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e, Statisti ased Inversion Scheme 
cattering Problems 

Eric L. Miller, Member, IEEE, and Alan S. Willsky, Fellow, IEEE 

Abstruct- The application of multiscale and stochastic tech- 
niques to the solution of a linearized inverse scattering problem 
is presented. This approach allows for the explicit and easy 
handling of many difficulties associated with problems of this 
type. Regularization is accomplished via the use of a multiscale 
prior stochastic model which offers considerable flexibility for 
the incorporation of prior knowledge and constraints. We use 
the relative error covariance matrix (RECM), introduced in [B], 
as a tool for quantitatively evaluating the manner in which data 
contribute to the structure of a reconstruction. Given a set of 
scattering experiments, the RECM is used for understanding and 
analyzing the process of data fusion and allows us to d e h e  the 
space-varying optimal scale for reconstruction as a function of the 
nature (resolution, quality, and distribution of observation points) 
of the available measurement sets. Examples of our multiseale 
inversion algorithm are presented using the Born approximation 
of an inverse electrical conductivity problem formulated so as to 
illustrate many of the features associated with inverse scattering 
problems arising in fields such as geophysical prospecting and 
medical imaging. 

I. INTRODUCTION 

COMMON objective of many applied inverse problems 
is the desire to recover characteristics of a medium based 

upon observations arising from the interaction of transmitted 
energy with the unknown environment. Indeed, these inverse 
scattering problems are found in fields such as medical imag- 
ing, nondestructive testing, oceanography, and remote sensing 
[2]. Here, we present and demonstrate a methodology for 
the use of multiresolution and statistical signal processing 
concepts which provides explicit and quantitative insight re- 
garding many of the challenges associated with problems 
of this type. First, the use of these methods yields a new 
and interesting means of regularizing the inverse scattering 
problem. Additionally, the fact that the wavelet transform 
provides information regarding the local behavior of a function 
over a variety of spatial scales leads to the development 
of a powerful collection of tools for the analyses of sensor 
fusion and the trade-off between reconstruction accuracy and 
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resolution. As it is our desire to focus exclusively upon these 
issues rather than the complexities associated with the physical 
modeling of the problem, we limit our attention to problems 
where the first Born approximation [5] is a valid model for 
the relationship between the quantity to be reconstructed and 
the associated observations. In particular, we demonstrate our 
approach using a linearized inverse electrical conductivity 
problem arising in geophysical exploration [21], [33].  

A common difficulty associated with many inverse scat- 
tering problems, including those of interest in this paper, 
is that of ill-posedness [3], [18] caused by the restriction 
of collected data to the boundaries of the medium and the 
physics goveming the propagation of radiation through a lossy 
environment. Traditionally, this problem is overcome via the 
use of a regularization procedure which serves to stabilize the 
original inverse problem so that a unique, physically plausible 
solution may be computed [18]. Also, a regularizer may be 
incorporated as a means of constraining the reconstruction 
to reflect prior knowledge concerning the behavior of this 
function [18], [26], [36]. As discussed in [28], such regular- 
ization techniques have direct interpretations as specifying 
prior statistical models on the phenomenon to be imaged. 
This interpretation provides a basis for the calculations of 
error statistics which we find useful in the consideration of 
questions such as the trade-off between the resolution of the 
reconstruction and the accuracy of the generated image, the 
value of additional measurement sets, etc. Moreover, the use 
of the Bom approximation leads to a linear estimation problem 
where these statistics are dependent only upon the model 
structure and not the actual data values [35]. Thus, all of the 
analysis tools developed in this work can be implemented off- 
line so that we may examine the problem prior to the collection 
of data. 

In this paper, the benefits associated with a statistical 
perspective are further enhanced through the use of a wavelet- 
based multiresolution framework. Here, we are led to an 
alternate method for statistical regularization specified directly 
in the wavelet transform domain that has a number of attractive 
properties. First, the class of multiresolution models available 
to us is extremely rich, allowing us to capture a wide range 
of characteristics and constraints in our regularization scheme. 
In particular, we consider a highly useful class of multiscale 
prior models, the so-called fractal prior model. As shown 
in [26], this model is related to the traditional smoothness- 
based regularizers and, with appropriately chosen parameters, 
produces estimates with similar characteristics. Moreover, 
Wornell [38] has demonstrated that this model is useful 
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Sections I1 and IV. 
The direct scale-space form of these models facilitates the 

for representing self-similar stochastic processes possessing TABLE I 

number Position of source (Hz) Array 
1.2.3 T.M.B fur = 395 Left 

explicit analysis of the trade-off between the incorporation of 
I . ,  - -_- 1 4[+ j MID = 119 Le t 

7,8,9 I T,M,B I f ~ o  = 6 I Right 
resulting estimate. In particular, the relative error covariance 
matrix (RECM) introduced in [28] provides a rational basis for 
dealing with resolutiodaccuracy trade-offs and identifying the 
optimal scale to which the conductivity may be reconstructed 
as a function of spatial position, the physics of the problem, 
the prior model, and the spatial coverage and measurement 
quality of the data. Moreover, the RECM allows for an explicit 
description of the information provided by the various data 
sources both individually and collectively at each point in 
space and scale. Thus, we develop new, quantitative insight 
into the issue of multisensor data fusion in that a) we are able 
to determine those regions in space where the information 
provided by several data sets together significantly exceeds 
that provided by any one set individually and b) we use the 
RECM to assess the incremental value of additional sources 
of information. 

In Section 11, we develop the physical model relating the 
observables to the conductivity field and review common 
inversion methods for this problem. In Sections 111-A and III- 
B, we present an overview of the discrete wavelet transform 
and a discussion of its application to the inverse scattering 
problem. Sections 111-C and 111-D contain the description of 
the fractal multiresolution statistical regularization formulation 
and the tools for RECM-based analysis, respectively. A set of 
examples illustrative of the different facets of our approach 
are presented in Section IV. Conclusions and directions for 
further investigation are given in Section V. 

11. AN INVERSE ELECTRICAL CONDUCTIVITY PROBLEM 

A. A Linear Forward Model 

We consider an inverse scattering problem illustrated in 
Fig. 1 and arising in the context of geophysical exploration 
[21], [33 ] .  A set of three electromagnetic line-sources oriented 
perpendicularly to the page emit time-harmonic, cylindrical 
waves into a medium. The electrical properties of this environ- 
ment are decomposed into the sum of 1) an infinite, known, 
and constant background and 2) a conductivity anomaly, g, 
which varies as a function of the two variables x and z 
and which is known to lie in region C of the plane. The 
transmitted energy is scattered by g and the resulting field 
is measured by one of the two arrays of point receivers. 
We consider inversions based upon the data obtained from 
a number of scattering experiments the details of which are 
provided in Table I. Each experiment produces a vector of 
measurements comprised of the scattered field (both in-phase 
and quadrature components) observed over a single receiver 
array due to energy put into the medium from one of the 
three sources operating at a particular frequency. In particular, 

the left receiver array consists of 64 equally spaced elements 
extending from z = 4.8 m to z = 95.2 m all located at 
x = -0.2 m. Similarly, the right array is composed of 48 
equally spaced elements from z = 14.9 m to z = 82.2 m all 
located at x = 100.2 m. The three sources are located along 
the line x = -0.1 m at z = 25 m, 50 m, and 75 m. 

In this paper, we consider the situation in which the exact, 
nonlinear physical relationship between the observed scattered 
fields and the conductivity perturbation g is represented accu- 
rately by the linear relationship obtained through the use of 
the first Born approximation [5]. The conditions under which 
such an approximation may be made are well documented 
in [5], [22] and are assumed to hold for the remainder of 
this work. For the ith data set, the model linking the data to 
the conductivity under the Born approximation takes the form 
of a first-kind Fredholm integral equation [20] which, upon 
discretization using a method of moments (MOM) approach 
with a pulse basis [23] ,  yields the matrix-vector observation 
model 

y; = Tig + n; (1) 

where y, is the vector of scattered field observations obtained 
along the receiver array, T, is the MOM operator matrix 
associated with the Fredholm integral kernel, g is the vector 
containing the MOM expansion coefficients of the conduc- 
tivity perturbation, and n, represents additive noise which is 
taken to be uncorrelated and stationary so that n, N (O,r,I) 
where P is an appropriately sized identity matrix’. We define 
the “stacked” system of data as 

y = T g + n  (2) 

where y = [yT y: . . . y$lT, with T and n defined accordingly. 
Thus, the objective of the inverse scattering problem is the 
determination of g given the data and the model in (2). 

B. Regularized Inversion and Its Probabilistic Interpretation 
A commonly used technique [18], [25], [36] for solving 

linear inverse problems of the form in (2) is to choose the 
estimate of g according to 

(3) 

where 11x112 = zTMx.  The first term in (3 )  enforces fidelity 
to the data where the weighting R-’ reflects the relative 
quality of each of the measurement sets as measured by the 
inverse of the noise covariance while the second term can 

‘The notation z N (m,  P )  indicates that the random vector z has mean m 
and covariance matrix P. 
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Fig. 1. Configuration of inverse conductivity problem. The electromagnetic sources (indicated by the black crrcles) emit time-harmonic waves into a lossy 
medum which subsequently are scattered by conductivity inhomogeneities located in the darkly shaded rectangle, C. The secondary fields are observed 
at one or both receiver arrays located on either vertical edge of region under investigation. Based upon these observations, the objective of the inverse 
problem is the reconstmction of the conductivity perturbation 

alternatively be viewed as a regularization term or as a prior 
statistical model for g .  In particular, as discussed in [26], this 
penalty term is equivalent to a prior model of the form2 

Lg = w w N (0 , I ) .  (4) 

Thus, the nature of the regularization or the prior knowledge 
is captured in the structure of the matrix L. Common choices 
for this term are discussed in [3],  [81, [24], and [31]. 

The optimization problem given by ( 3 )  admits a solution 
which defines ij in terms of the normal equations 

( 5 )  

As discussed in [26], this solution, g can be interpreted as 
the linear least squares estimate (LLSE) of g given the noisy 
measurements in (2) with n N (0,R) and the prior statistics 
fof- g implied by (4), i.e., g is zero mean and has LTL as the 
inverse of its covariance. Furthermore, the estimation error 
covariance matrix, i.e., the Covariance of g - ij is 

E[(g  - g)(g - g ) T ]  = (TTR-’T + LTL)-’. (6) 

111. A MULTISCALE REPRESENTATION OF THE PROBLEM 

We are interested in the use of estimation-theoretic meth- 
ods for solving the linearized inverse scattering problem in 
which the statistical quantities are examined and the inversion 
executed ‘directly in the wavelet transform domain. Hence, 
we begin this section with a brief overview of the discrete 

’Note that we assume zero-mean in the prior model for g only for notational 
simplicity. There is no complexity added if we incorporate a prior mean, e.g., 
in a penalty term of the form IIL(g - go)1I2. 

wavelet transform (DWT). A more detailed description of this 
new signal processing tool including details associated with its 
implementation and examples of its application may be found 
in 111, L41, 161, [71 [101-[12], 1161, [171, and [371. Subsequent 
to its introduction, we describe in greater depth the manner 
in which the DWT can be employed in the context of the 
linearized inverse scattering problem. 

A, A Wavelet Representation of g and y 

The fundamental idea behind the discrete wavelet transform 
is to decompose signal, here represented as a vector, into a 
sequence of increasingly “coarser” representations while at the 
same time retaining the information lost in moving from a 
fine to a coarse scale. In our case, we will be concemed both 
with one and two-dimensional signals where for simplicity, we 
first describe the wavelet representation and notation for a l-D 
signal vector, a. Following the wavelet literature, the elements 
of this vector are termed the finest scale scaling coeficients 
associate with a, and the vector a is denoted by a(M,) 
indicating that these scaling coefficients represent a at scale 
Ma where the integer Mu reflects the dimensionality of a. 

Beginning with a(Ma),  a coarser representation (that is, a 
coarser set of scaling coefficients), .(Ma - l), is obtained by 
first passing a(Mu) through a low pass, finite impulse response 
(FIR) filter, I ,  and then decimating the filtered output by a 
factor of two. Thus, .(Ma - 1) is “coarser” than a(Ma) in that 
the filtering/downsampling procedure has removed the high- 
frequency structure from the original signal, and .(Mu - 1) is 
half as long as .(Ma). The detail lost in moving from .(Ma) 
to .(Mu - 1) is extracted separately by first high pass filtering 
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a(M,j) = j th component of a(M) 

= Element of a at scale M and shift j 

Fig. 2. A sample wavelet transform lattice. The finest scale is taken as Ma 
while the coarsest is La. Also, the downward impact set associated with node 
marked by an open square, is comprised of all nodes marked with the closed 
square. 

a(Ma)  with the FIR filter h and then downsampling by two. 
This detail vector is denoted .(Ma - 1). The filtering and 
decimation procedure is successively applied to the coarsened 
versions of a resulting in a sequence of scaling coefficient 
vectors, a(m), and a sequence of detail vectors, a(m), for 
m = Ma - 1, . . . , La where La is the coarsest scale at which 
a is represented. 

As described extensively in [9], [lo], and [16], the filters 1 
and h are designed so that we may construct an ~pera tor ,~  W ,  
which relates the finest scale scaling coefficients, a E a(Ma),  
to the coarsest scaling coefficients, a(&), and the full set of 
detail coefficients a(m) for scales m = La, La + 1, . . . , Ma - 
1. That is, we may write 

a! = W,a (7) 

where a = [&(Ma - l)T. . . a(La)Ta(L,)T]T. Moreover, 
W, can be made to be orthonormal so that the equality 
WzWa = I holds. We call the vector a! the wavelet transform 
of a. The nth element of a(m) is denoted a!(m,n) and is 
termed the nth shijit of a at scale m. Also, a(m, n)  represents 
the nth element of the vector of scaling coefficients at scale 
m. In general, we use Roman letters to represent vectors of 
approximation coefficients and their Greek counterparts for 
detail coefficients. 

The relationships among the scale space component in the 
decomposition of a are graphically represented in the form 
of a lattice as shown in Fig. 2 for the case of a wavelet 
decomposition with Z(n) and h(n) of length 4. The coefficients 
at any scale all lie on a common horizontal line with the finest 
scale coefficients at the bottom of the lattice and the coarsest 
at the top. Two nodes are connected by an arc if and only if 
there is a linear relationship between the two as dictated by 
the structure of the wavelet transform matrix W,. We say that 
a coarse scale node impacts a finer scale one if there exists a 
strictly downward path on the lattice from the former to the 
latter. Finally, as illustrated in Fig. 2, we define the downward 
impact set, D(m,n) associated with node (m,n), as the set 
of finest scale nodes which (m,n) impacts. 

The wavelet decomposition of the scaling coefficients of 
a two-dimension function is obtained by considering a as 
a matrix and applying one wavelet transform, W,,,, to the 
columns and a second wavelet transform, W,,,, to the rows. 

3We choose to subscript the wavelet transform operator here as Wa to 
make explicit that this is the transform for a. We may (and in fact will) use 
different wavelet transforms for the different variables. 

We use W ,  to represent the composition of the operators W,,, 
and W,,, and write 

a! = W,a = Wa,,UW&. 

Furthermore, it is easily shown that WzWa = 1. As in the 
1-D case, we denote a particular element of a! by a(m,n). 
Here, we understand m and n to be two-vectors indexing the 
scales and shifts in the x and z directions, i.e., m = [m, m,IT 
and n = [n, nZlT, respectively, and define downward impact 
sets in the same manner as was the case in 1-D. 

B. A Multiscale Inversion Problem 
Using the methods in Section 111-A we define orthonor- 

mal, discrete wavelet transform operators W, and W, which 
transform the measurement vectors, y, and the discretized con- 
ductivity field, g, into their respective wavelet decompositions 

r] ,  = W,y, and y = Wgg. 

In our analysis of (l), we use W, and W, to move from 
physical to scale space via 

(8) r]z = W,y, = (W,mq)(W,g)  + Wzn, = O,y + v,. 
Finally, the wavelet-domain stacked system is 

r ] = O y + v  (9) 

with r]  = [r]; r]: . . . r];lT and 0 and v are defined accor- 
dingly. 

Analogously to Section 11-B, we define a linear least squares 
estimation problem in the wavelet transform domain. Specif- 
ically, we wish to reconstruct y based on the prior model 
y - (0, PO), together with the noisy measurements (9). Thus, 
the LLSE, T ,  is 

so that ;U satisfies normal equations of the form 

(OTR-10 + PCl)=y = OTR-lr] (1 1) 

and the corresponding error-covariance matrix is given by 

P = E [ ( y  - T)(y - ?)'I = (OTR-10 + P;l)-l . (12) 

Comparing (3), (5), and (6) to (lo), ( l l) ,  and (12), we see 
that the wavelet transformation has left us with a formulation 
of exactly the same structure as we had originally. The 
advantages of this transformation come from two important 
facts. First, as we will see in Section 111-C, a specific diagonal 
choice for Pcl implies a smoothness penalty (or equivalently 
a fractal prior model) analogous to that captured by LTL in (3), 
(5), and (6) when L is a differential operator while different 
choices for the diagonal matrix P i 1  allow us additional 
flexibility to capture a rich variety of other regularization 
objectives or prior models. Second, as discussed in Section III- 
D, the use of these prior models is instrumental in obtaining 
a great deal of insight into issues associated with the manner 
in which the information embedded in the data impacts the 
structure of the reconstructed conductivity field. 
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C. Multiscale Prior Models 

A key component in our formulation of the inverse problem 
is the use of a multiscale stochastic model for g to regularize 
the inversion and to capture prior information. To motivate 
the particular choice of prior model used here, consider the 
case of a one-dimensional function whose covariance matrix 
is (L'L)-' with L representing first order differentiation. 
This implies that g is a Brownian motion satisfying Lg = w 
with w - (0 , I ) .  Work by Wornell and others [15], [32] has 
demonstrated that Brownian motions and other related fractal 
processes can be closely approximated via a statistical model 
in which the wavelet and coarsest scale scaling coefficients of 
g are independent and distributed according to 

y(m, n) - (0 ,  n22-P"m) 

g(Lg,n) - (O ,PL , ) .  (13b) 
(134 

Here, K~ controls the overall magnitude of the process and 
the parameter p determines the fractal structure of sample 
paths. The case p = 0 corresponds to g being white noise 
while as ,LL increases; the sample paths of g show greater long 
range correlation and smoothness. The scalar p ~ ,  is chosen 
to be sufficiently large number so as to avoid any bias in 
the estimator of the low-frequency structure of g. Finally, for 
these models, the matrix PO in (1 1) is diagonal with nonzero 
entries corresponding to the variances associated with each 
component of y. 

For the case where g is a two-dimensional function, we 
consider the separable representation with 

y(m, n) - ( 0 , 4 4 2 - ( - z + P J 4  1 
for Lg,,  5 m, 5 Mg,,  - 1 and Lg,, 5 m, 5 Mg,, - 1. For 
m, = L ~ , ~  we take y(m,n)  - ( ~ , p L , , , ~ : ~ - ( f i z ~ z ) )  with 
analogous results holding when m, = Lg,z. 

Clearly, other choices of statistics for the components 
of y may be appropriate in specific applications, and our 
methodology can readily accommodate these. The choice we 
have made, leading to a l/f-like fractal model, is useful 
both in its ability to model natural phenomena [14], [34], 
[38] and because the successively decreasing variances of 
the fine scale wavelet coefficients control the incorporation of 
high-frequency information into the reconstruction. As will be 
seen in Section IV, this is precisely the type of regularization 
required for the inverse conductivity problem. Additionally, 
we observe that the methods presented in the paper are not 
dependent upon a model with the variance structure of (13); 
rather, all that is required is the uncorrelated property of 
the wavelet coefficients (i.e., a diagonal PO.) In fact, work 
performed in [6], [7], [13], [16], and [26] indicates that a rich 
variety of stochastic phenomena can be described using more 
general wavelet-type models with uncorrelated coefficients 
thereby demonstrating that the methods presented in this paper 
are applicable in a wide range of circumstances. 

D. The Relative Error Covariance Matrix 
A key advantage of the use of statistical estimation tech- 

niques is the ability to produce not only the estimate of y 

but also an indication as to the quality of this reconstruction 
in the form of the error-covariance matrix P defined in (12). 
While the information contained in P is certainly important 
for evaluating the absolute level of uncertainty associated with 
the estimator, in many cases, we have some prior level of 
confidence in our knowledge of y and we seek to comprehend 
how the inclusion of additional data in our estimate of y alters 
our uncertainty relative to this already established level. In 
this section we define the relative error covariance matrix 
(RECM) and demonstrate its utility as a tool for capturing 
such changes in uncertainty. The analysis of the RECM in 
the wavelet domain is especially interesting because it allows 
for a localized characterization of the manner in which data 
impact a reconstruction. 

The definition of the relative covariance matrix is motivated 
by the definition of the relative difference between two scalars 
a and b given by 

b 
a 

1 - -. 

The matrix analog to (14) to be considered in this paper 
is as follows. Let (1: . . . , K )  denote the index set for the 
observations sets yz. For any subset A of { l , . . . ,K}  let PA 
denote the estimation error covariance as in (12) resulting from 
the estimation of y based upon the data sets corresponding 
to A (i.e., {yz I i E A))  where for A = {0), the empty 
set, PI@} = PO, the prior covariance. The RECM provides a 
measure of the relative quality of the estimate based upon data 
in two sets A and B and is given by 

H(A, B) = I - PiT'2PBPi1'2 

where PI'2 (Pz )1 /2 .  
The definition of II(A,B) in (15) possesses many useful 

properties. First, the structure of the RECM is dependent 
upon the model relating the data to the observations (i.e., 
0;  R, and PO) but not upon the actual values of the data. 
Thus, II(A,B) may be computed off-line and the associated 
analysis performed prior to the collection of data. Second, like 
the error-covariance matrix, the RECM is symmetric. Also if 
B(A, B )  represents the relative error covariance matrix for the 
estimation of g ,  i.e., the physical-space representation of the 
conductivity, then this is directly computable from II(A, B )  
using the wavelet transform 

II(A, B )  = W,TII(A, B)Wg. 

Moreover, it is not difficult to show that E(A,  I?) is normalized 
to the extent that for A c B,  

0 5 II(A,B) 5 1. 

We note that in this case II(A, B )  = 0 if and only if PB = PA 
which indicates no additional reduction in uncertainty results 
from augmenting A with the data sets in in B - A. Also, 
II(A,B) = I if and only if PB = 0 i.e., only when all 
uncertainty in y has been removed when we use the additional 
information in B relative to A. 

In the event PA is diagonal, the diagonal components of 
H(A, B )  are particularly easy to interpret. Let a:(A) be the 
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error-variance of the ith component of y arising from an 
estimate based upon data from set A. Then, the ith component 
of the diagonal of II(A,B) is just 

1 - 4 ( B ) / 4 ( 4  (16) 

which is nothing more than the relative size difference of the 
error-variance in the ith component of y based upon data from 
sets A and B. Note that the diagonal condition of PA is met 
in this paper when PA = Po, since the wavelet and scaling 
coefficients are uncorrelated for the fractal l/f priors used 
here. Thus, the diagonal elements of II( { 0}, B )  represent the 
decrease in uncertainty due to the data from set B relative to 
the prior model. As 11( { 0}, B )  will be of interest frequently in 
the remainder of this work, we shall abuse notation and write 
II( {0}, B )  as II(B) in cases when there will be no confusion. 
Finally, the expression for II(B) simplifies from (15) to 

rI(B) = I - P;T/2(O;R;1On + P;1)-1P;1/2 (17) 

where O B  and RB are the system matrix and noise covariance 
matrix corresponding to an inversion based upon data sets from 
B and PB = ( O ; R g 1 O ~  + P;')-' is the error-covariance 
matrix associated with this estimate. 

The quantity II(A,B) represents a useful too1 for quanti- 
tatively analyzing the relationship between the characteristics 
of the data and the structure of the estimate 9. Consider, for 
example, the case in which we wish to assess the overall value 
of a collection of observation vectors. Letting IIF(B) denote 
the diagonal element of the matrix II(B) corresponding to the 
wavelet coefficient at scalehhift (m, 7 ~ ) ~  provides a natural 
way to define m*(j),  the appropriate level of detail which 
should be included in a reconstruction of g(Mg) at shift j .  For 
each location j ,  we can examine the quality of the information 
present at this point and at all coarser scale "ancestors" of 
j. Using the terminology introduced in Section III-A, we say 
that the data support a reconstruction of g(Mg,j) at scale 
m if there exists some node in the wavelet lattice of g at 
scale m which (1) impacts g(Mg,j) (Le., for some shift n, 
g(Mg,j) E D(m,n)) so that (m,n) is an ancestor of ( M g , j )  
and (2) for which the data provide a sufficiently large quantity 
of information regarding the structure of g at node (m, n) (Le., 
IIF(B) is in some sense large). Clearly, m*(j) is the finest 
scale for which a node (m,n) may be found that satisfies 
the above two criteria. For the problems considered here, 
the diagonal structure of PO implies that 0 5 IIF(B) 5 1 
so that determining whether II;(B) is sufficiently large is 
accomplished by comparing this quantity to some threshold, 
r ,  between zero and one. Additionally, we are led to define 
+T,  a truncated version of 9, as follows: 

where is the component in the vector + at scale m 
and shift n. Thus, +T is obtained by selecting a value for the 
threshold T between zero and one, determining 9 from (1 l), 

4At scale m = L,, we are interested in both the wav_elet and scaling 

coefficients of g. To avoid ambiguity, we use the notation rIig to refer to the 
RECM information for the coarsest scaling coefficient of g at shift n. 

I 
20 40 60 80 100 
Distance from borehole 

Fig. 3. Estimates of g using various combinations of high and middle 
frequency data. Dotted line = g, solid line = ~(DHI,MID),  dashed line 
= ~ ( D M I D ) ,  dot-dashed line = ~ ( D H I ) .  In all cases, the measurements 
provide sufficient information to reconstruct only those features of g near 
z = 0. At points further from the origin, only the coarsest scale characteristics 
of g are resolvable. Moreover, as ~ ( D H I ,  MID) is significantly different from 
both ~ ( D H I )  and ~ ( D M I D )  we conclude that some type of sensor fusion is 
occurring over the region far from z = 0. 

TABLE I1 
PARAMETERS FOR RADIAL PROFlLINC PROBLEM 

and then using (18) to zero all elements in + for which the 
associated value of IIP is less than T .  Defining TT in this 
way ensures that gr = WTTr is in fact a reconstruction of g 
which at each shift j contains detail information at scales no 
finer than m* ( j ) .  

IV. EXAMPLES 

A. A One-Dimensional, Radial Projling Problem 

We begin by considering a radial profiling problem similar 
to that analyzed by Habashy et al. in [19] and [21]. Here, 
g is assumed to vary only in the horizontal direction in 
Fig. 1 with the specific true conductivity profile g to be 
used in this example shown as the dotted line in Fig. 3. 
The numerical values specifying the prior model and the 
parameters describing the background medium are given in 
Table 11. In this work, the signal to noise ratio of the vector 
7, = O,y+v, with v, N (0, .,"I) and y N (0, PO) is defined as 

Power per pixel in ~ , y  - tr(O,PoOT) 
Power per pixel in v, 

SNR," = - 
Ngr? 

where Ng is the length of the vector y and t r  is the trace 
operation. In this example we explore inversions using data' 
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Fig 4 Diagonal elements of da t ive  error covariances for three radial profiling experiments. In all cases, the symbol “+” corresponds to ~ ( D H I , M I D ) ,  
“0” to l l ( D ~ 1 )  and “x” to II(DMID) From (a) we see a significant level of sensor fusion taking place with respect to the estimates of the coarsest scale 
scaling coefficients far from the origin z = 0 From (b)-(d), we conclude that accurate reconstruchon of the detil components of g is lirmted to shifts 
close to z = 0 (a) RECM information for coarsest scahng coefficients. (b) B C M  informahon for wavelet coefficients at scale 3 (c) RECM information 
for wavelet coefficients at scale 4 (d) RECM information for wavelet coefficients at scale 6. 

from the following three different combinations of the high and 
middle frequency scattering experiments described in Table I. 

provide information about g close to II: = 0. Further from the 
origin, ~(DHI,MID) follows neither ?(&I) nor ?(&ID) SO 

that some level of data fusion must be taking place in that 
the presence of both data sets yields an estimate of g over 
this region which is substantially different from that obtained 
from either set alone. 

A more accurate assessment of the manner in which this 
information is merged is obtained in Fig. 4 via the analysis of 
the diagonal elements of the relative error covariance matrices, 
D(B) for B E {DEI, &ID, DHI,MID}. As there is strictly 
more infomation in D ~ ~ ,  MID, than in either D~~ D~~~ 
alone, the elements from n(DHI, MID) must lie above the 
other two. In those where n r ( ~ H I ,  MID) is significantly 
larger than both n m ( ~ ~ ~ )  and  am(^^^^), we say that active 
sensor fusion is ?&ng place. In” Fig. 4(a), this is the case 
for the estimates of elements 5-8 of g(L,). Examination of 
Fig. 4(b)-(d) shows that active Sensor fusion is occurring with 
respect to the estimates of the wavelet coefficients of g near the 
origin at scales 3,4, and 6. We have omitted the RECM plot at 
scale 5 as no such fusion occurs at that scale in this example. 
Finally, the fact that II? is close to zero at all scales and for 
all wavelet coefficients corresponding to shifts far from 2 = 0 

1) DEI:  Data from experiments 1-3 in Table I. 
2) DMID: Data from experiments 4-6 in Table I. 
3) DHI,MID: Data from DHI  U &ID. 

In Fig. 3, the estimate obtained using data sets 1-6, 
$(DHI,MID) (solid line), is compared with the true function. 
we can the left edge and to a lesser extent the 
magnitude of the conductivity anomaly located closest to 
the origin; however, the information provided by D H I ,  MID is 
insufficient to obtain an accurate estimate of the right edge of 
this structure or any but the coarsest information regarding the 
rightmost block. This situation is best explained by appealing 
to the physics Of the problem where the propagation and 
associated dissipation of energy through a 10SSY medium 
implies that the ability to resolve the structure of g should 
decay radially from the borehole [5l, wl. To L ” t a n d  how 
DHI and DMID individually contribute information to this 
estimate, ~ ( D M I D )  and ~ ( D H I )  are also shown in Fig. 3 as 
the dashed and dot-dashed lines,’respectively. Again, we see 
“hat the data from the high and middle frequency sources 
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Fig. 5. Maps of the optimal scale of reconstruction and the associated 
estimates of g for threshold values T E {0.05,0.50}. These illustrations 
provide a quantitative verification of the intuition that resolution in the 
inversion should drop as a function of distance from the origin. The plots of 
t j  against go 05 and BO 5 0 ,  respectively, show that little is lost in reducing the 
complexity of the model by eliminating degrees of freedom about which the 
data provides little or no information. (a) The optimal scale of reconstruction 
as a function of position at scale Mg = 7 for a threshold value of T = 0.05 
(solid line) and T = 0.50 (dashed line). (b) (solid line), 60 05 (dashed line), 
and g o  50  (dot dashed line). 

indicates that the information in DHI and D M ~ D  either alone 
or in combination is insufficient to reconstruct any detail in g 
over this domain. 

In Fig. 5(a), m*(j),  the optimal scale as defined in 
Section 111-D is plotted for T = 0.05 (solid line) and T = 0.5 
(dashed line) using data from DHI,MID. At T = 0.05, we see 
that as IC grows large, the optimal scale drops from 6 to 3 
in a manner quite consistent with the intuition developed 
by examination of the estimates. The T = 0.50, case 
shows similar characteristics; however, the more stringent 
threshold results in a more rapid decrease in scale as a 
function of distance. Finally, in Fig. 5(b) the truncated 
estimates, gT ( DHI, MID), defined by (18), are compared against 
~ ( D H I ,  MID) for T = 0.05 and T = 0.50, respectively, showing 
little difference among the three. 

I 
0 2 4 6 8 

Shift, n 
(a) 

-1 O a  oo 20 40 60 1 

Shift, n 
(b) 

0 

Fig. 6.  The incremental reduction in uncertainty obtained by adding data 
from the middle frequency observation to an estimate based upon the 
high-frequency measurement sources. In accordance with Fig. 4, we see 
significant benefits associated with determination of both the coarsest scale 
structure of g far from the origin as well as the finest scale structure closest 
to z = 0. (a) ~:(DHI,DHI,MID). (b) ~ : ( ~ H I , D H I , M I D ) .  

The relative error covariance matrix also represents a useful 
tool for analyzing the incremental benefits associated with 
the addition of data to an already-formed estimate. In Fig. 6, 
the diagonal elements of II(DHI, DHI,MID) (i.e., the relative 
variance reduction information associated with the addition 
of middle frequency data to an estimate based upon high- 
frequency information) are displayed for the coarsest scaling 
coefficients and the finest wavelet coefficients5. These plots 
illustrate that the middle frequency data sets contribute new 
information to a high-frequency estimate at the coarsest scale 
away from the origin and at the finest scale closest to the origin 
which is in accord with the plots in Fig. 3. 

51n this case, because PA is not in general diagonal, the diagonal elements 
of n ( A ,  B )  do not have the exact interpretation as the relative size difference 
of the error variance of y based upon data from A and B;  however, the size 
of these diagonal components of n ( A ,  B) still provides useful insight as to 
the scales and shifts where the observations from set B provide information 
not found in the data from set A.  
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1 0: 1 
d2 P L , , Z  d2 
250 S N P  for 500 
1000 Background conductivity 1 S/m 

TABLE III 
PAFWVETERS FOR CROSS-WELL TOMOGRAPHY PROBLEM 

Parameter Value Parameter Value 
z Wavelet Daubechies 6-tap I Wavelet Daubechies 2-tap 

4 w7,= 2 

From this example, we see that the relative error covariance 
matrix provides new and useful insight into multisensor data 
fusion. Specifically, one would conclude that the data from 
the high and middle frequency data sets are useful for the 
recovery of the conductivity detail structure near the origin; 
however, additional observations are required to recover all 
but the coarsest scale information far from 2 = 0. The RECM 
analysis also suggests that the original parameterization of g 
involving 128 degrees of freedom is excessive. Rather, at a 
threshold of 7 = 0.50, the data dictate that only 9 elements of 
y (the nonzero elements of TO 50 (DHI, MID)) can be accurately 
recovesed representing a 93% reduction in complexity of the 
inverse problem. Although not considered in this paper, the 
reduction in complexity might be realized in an inversion 
algorithm where we compute only those nine coefficients rather 
than following the procedure in (18) where we first computed 
all 128 elements of and then set all but nine to zero. In 
particular, we observe that just such an approach is considered 
in [27] and [29] in the context of a nonlinear inverse scattering 
problem. 

B. A Two-Dimensional, Cross- Well Tomoaraohv Problem 

In this example, we consider improving resolution near 
the right side of the conductivity anomaly by augmenting 
&I, MID with data sets 9-12 from Table I which are generated 
by low-frequency sources located near the left side of the 
region of interest and measured by the receiver array located at 
right side. We denote this addition collection of observations 
DLO and note that examination of the structure of the integral 
kernels for this problem leads to the observation that the low- 
frequency observations are most sensitive to variations in g 
near the left and right vertical edges with little resolution in the 
center of region C [27]. Additionally, for this problem, g varies 
both in the x and the x directions with the true conductivity 
anomaly to be reconstructed in this example displayed in 
Fig. 7(a) and the parameter values needed for this experiment 
given in Table 111. 

In Fig. 7, we see that the addition of the low-frequency, 
cross-well data does significantly improve the resolution on 
the right side of C. Fig. 7(b) (respectively, (c)) is a display 
of ~ ( D H I ,  MID) (respectively, ~ ( D H I ,  MID, LO)). Given only 
the high- and medium-frequency information, the anomaly 
near ~ 7 :  = 100 is almost completely undetected; however, 
the addition of the Low-frequency data clearly improves the 
ability to resolve this second structure. While both conductivity 

perturbations are reflected in the estimates of g, the nature of 
the physics of the problem allows for only a comparatively 
coarse-scale or blurred reconstruction near the right vertical 
edge of the anomaly. In general, for inverse scattering prob- 
lems of the type considered here, one requires data at more 
frequencies and/or from many sourceheceiver combinations 
in order to obtain significantly higher resolution estimates of 
such anomalies. 

In Fig. 7(d), & . ~ ( D H I ,  MID, LO), the truncated estimate of 
g defined in (18), is plotted. Here go ~ ( D H I ,  MID,LO), is 
composed of only 75 nonzero wavelet coefficients as opposed 
to the 256 in the original corresponding to a 70% seduction in 
inversion complexity. Visual comparison of this reconstruction 
with the full, nntruncated estimate indicates that all of the 
features captured in the optimal estimate are in fact present in 
the truncated version as well. 

To demonstrate the flexibility of our multiscale prior model- 
ing structure we observe that given the sets of data considered 
in this experiment, more detail can be obtained on the right 
side of the conductivity anomaly by changing a limited portion 
of the matrix Po. Indeed, because each wavelet coefficient in 
y reflects our prior knowledge of g over a limited area, we 
have extensive flexibility for choosing the spatial scale and 
physical location over which we modify the impact of the data 
on the reconstruction. To explore the possibility of improving 
the resolution near the rectangular structure located close to the 
right edge of C, we increase the variances in Po associated 
only with the finest scale wavelet coefficients that impact g 
near the location of this perturbation. The result is shown in 
Fig. 8 where we clearly have an improved picture as to the 
true nature of g near the left side of the region of interest. 
Note that the prior model in this case is not strictly of the l/f 
variety as we have manually altered the variances of a small 
number of the coefficients in y. A natural extension of this 
exercise would be the development of automated methods for 
jointly determining the “appropriate” variance structure of ‘the 
prior model and the estimate of the conductivity. 

Finally, because this is a fully two-dimensional example, 
we have the ability to use the RECM for the analysis of 
sensor fusion issues in both horizontal and vertical directions. 
In Fig. 9, the finest scales supported in the reconstruction in 
both the 2 and z directions are plotted as a function of position 
for T = 0.50 for the two cases where data from DHI, MID and 
DHI, MID, LO, respectively, are available for the reconstruction. 
From Fig. 9(a) and (b) we see that given only high and 
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Fig. 7. In (b)-(d) the estimates of g in (a) are displayed using various combinations of high-, middle-, and low-frequency data. From (b), the high- 
and medium-frequency information provides insufficient information to reconstruct the anomaly near x = 100. As seen in (c), the addition of the 
low-frequency, cross-well data sets clearly improves the ability to resolve this second structure. Note that there is little difference between truncated estimate 
go 5O(DHI, MID, LO)  plotted in (d) which is composed of 75 nonzero elements in the wavelet transform domain and the optimal estimate, ~ ( D H I ,  MID, LO). 
in (c) which has 256 degrees of freedom. (a) Conductivity structure to be reconstructed. (b) G(DHI,MID). (c) ~ (DHI ,MID,LO) .  (d) 90 ~~(DHI ,MID,LO) .  
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Fig. 8. Estimate of g using high, middle, and low-frequency data. Here, the 
variances associated with the fine scale wavelet coefficients governing the 
behavior of g near the anomaly on the right side have been increased so as 
to allow more information from the data to be reflected in the estimate. 

middle frequency information, detail in the reconstruction is 
limited to the region near z = 0 in both z and z which is 
consistent with the actual estimate in Fig. 7(a). Fig. 9(c) and 
(d) shows that the addition of the low-frequency measurements 
significantly raises the level of detail in the reconstruction over 
the right half of the region of interest which is in accord 
with the intuition provided by the structure of the kernel 
functions associated with these observations. Specifically, we 

note that the minimum level of z oriented detail increases from 
2 in Fig. 9(a) to 3 in Fig. 9(c). Moreover, the finest scale of 
horizontal detail moves from 1 to 2 in the area near the right 
vertical edge. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we have presented an approach to the solution 
of the inverse scattering problem in the Born approximation 
based upon techniques drawn from the fields of multiscale 
modeling and statistical estimation. We pose the problem 
directly in the wavelet-transform domain and use a linear least 
squares estimator for the inversion algorithm and as the basis 
for the associated analysis methods. A prior statistical model 
of 7, the wavelet transform of the conductivity field, serves 
to regularize the problem. For much of the paper, we used a 
l/f-like fractal model that is often posited as a meaningful 
description of natural phenomena; however as discussed in 
[7], [13], [16], and [26] and demonstrated in Section IV-B, the 
utility of multiscale prior models extend beyond this particular 
class. 

Our approach makes extensive use of scale-space in the 
analysis of linear inverse problems. The relative error co- 
variance matrix (RECM) represents a quantitative tool for 
understanding the various ways in which data from a multitude 
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of sensors contribute to the final reconstruction of g. We 
demonstrate a method for determining the optimal level of 
detail to include in the estimate of g as a function of spatial 
location. The RECM explicitly provides a means of describ- 
ing multisensor data fusion and identifying those degrees of 
freedom in y for the data contribute useful information. In this 
paper, we have made use of this information by first estimating 
all of y and then setting to zero those coefficients for which the 
RECM dictates there should be little information. In [27] and 
[29], we consider an alternate approach in which the RECM- 
based information is used directly in the inversion routine to 
lower the computational complexity of the overall estimation 
procedure. 

Although not considered extensively in this work, the in- 
version algorithms admit highly efficient implementations. 
As discussed in [l] and [4], wavelet transforms of many 
operator matrices, including those arising in the problem 
studied here, contain very few significant elements so that 
zeroing the remainder lead to sparse matrices 0,. The sparsity 
of 0, combined with the diagonal structure of Po (which is 

obtained using any uncorrelated multiscale model) imply that 
highly efficient, iterative algorithms such as LSQR [30] can 
be used to solve the normal equations. In [27], we consider 
the development of a modified form of LSQR designed for 
the efficient and stable computation of as well as arbitrary 
elements in the error covariance and relative error covariance 
matrices. 
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