wavelet packets. Moreover, we find that Ross
and Taylor [6], [8] have developed signal design guidelines
that fit users in dimensions while preserving
the orthogonal minimum distance. The tree hierarchy is a
byproduct of their design.

In the next section, the signal set structure of interest is
described and illustrated. In Section III, an overview of the
hierarchical tree joint detector is given via an example, a
formal derivation of the low-complexity optimal detector is
done, and a calculation of its computational complexity is
derived. Section IV details the processing procedure of the
tree detection algorithm and steps through a binary example.
The paper is concluded in Section V.

II. THE SIGNAL SETS

A. Signal Vector Set Structure

The geometric structure imposed on the signal vector set9

is best described by saying that the set of signatures hastree-
structured cross-correlations. The columns of the matrix
can be assigned to the nodes of a tree like the one shown
in Fig. 1. The tree pictorially conveys the following required
relationships among user signal vectors:

• Each vector at a given level of the tree is orthogonal to
all other vectors at that level.

• A signal vector is correlated only with its ancestor vectors
and its descendant vectors.

Both linearly dependent and linearly independent sets of
signature vectors may be created to have tree-structured cross
correlations. The detector detailed in this paper finds the
optimal solution for both cases.

The constraint of tree-structured cross-correlations, while
very particular, actually allows a considerable amount of
flexibility in designing user waveforms. Given a tree, a signal
set may be constructed to possess the desired cross-correlation
structure. The waveforms at the bottom level of the tree

8In contrast with previous work with suboptimal detectors, user signals
are not constrained to be pseudo-noise pulses. As will be discussed in later
sections, the structure is used as a guideline for the choice or design of the
actual waveforms to be transmitted.

9For ease of notation, the abstract signal space representation of real signals
is used, and hence, all properties imposed on the signal vectors will also be true
for the real waveform counterparts. The signal vector set structure described in
this section, therefore, can be viewed as design guidelines for the waveforms
that would be used in practice.
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Fig. 1. Example of a general tree showing the correlation structure needed
among signature vectors within the signature set.

comprise an orthogonal set. An orthogonal set is obtained at
any level, i.e., theth level, by constructing a signal at each
node at this level as a linear combination of the signals at its
bottom-most descendant nodes. Since orthogonal signals have
been assigned to the lowest level nodes of the tree, the sets
of bottom-level descendants for distinct nodes at theth level
are disjoint, and consequently, the signals created at level
are mutually orthogonal.

It follows that the general construction of a signal set with
tree-structured cross-correlations requires the following:

a) the specification of a tree,
b) the specification ofanyorthogonal basis

of that is then assigned to the nodes on the
bottom of the tree,

c) the specification of the weights for each of the lin-
ear combinations used to construct signals from their
bottom-level descendants,

d) possibly, the deletion of signals at any of the nodes.

This formulation allows for considerable flexibility in design-
ing the signal set sinceany choices that satisfy a)–d) will
lead to the desired geometric structure on the signal set. Note
also that d) provides us with the flexibility to capture linearly
independent sets with the desired correlation.10

B. Some Examples of Signature Sets

In this section, we illustrate examples of two particular
choices of signal vector sets, one of which involves signals of
considerable current interest in the signal processing commu-
nity, namely, wavelets and wavelet packets [9], [10], and one
that was introduced in [6]–[8] directly in the context of design-
ing signal vector sets for oversaturated MA systems.11 Note

10For simplicity, however (and since we wish to emphasize the applicability
of our methods to the oversaturated case), we will assume that our tree isfull,
i.e., that there is a user signature at each node on the tree. The extension of
our low-complexity optimal detection scheme to the case in which there are
fewer users is immediate.

11As we have indicated, however, there are many different signal sets that
can be constructed to have the tree structure we have just described.

that the following two examples are, simply, two different
realizations of requirements a)–c), in the above discussion.

1) Wavelet Packet Sets:Wavelet and wavelet packet wave-
forms may be generated from a tree-structured procedure in
which subspaces (generated by sets of orthogonal signals)
are decomposed into Cartesian products of orthogonal lower
dimensional subspaces.12 The result is a wavelet or wavelet
packet dictionary consisting of an overcomplete set of basis
functions. A discrete wavelet packet dictionary offers a rich
set of signal vectors from which to select many tree-structured
sets. The use of wavelet packet waveforms has received much
attention in recent literature for single user communications
(i.e., bandwidth efficient and covert signal designs, mitiga-
tion of various types of jammers, transmission through non-
Gaussian channels, etc.)13 An example of a discrete wavelet
packet signal set is shown below as an intensity matrix where
each element of the matrix is shown as a pixel in the
image. The values are shown in gray scale where the smallest
is denoted in white and the largest is denoted in black.

Each column of is a user signature vector. In order
to reveal the tree-structured cross correlations among user
signatures, the absolute values of the elements of are
displayed below, where 0 and 1 are denoted in white and
black, respectively.

is the matrix of cross-correlations between the received
signals of the 11 different users. The wavelet packet signal
vector set can be cast onto a tree with three levels as shown
in Fig. 2.

2) Minimum Distance Sets:Another example is the mini-
mum distance sets developed by Ross and Taylor in [7] and
[8]. They begin with orthogonal users in dimensions.
The set of possible received points based on an M-ary PAM
MA system with an orthogonal set of signal vectors has
associated with it a minimum distance. That is, if the vectors

are the orthogonal signal set, then there is

12For a tutorial treatment of wavelet packets, see the paper by Coifman and
Wickerhauser [10].

13The reader is referred to [11] and [12] and the references therein.
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a specified minimum distance between any two points in the
received constellation, Since the
distance between the elements in this set is directly related
to the probability that the optimal detector makes an error,
maintaining a specified minimum distance is desirable. Ross
and Taylor devise a method for adding additional, energy-
constrained, linearly dependent users so that the minimum
Euclidean distance between received points is preserved. The
reader is referred to [8] for details of their construction.

Ross and Taylor, for antipodal binary modulation
, fit unit energy signal vectors into

dimensions, where must be a power of 4. A specific example
detailed in [8] is repeated below.

(2)

Here, is the 16-D identity matrix. The cross-correlation
matrix is given below.

The structure of reveals that this minimum distance
set of signature vectors may be cast onto a three level quad
tree for which four children emanate from each parent node.
These signature sets were designed for their minimum distance
property. The tree hierarchy they possess is a byproduct that
can be exploited.

3) Ideas on Future Work for Signal Design:From the
above discussion, it is clear that oversaturation is achievable
with minimal performance loss if optimal detection is used.
Moreover, as is detailed in Section III, for MA systems
employing tree-structured signatures, very low complexity
optimal detection can be achieved. The existence of this low-

Fig. 2. Correlation tree for a wavelet packet signature set.

complexity detector, in principle, enables an oversaturated MA
system to operate with relatively the same detector complexity
and probability of error as its corresponding orthogonal
system. A challenging and interesting problem, then, is the
study of user packing with tree-structured waveform sets. Any
valuable work in this area will be achieved through careful
understanding of the signal design problem and is beyond the
scope of this paper. Our ideas for future work are discussed
below.

An interesting and challenging question that is more general
than that answered by Ross and Taylor would ask how many
users with specified power and performance constraints can
be fit into a tree structure of a given dimension. Some rough,
preliminary observations show promise in the increase in
throughput using tree structured signatures.

The first scenario of this is, of course, the work of Ross
and Taylor that is mentioned above and detailed in [6]. If
users are constrained to be of equal energy, the Ross/Taylor
sets realize, in typical cases, a 33% increase in the number of
users relative to the orthogonal system while maintaining the
minimum distance of the orthogonal system. This, by itself, is
substantial for many applications, including military satellite
systems.

A second, more realistic, scenario is where user powers are
unequal (near-far problem). It is easy to come up with simple
examples showing much greater than 33% increases in the
number of users, also while maintaining minimum distance.
For an example starting with two orthogonal users of identical
energy, we realize a 50% increase in the number of users with
no change in the minimum distance by squeezing in a third
user of energy that is 18 dB higher than the first.

A third scenario leads us to user packing with criterion
other than preservation of minimum distance. Specifically, an
understanding of the relationship between the degradation of
minimum distance (i.e., performance) and the number of ad-
ditional users in a tree-structured signature set is not essential
to the ultimate success of a tree-structured system but would
offer Shannon-like limits against which to measure system
throughput. The realization of a system that is allowed graceful
degradation with the addition of each user might employ
waveforms sets based on, for example, wavelet packets.14

14The minimum distance for the arbitrarily chosen 11 unit-energy users in
the 8-D wavelet packet example in Section II-B is 1.13. If we were to have
used a minimum distance construction, we would have been able to fit only
10 users but with a minimum distance of 2. The choice of particular wavelet
packet signature vectors was not in any way optimized for this example.
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III. T HE TREE JOINT DETECTION ALGORITHM

A. Overview of the Detector

The optimal joint detector for the problem stated in (1)
chooses the weight vector estimateaccording to the nearest
neighbor or minimum distance rule.

(3)

For ease of discussion, each user is assumed to employ the
same M-ary PAM for the remainder of this paper; this assump-
tion is not essential to the operation of the tree algorithm. An
MA system employing anarbitrary set of signal vectors can
achieve optimal detection through an exhaustive search, i.e.,
the detector needs to perform comparisons to find
the best estimate [2].

If the signal set has been chosen to have tree-structured
cross correlations, the optimal detector of (3) can be achieved
through a tree-structured algorithm that offers a huge reduction
in the number of comparisons. In particular, because of this
structure, a signature at a given node iscorrelated with
all signatures at its ancestor and descendant nodes and is
orthogonal to all other signatures on the tree. The weight
estimate at a given node will effect the estimates at
descendant and ancestor nodes but will not effect the other
estimates on the tree.

Consider the tree structure in Fig. 2 and consider first the
choice of the weight estimates for users 1–4 having signal
vectors . These vectors are mutually orthogonal
and are also orthogonal to and but not to

and . Since – and are also correlated with
, the decisions on weight estimates for– and are

coupled with those for – . These estimates can, however,
be decoupled by looking, instead, at theconditionalestimates.
Specifically, for each possible pair of weight estimates for

and , the optimal weight estimates for
can be independently computed. The result of this calculation
for – can then be thought of as producing aconditional
weight estimate table, i.e., for each possible pair of choices
for the weight estimates for and , the optimal weight
estimates for – are known. Similarly, for each pair of
possible weight estimates for and , the optimal estimates
for – can be computed. The estimation process may be
iterated for : For each possible choice of weight value for
its ancestor and with knowledge of the just-constructed
conditional estimate table for its descendants– , the opti-
mal estimate for may be computed in a manner decoupled
from the analogous computation for . This gives conditional
estimate tables for and , which then can be used to
determine the optimal estimate for at the top of the tree.
Conceptually, once this estimate is obtained, it is a simple
matter of successive table lookups that propagate down the
tree to determine the optimal estimates first forand and
then for their descendants.

As this simple example illustrates, the tree detection algo-
rithm takes advantage of the tree structure and sweeps through
the tree from bottom to top, creating a conditional weight
estimate table at each node. The table of decisions at a given

node is conditioned on weight decisions of the ancestors and is
a function of weight decisions of the descendants. Since each
conditional estimate table requires an entry for each possible
combination of weights at all ancestor nodes, the number
of computations needed to create a table is exponential in
the number of ancestors (since if there areancestors there
are possible sets of weight values for these ancestors).
This complexity decreases exponentially asdecreases, i.e.,
as the algorithm moves from the bottom to the top of the
tree, the number of decisions made at each level decreases
exponentially until there is only one decision associated with
the top node of the tree. The full weight vector estimate for
all user weights is a byproduct of the last decision at the top
of the tree.

While the complexity of the procedure as we have described
it to this point is exponential in the number of levels in the
tree (which bounds the number of ancestors of each node),
the actual algorithm complexity is, in fact, extremely modest.
If the tree were of uniform construction, i.e., if there are
children emanating from each node, the number of levels of
the tree islogarithmic in the number of users . The overall
complexity, then, is bounded by a very low-order polynomial
in . This is discussed more fully in Section III-C.

B. Derivation of Tree Detector

The global cost that must be minimized in (3) is

(4)

In general, is not separable by weight variables.
Hence, the solution to (3) is found by the calculation and
comparison of .

The introduction of tree-structured cross correlations trans-
forms the structure of the cost function. The complexity of
finding the smallest cost may be reduced by making decisions
in stages. The independence of the conditional decisions
discussed in the previous section can be seen mathematically.
Specifically, the global cost may be separated into independent
terms. First, (4) may be rewritten as

(5)

where , and is the th element of the vector. In
general, each term is a function of all users’ bits.

If the signature set were to exhibit tree-structured cross
correlations, a rotation matrix may be constructed from
the orthogonal basis vectors that reside on the bottom of the
tree.

(6)

Since the cost function of (4) is a squared Euclidean distance
between a Gaussian random vectorand a deterministic vector

, a rotation of this difference vector does not change
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its length or probability distribution. Hence,

(7)

The tree structure is reflected in the position of the zero-valued
elements of . In this form, the partition of into
terms is

(8)

where , , and where the indices
correspond to the orthogonal users at the

bottom nodes of the tree.
For example, the rotated version of the wavelet packet signal

matrix from Section II-B is

and it is clear that can be written as a linear
combination of and the elements of . Here, denotes
the vector of weights associated with the ancestors of node.

In general, it follows that the “rotated” cost may be sep-
arated into additive terms, where each term is a function
of only one of the weights and all
of the weights that correspond to its ancestors. Each term

in (8) may be explicitly written as . Note
that for and , and

have no common unknown parameters, given
the values for and . It follows that the optimal solution
may be determined through the optimization of each term
conditioned on the values of the weights corresponding to the
ancestors of the indexof that term. A dynamic program may
be written to solve this minimization problem.

1) Some Practical Issues:Some practical issues of imple-
mentation arise from the assumptions made by the tree detector
algorithm, namely, 1) the channel response is capable of
being estimated, and the set of assigned users signalsleads
to the set of received signals that exhibit the
needed tree-structure and 2) knowledge or accurate estimates
of user timings and received powers are available. These
assumptions are valid for many MA scenarios of present.
For example, the processing satellite15 MA uplink channel
is free of both multipath and frequency dispersion, making
assumption 1) practical using current technology. Assumption
2) is also reasonable within limitations since users request
access from the satellite through a side channel. During this
acquisition stage, the satellite can determine the power and
symbol timing of the user. Another MA system having similar

15At present, processing satellites, employing orthogonal MA, detect each
user’s transmission, correct errors caught by error correction coding, and then
retransmit to close the link.

traits to the satellite is the wireless local loop [14].16 This
system may offer more of a challenge with assumptions 1) and
2), but since it is conceivable for channel probing to occur
during off hours and periodically during normal operation,
all multipaths and attenuations could be known for each
transmitter.

Our ongoing work investigates the break down of assump-
tion 2). In particular, although a user’s power is often easily
acquired during the acquisition process, and its envelope
waveform and modulation frequency are assigned, the phase of
each user cannot be assigned and may need to be estimated. A
user’s phase may be estimated with a tree-structured procedure
as well. The effect phase uncertainty has on bit error rates
throughout the tree is currently under investigation. Training
sequences may be used to lower the variance of the phase
estimate at a cost of higher computations, which may be
impractical for some systems. Future work includes the study
of suboptimal ways of obtaining good phase estimates along
with low complexity ways of refining phase estimates for tree-
structured MA. These issues are addressed as part of Learned’s
thesis [13].

C. Computational Complexity

The conceptual description of the tree detector in Section
III-A and the dynamic programming description in Section III-
B inevitably include many wasteful calculations and storage
requirements. The resulting complexity of this “inefficient”
version leads to an upper bound on tree detector complexity
that is extremely low.

For simplicity of calculation of computational complexity,
the tree is restricted to be of uniform composition in that
there are exactly children emanating from each node. Recall
that is the number of signal space dimensions available
(the number of nodes at the bottom of the tree), andis
the number of levels that can be modulated by each user. A
measure of complexity that is in agreement with the MA joint
detection literature is the number of comparesneeded to
perform the detection algorithm.17

The complexity is derived by counting the number of
comparisons needed to execute the tree algorithm. Some facts
used in the complexity calculation follow:

• Each node at level has ancestor nodes.
• There are nodes at level of the tree.
• The tree has a total of levels (counting the top as level

1).
• There are nodes at the bottom of the tree,

and thus, .

The algorithm creates a conditional bit estimate table for
each node. For a given , the best of possible values
of must be found. This requires comparisons for

16The positions of all transmitters are known and fixed. This service would
compete with existing wire-line service and might be delivered via an antenna
on the top of buildings that are hooked up to the service.

17Counting the number of comparisons is equivalent to counting number
of tentative decisions that must be made. Without computational optimization
of the algorithm, each decision requires the computation of two metrics. Each
metric requires several adds and subtracts. To find the order of the complexity
of the tree algorithm, it is sufficient to count the number of compares.
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a single configuration of . Since there are ancestors
of node , there are possible configurations of .
The tree detector, therefore, creates a single table at level,
node , with comparisons. There are
tables needed for level of the tree, and there are a total of

levels in the tree. It follows that the total number
of comparisons needed for the tree algorithm is

For example, if a system were to employ antipodal modula-
tion, , , and signal sets having quad-tree
structure ( ) such as the minimum distance waveform
sets, the number of comparisons needed for the tree detector
estimate is

(9)

The computational complexity is polynomial in the number
of dimensions. The number of users in this special case is

; hence, the tree detector is also polynomial in
the number of users, resulting in a computational complexity
of .

IV. SIGNAL PROCESSING FOR THEOPTIMAL TREE DETECTOR

This section examines the calculation and interpretation of
key values used in the tree algorithm.

A. Calculation of the Estimate

Mathematically, the dependence between ancestors and de-
scendants is revealed as the reduction of the general optimal
estimator of (3) to the tree-structured optimal estimator below.
For each node of the tree, calculate the following estimate
conditioned on the value of the set :

(10)

The notation used throughout this section is shown in Table
I. The set of estimates for all descendants of nodehas already
been calculated in the previous steps of the algorithm. Hence,

is best defined recursively. For a given set of
values for ,

...
(11)

For that same set of , has already
been calculated; if the value found for is ,

TABLE I
NOTATION

then the subvectors on the right-hand side of (11) are given
by

(12)

We examine the argument of the minimization in (10) more
closely. We may, of course, remove any terms that do not
depend on , and we can multiply by any positive constant.18

As a result, some algebra shows that (10) is equivalent to

(13)

where

(14)

(15)

(16)

(17)

Note that the only explicit processing of the datais for the
terms and on lines (14) and (15).19

The first bracketed term on line (14)
corresponds exactly to the decision statistic that would be used
to choose if there were no other users to consider or if all
other users had orthogonal signals. The remaining terms, then,
represent theadjustmentsof this decision statistic to reflect the
impact of the nonorthogonality in the signals. The last term
on line (14) represents the interaction between

18or multiply by a negative constant and replace minimization by maxi-
mization

19The calculations of eachli correspond to processing the datar through a
filter matched to the signalsi. flig

K
1

is the set of sufficient statistics needed
for optimal detection. Reductions in the calculation of the setflig

K
1

can be
obtained by taking advantage of the exact relationships among user signatures
on the tree. See Learned’s thesis [13] for a detailed discussion.
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TABLE II
TABLE CREATED AT NODE n FOR THE GENERAL BINARY CASE

the choice of and the particular hypothesized choices for
the ancestor weights. Note that since the values of will
be hypothesized, this term can be precomputed. Line (15)
represents a counterpart to the bracketed term on line (14).
Specifically, if all users other than the ones corresponding to
the weights were not present, then

(18)

represents the decision statistic that would be used to deter-
mine the optimal choice of . Since this isnot the case, this
term incorporates the decisions conditioned on
the value of . Line (16) accounts for the interactions
between these descendant decisions and the possible decisions

. Likewise, line (17) accounts for the interactions between
the descendant decisions and the hypothesized decisions for

at the ancestors of node. Thus, all of the quantities
needed in the last three lines (15)–(17) can be computed based
on the value of and the calculations that have already been
performed at lower levels on the tree.

B. The Binary Conditional Decision Rule

This section focuses on the binary antipodal signaling case,
i.e., when . For each choice of , there is
only one comparison to make for the minimization of (13).20

The solution to (13) can, therefore, be expressed as21

sgn (19)

Substituting the definition of from lines
(14)–(17) into (19) and performing some algebra, (19) can
be written as

sgn (20)

The conditional decision rule at node for each choice of
ancestor bit vectors corresponds to comparing the matched
filter output to a threshold.

(21)

The threshold on the right-hand side of (21) has both a
deterministic component reflecting the influence of the hy-
pothesized decisions at ancestor nodes

(22)
20For the more general M-ary case, there would be(M � 1) comparisons.
21Dividing by 2 in (19) has no effect on the sign and is included to put

the subsequent expressions into a form that can be compared with standard
results.

and an adaptive component reflecting decision rules already
constructed at descendant nodes

(23)

In particular, note that for nodes at the bottom level of the tree,
there areno descendants and, consequently, .
Hence, at the lowest level of the tree, the decision rules in (21)
for each of the hypothesized set of values correspond to
comparing to the fixed threshold given in (22). This nonzero
threshold represents the adjustment of the test statistic to reflect
the interference of users at ancestor nodes.

The calculation of , which is the adaptive portion
of each threshold, has a child-separable structure.

(24)

This is easy to see from the structure of . Note the
grouping structure of . That
is, consists of orthogonal submatrices: one for each child
and its descendants. Furthermore, for each child node, we
have , where consists of orthog-
onal submatrices. It is this nesting of orthogonal submatrices
that gives a nested block diagonal structure that leads
to the separation of into terms.

In (24), the term represents the contribution of
the th child of node to the adaptive threshold at node.
Hence, the calculation of the adjustment may be done in
parts: one for each child of node. We use the family notation

in showing the formula for the terms of (24).

(25)
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Fig. 3. Set of tree-structured signature vectors.

Implementation of the optimal decision rule may be or-
ganized as follows. Starting at the bottom of the tree and
progressing to the top, construct augmented decision tables
as illustrated in Table II.22

At each bottom node , the conditional optimal decision
is computed by comparing to the precomputed

threshold . For each node at this level, calculate and
store to be used at the next level. Move to the parent
node , calculating the threshold for this node by starting
with the precomputable portion and adding to it
the adjustments from each of the children of node

. Compare to this threshold to make a decision.
For the root node corresponding to the top level of the

tree, , and ; there is a single threshold to be
computed from the ’s stored at the children of the root node.

C. A Binary Example

This procedure is illustrated for the simple signal set shown
in Fig. 3. Consider node 1 at the lowest level. In this case,
the table that is constructed for node 1 for user 1 is shown in
Table III. Note that each value of depends on the two
decisions and .

(26)

and

(27)

For example, suppose and
and . Table IV shows the values of the ’s for this
case. Similarly, tables are also constructed at the other bottom
level nodes, 2–4.

22Notice that there are half as many values of�n in the table as there are
values of b̂n. Since there is one value of�n for each value ofbapn, we
organize the values ofban into pairs corresponding to[�1; bapn].

TABLE III
TABLE CREATED AT NODE 1 FOR THE EXAMPLE IN FIG. 3

TABLE IV
SPECIFIC INSTANCE OF THE TABLE AT NODE 1 OF OUR EXAMPLE

TABLE V
TABLE CREATED AT NODE 5 IN OUR EXAMPLE

Moving to the next level of the tree, consider node 5. The
following conditional estimates are computed:

sgn (28)

and

sgn (29)

where and are the quantities in Table
III for node 1. Similarly, and are the
corresponding quantities that would be in the table for node
2. At this point, note that part of Table III and part of the
corresponding table for node 2 may be discarded, and the
remaining information may be consolidated into a single table
for node 5. Specifically, suppose that . This
implies that the best choice for is if . We may
discard the first row of Table III since the first row corresponds
to choosing when . Similarly, the analogous
row of the table for node 2 may be discarded. That is, once
the values in (28) and (29) have been computed, the following
vectors may be assembled:

(30)
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The table residing at node 5 (shown in Table V) may now be
constructed.

Since node 7 has no ancestors, a single threshold correction
is calculated from (25) with by dropping the last

term since . The calculation of from (25)
would use the following substitutions:

Finally, at the top of the tree, since , , and
the optimal decision rule at node 7 is

sgn (31)

where is computed in an analogous fashion to the
computation of . Once we have , e.g., , the
full optimal estimate may be read off the tables for nodes 5
and 6, e.g., and .

V. CONCLUSION

This paper examines the problem of uncoded multiple ac-
cess (MA) joint detection for the case in which user signatures
are not orthogonal. The primary obstacle in a nonorthogonal
MA system, however, is the complexity of detection; in gen-
eral, the optimal detector has a complexity that is exponential
in the number of users. The work presented in this paper
proposes the use of signal design flexibility to allow a low
complexityoptimal algorithm for joint detection. Specifically,
the user waveforms must have tree-structured interference.
The tree structure is explained, and a low-complexity optimal
tree detector is derived. The algorithm is pyramidal in that
estimates and thresholds calculated at a given level of the tree
are either discarded or used in the calculation of estimates
at the next higher level of the tree. The tree detector gives
the optimal estimate with an extremelylow computational
complexity. The complexity is derived and, for typical cases of
interest, is bounded by a low-order polynomial in the number
of users, e.g., small. This is an enormous savings
in computations over the computations needed if the
signatures did not exhibit any structure.23

Since the tree detector is optimal forany set of tree-
structured signatures, its use with the minimum distance
sets proposed in [8] allows, in principle, for an oversat-
urated MA system that has comparable performanceand
computational complexity as its corresponding orthogonal MA
system supporting less users. Our detection result has lifted a
major computational obstacle and has opened up the area of
oversaturated communications for more research.

23Here, it is assumed that M-ary PAM is used by the each of theK users.
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