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Abstract. In this paper we explore the utility of multiscale and statistical techniques for detecting and character-
izing the structure of localized anomalies in a medium based upon observations of scattered energy obtained at the
boundaries of the region of interest. Wavelet transform techniques are used to provide an efficient and physically
meaningful method for modeling the non-anomalous structure of the medium under investigation. We employ
decision-theoretic methods both to analyze a variety of difficulties associated with the anomaly detection problem
and as the basis for an algorithm to perform anomaly detection and estimation. These methods allow for a quanti-
tative evaluation of the manner in which the performance of the algorithms is impacted by the amplitudes, spatial
sizes, and positions of anomalous areas in the overall region of interest. Given the insight provided by this work,
we formulate and analyze an algorithm for determining the number, location, and magnitudes associated with a
set of anomaly structures. This approach is based upon the use of a Generalized, M-ary Likelihood Ratio Test to
successively subdivide the region as a means of localizing anomalous areas in both space and scale. Examples
of our multiscale inversion algorithm are presented using the Born approximation of an electrical conductivity
problem formulated so as to illustrate many of the features associated with similar detection problems arising in
fields such as geophysical prospecting, ultrasonic imaging, and medical imaging.
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1. Introduction

The goal of many applied problems is the recovery of information regarding the structure of
a physical medium based upon measurements of scattered radiation collected at the bound-
aries [8, 15, 19, 43, 48]. For some of these tomographic-type inverse problems, one seeks a
complete description (in the form of an image in two dimensions or a volumetric rendering
in 3D) of the structure of the medium. In other cases, however, the full reconstruction is
not needed; rather, the ultimate objective is to extract the structure of areas in the medium
which are, in some sense, anomalous; that is, regions where the nature of the medium differs
from some prior set of expectations. Thisanomaly detection problemarises, for example,
in geophysical prospecting where in many instances the fundamental issue is the determi-
nation of oil bearing regions in the earth and medical imaging where tumor detection is of
import.

As discussed in [27, 29, 31, 33, 34, 44, 45] for many of the application areas previously
cited, methods for solving the anomaly detection problem typically proceed by initially gen-
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erating the full, pixel-by-pixel reconstruction and subsequently post-processing the results
to determine the nature of anomalous structures. The necessity of generating a solution
to the so-called “full inverse problem” however makes these schemes rather unattractive.
Indeed, for many interesting applications, obtaining a full reconstruction of the medium
presents a collection of well-known and extensively studied challenges [2, 3, 40] which
suggest that solving this problem as the first step toward localizing anomalies should be
avoided. In this paper we demonstrate the utility of a multiscale framework for explicitly
solving the spatial anomaly detection problem in the context of linearized inverse scattering
(also known as diffraction tomography [15]) applications.

The basis for solving the anomaly detection problem is the use of wavelet transforms
and the statistical theories of optimal estimation and detection to develop both efficient
algorithms for anomaly detection and localization and analytical insight into the nature of
the problem and the limits of performance that result from the fundamental physics relating
the characteristics of the medium to the observations. In [39, 40], we introduced the use of
wavelet transforms and multiresolutional statistical techniques for overcoming many of the
challenges associated with the solution of full reconstruction, linearized inverse electrical
conductivity problems. Many of the results in [39, 40] followed from the use of multiscale,
statistical regularization methods for the incorporation of prior knowledge into the inversion
routine. The use of such prior statistical models automatically implies an assumption of
some type of statistical regularity on the field and therefore fails to capture adequately the
presence of anomalies or localized inhomogeneities. Thus, roughly stated, the problem
considered in this paper is the detection, localization, and estimation of such anomalies
superimposed on a background of know statistical structure and observed indirectly through
the scattering measurements.

The consideration of the anomaly detection problem raises a variety of questions beyond
those arising in the full reconstruction inverse problem. How many anomalies are there?
Where are they located? What are their sizes? What are their amplitudes? Given answers to
the first three of these problems, the fourth is a variant of the full inverse problem in which
we focus our attention on determining the magnitudes of only the previously identified
anomalous regions. The determination of the number, sizes and locations of the anomalous
regions is, however, a potentially daunting collection of tasks as a result of the vast number of
combinations of anomaly structures which, in principle, must be explored in the generation
of a solution.

Over the past decade, significant work has been performed in the area of anomaly detection
from tomographic-type measurements. In [44], Rossi and Willsky were concerned primarily
with the use of estimation-theoretic analysis and algorithmic methods for determining the
location of a single object of known size and structure given noisy and sparse computed
tomography (CT) measurements. Recently, these results have been extended by Devaney
and co-workers [16, 17, 46] in consideration of diffraction tomography (DT) and exact
scattering applications. More closely related to the problem of interest in this paper is the
work of Bresler, Fessler and Macovski. In [5], the authors examined a 3D reconstruction
problem from CT measurements in which the first step of their algorithm required the
localization of an unknown number of anomalies of unknown structure. The solution to
this problem presented in [5] was to estimate the required parameters for a pre-determined,
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maximum number of anomalies knowing that further processing would eliminate falsely
identified anomalous regions.

In this paper, we present a scale-recursive algorithm for anomaly detection and character-
ization given DT-type data. Here, the tools of optimal hypothesis testing are used to make a
sequence of anomaly detection and localization decisions starting at coarse scales, thereby
allowing for the detection of spatially large anomaly structures and providing coarse local-
ization of finer scale anomalies, and then moving to finer ones. This algorithm is significant
for two reasons. First, this approach provides a computationally efficient and accurate
means of localizing areas of anomalous behavior. Second, the anomaly characterization
algorithm may be viewed as a highly efficient first stage in a larger image processing ap-
plication. Specifically, the output of the algorithm could be refined (for example via the
methods described in [5, 44] generalized to the case of diffraction tomography) by higher
level processing stages concerned with issues such as identification, classification, or imag-
ing. Toward this end, in Section 6.3, we present one way in which knowledge of the
anomaly structures can be used to supplement the information in the prior statistical model
in order to improve the output of a least-squares, pixel-by-pixel reconstruction of the region
of interest.

In addition to the development of the scale-recursive processing algorithm, by using
these same statistical techniques, we provide analysis of the anomaly detection problem
that not only yields overall performance limits, but also guides the detection procedure. For
example, we are able to define and determine the statistical distinguishability of a small
scale, large amplitude anomaly from a larger scale, but smaller magnitude structure or a
pair of closely spaced anomalies from a single, broader anomalous region. The use of the
results from this analysis can then tell us at what scale and in which regions to terminate our
detection procedure, i.e. when finer scale localization is unwarranted given the available
data.

In Section 2, we present an overview of the particular anomaly detection problem of
interest in this work. The formal definition of the anomaly detection problem as one of
optimal hypothesis testing and a review of results from statistical decision theory is provided
in Section 3. In Section 4 we demonstrate the utility of our framework in characterizing the
detectabilityof an anomaly. Section 5 is devoted to the question of thedistinguishabilityof
anomalies as a function of their relative positions and structures. In Section 6 we develop and
analyze a scale-recursive algorithm for anomaly detection, localization, and estimation, and
present the results of its performance under a variety of experiment conditions. Conclusions
reached in this paper and directions for further work are presented in Section 7.

2. A Multiscale Framework for Inverse Scattering

2.1. The Scattering Problem

The context in which we develop our anomaly detection algorithm is a low-frequency, two-
dimensional inverse electrical conductivity problem illustrated in Figure 1 and similar to
problems arising in the field of geophysical prospecting [23, 24, 48] and medical imaging
using electrical impedance tomography [18–20, 22, 29–31, 43]. Here, we have an array of
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Figure 1. Configuration of inverse conductivity problem. The electromagnetic sources (indicated by the black
circles) emit time-harmonic waves into a lossy medium which subsequently are scattered by conductivity inhomo-
geneities located in the darkly shaded rectangle,A. The secondary fields are observed at one or both receiver arrays
located on either vertical edge of the region under investigation. Based upon these observations, the objective of
the inverse problem is the reconstruction of the conductivity perturbation.

electromagnetic line-sources oriented perpendicularly to the page emitting time-harmonic,
waves into a lossy medium. The electrical properties of this environment are assumed
to be decomposed into the sum of an infinite, known, and constant background and a
conductivity perturbation,g, with support restricted to regionA in Figure 1. The fields
from the transmitters are scattered byg, and the secondary fields are observed at one or
both of the receiver arrays positioned on the vertical edges of regionA. Based upon these
observations, the objective of the problem is to detect and localize areas in the region of
interest where the structure ofg is, in a sense to be defined below, anomalous.

We consider the collection of eighteen scattering experiments defined in Table 1 where
each such experiment produces a vector of measurements comprised of the in-phase and
quadrature components of the observed scattered field obtained over one of the two receiver
arrays due to energy put into the medium from one of the sources operating at a particular
frequency. As is shown in [9], the use of the first Born approximation yields the following
linear relationship between the vector of observations associated with thei th scattering
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Table 1.Data set definitions for observation processes
of interest in the paper. The notationx : y : z indicated
that the sources are distributed iny increments along
a line fromx to z.

Experiment Source Frequency Receiver
number Position of source (Hz) Array

1 – 6 0:20:100 fHI = 10, 000 Left

7 – 12 0:20:100 fMID = 1, 000 Left

13 – 18 0:20:100 fLO = 100 Right

experiment,yi , and a discrete representation of the two dimensional conductivity ano-
maly,g

yi = Ti g+ ni i = 1, 2, . . . , 18 (1)

where the matricesTi encompass the (linearized) physics andni is an additive, zero-mean,
uncorrelated, random vector representing the noise in the data. That is, thei th noise is
modeled asni ∼ N (0, ri I ) whereI is an appropriately sized identity matrix.1 The discrete
representation of the conductivityg is constructed using the so-called “pulse” set of basis
functions where the conductivity is assumed to be piecewise constant over anNg,x × Ng,z

grid of square pixels coveringA [26]. For future reference, we define the “stacked” system
of data

y = T g+ n (2)

whereyT = [yT
1 yT

2 . . . yT
18] with T andn defined accordingly.

2.2. A Multiscale Representation of the Problem

The detection techniques developed in Sections 4–6 are based upon a linear model relating
multiresolution representations ofg andni to a multiresolution representation the data,yi .
A scale-space representation of the problem has been chosen for two reasons. First, the
matricesTi in (1) are of the class which are made sparse in the wavelet transform domain [1,
4] thereby lowering the computational complexity of the detection algorithm in Section 6.
Although not considered extensively in this work, such computational benefits are explored
in [41]. Second, as we discuss below, a collection of useful and physically meaningful
models for the non-anomalous behavior of the conductivity field are specified easily in the
wavelet domain.

Following the work in [39, 40], orthonormal, discrete wavelet transform (DWT) [14]
operators (matrices)Wi andWg are used to move from physical to scale space in the
following manner

ηi =Wi yi = (Wi TiWT
g )(Wgg)+Wi ni ≡ 2i γ + νi (3)
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whereWT
gWg = WT

i Wi = I follows from the orthonormality of the wavelet transforma-
tion [14, 35]. There are a variety of reasons why we may wish to use different transforms
for the data than forg. First, from Figure 1, each data set is to be collected over a 1D array
of receivers. Hence,Wi will act on a one dimensional signal whileWg is used to transform
the 2D conductivity profile. Additionally, it may be the case that the lengths of each data
record vary from one observation process to the next. Finally, analogously to the physical
space case, we define the stacked systems

η = 2γ + ν (4)

whereη = [ηT
1 ηT

2 . . . ηT
18]

T , 2 andν are defined analogously andν ∼ N (0, R) with
R= diag(r1I , r2I , . . . , r18I ).

2.3. Multiscale Prior Models

Recently there has been significant work in the use of fractal models for describing the
spatial distribution of geophysical quantities. In [13], Crossley and Jensen explore the
propagation of acoustic radiation in the Earth’s crust using a velocity model composed of
the sum of a deterministic profile and a fractal perturbation. In considering the distribution
of hydraulic conductivity, Brewer and Wheatcraft [6] employ a wavelet-based model very
similar to the one described below as a means of interpolating coarse scale observations of
hydraulic conductivity to finer scales. Brown [7] relates both the electrical and hydraulic
conductivities in the earth to a self-similar model for the height distribution in rock fractures
and studies the resulting fluid and current flow patterns though such a formation. Finally,
the propagation of electromagnetic radiation through media with fractal characteristics has
been studied extensively by Jaggard and co-workers [32].

With this work as motivation, we use a stochastic, fractal-type model to describe the
spatial distribution of the electrical conductivity in the absence of anomalies. While there
are many self-similar models which may be used to describe the conductivity, results of
Wornell [50], Tewfik [47], and Chou et al. [10–12] suggest that there exist a wide range of
statistical models specifieddirectly in the wavelet transform domain possessing the desired
modeling characteristics and simple structures thereby making them quite attractive for use
in signal and image processing applications.

Under the particular wavelet-based model of interest in this paper, the wavelet coeffi-
cients of the non-anomalous conductivity field, denoted by the vectorγ̃ , are taken to be
uncorrelated, Gaussian random variables. That is,γ̃ is distributed according to

γ̃ ∼ N (0, P0) (5)

whereP0 is adiagonalmatrix whose nonzero entries are the variances of the corresponding
wavelet coefficients. While a detailed description of the internal structure ofP0 is presented
in [35, 50], the fractal-type behavior of the process is obtained by taking the variance of
the wavelet coefficients to vary exponentially with scale. Coefficients inγ̃ governing the
coarsest scale behavior of the conductivity have relatively large variances while fine scale
components possess smaller variances.
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3. Anomaly Detection as a Hypothesis Testing Problem

3.1. A Model for the Conductivity

The objective of the anomaly detection problem is to determine those areas inA where
the behavior ofg is anomalous in that in these regionsg differs from some prior set of
beliefs regarding the manner in which the conductivity is expected to behave. Thus, the
conductivityg is decomposed as

g = g̃+ ḡ (6)

whereg̃ represent that portion ofg consistent with our prior assumptions andḡ encompasses
the anomalous behavior of the conductivity; that is, the perturbation of the conductivity away
from its non-anomalous structure. In the wavelet transform domain, (6) takes the form

γ =Wgg =Wgg̃+Wgḡ ≡ γ̃ + γ̄ . (7)

As will be seen in Sections 4–6, considerable insight into the anomaly detection problem
is obtained through performance analysis carried out using anomaly structures of varying
sizes (i.e. spatial scales) located in different regions ofA. Also, the primary intent of the
detection algorithm presented in Section 6 is to localize quickly and efficiently regions
where anomalies are suspected to exist. As regionA is pixelated into anNg,x × Ng,z grid
and because we perform anomaly localization through a process of spatial subdivision, we
are lead naturally to consider a representation in which anomalous regions are defined to
be superpositions of rectangular subsets ofA.

Referring to Figure 2, the structure of thei th anomaly inA is defined by its magnitude,
ai , its size, and its location inA. The area of an anomaly defines itsscalein that small
scale anomalies are correspondingly small in area and similarly for larger scale anomaly
structures. Mathematically, the form for the anomalous behavior of the conductivity over
the regionA is

ḡ =
Na∑
j=1

bj aj = Ba. (8)

Here, Na is the number of anomalous regions located inA, aj is a scalar defining the
magnitude of each anomaly, andbj represents the discrete indicator function over thej th

rectangular region in̄g. In (8), the column vectora represents the collection of anomaly
amplitude coefficients whileB is the matrix whosej th column isbj . In the wavelet transform
domain, (8) is written as

γ̄ =
Na∑
j=1

(Wgbj )aj ≡ Ba (9)

whereB = [Wgb1Wgb2 . . . WgbNa ]. Finally, use of (7) and (9) in (4) yields the following
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Figure 2. General structure of anomalous regions of interest in this paper. The magnitudes,a1 anda2 of the two
anomalies shown here are proportional to the color of the corresponding rectangles.

relationship among the anomaly structures, the non-anomalous backgroundg̃ or γ̃ , and the
data

η = 2γ̄ +2γ̃ + ν = 2Ba+2γ̃ + ν (10)

where, becausẽγ andν are taken to be uncorrelated,

Pη = E[ηηT ] − E[η]E[ηT ] = 2P02
T + R. (11)

Note that the analysis methods and algorithmic techniques presented in this work are based
entirely on an observation model of the form in (10). In particular, the results in this
paper are not dependent upon the assumption of rectangular anomalies; rather structures
with arbitrary shapes and orientations can be employed in principle through the appropriate
specification of the matrixB. Nonetheless, as will be seen in Sections 4–6 of this paper,
rectangular structures prove to be highly useful for obtaining significant insight into the
nature of the anomaly characterization problem and as the basis for an algorithm designed
to extract this information from observed scattered fields.

To provide a normalized notion of the overall size of an anomaly, we define an SNR-
type quantity called theanomaly-to-background ratio(ABR) which provides a measure of
the energy in an anomaly relative to that ofg̃. Mathematically, we have for an anomalyḡ
composed of a single rectangular region defined by the column vectorband with amplitudea

AB R2 = Power inḡ

Expected power iñg
= a2(bTb)

tr (P̄0)
(12)

wheretr (M) is the trace of the matrixM andP̄0 =WT
g P0Wg is the covariance matrix of̃g.
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As described in [40], under the Born approximation used to obtain (1),g = WT
g γ

represents a perturbation about a known, constant background conductivity,g0. From
physical principles, the overall conductivity,g0 + g = g0 + g̃+ Ba must be greater than
zero. Thus, in theory the elements ofa may assume both positive as well as negative
values so long as the positivity constraint is satisfied. To simplify matters, in this paper we
assume that theai are strictly greater than zero corresponding to regions of locally higher
conductivity than the background.

3.2. The M-ary Hypothesis Testing Problem

In Section 6, we consider a statistical decision-theoretic methodology for reconstructingγ̄

which is based upon a sequence of M-ary Generalized Likelihood Ratio Tests (GLRT) as
a means of localizing an unknown number of anomalous regions inA. The mathematical
description of each such test begins with the formulation of the followingM hypotheses,
Hi for i = 0, 1, 2, . . . , M −1, corresponding toM different configurations of anomalous
areas

Hi : η = 2Bi ai +2γ̃ + ν i = 0, 1, 2, . . . , M − 1. (13)

Note that from (13) underHi we have,η ∼ N (2Bi ai , Pη) wherePη is given by (11).
The hypothesis test is implemented as a rule which when given the data, indicates which of

theHi is true. Because it will be the case in Section 6 that theai are taken to be deterministic
but unknown parameters, a standard likelihood ratio test solution to the hypothesis testing
problem [49] cannot be employed in this context. Rather, we use a Generalized Likelihood
Ratio Test (GLRT) [49] for performing the test. This procedure requires first that an estimate
of eachai be computed assuming thatHi is correct. As this problem is, in general, ill-posed,
we choose here to use the following regularized, least squares estimate

âi = (BT
i 2

T P−1
η 2Bi + α I )−1BT

i 2
T P−1

η η. (14)

where the parameterα is used to control the degree of regularization.
Givenâi , the hypothesis testing rule employed in this paper is

ChooseHi with i =
{

0 maxj L j (η) < 0
arg maxj L j (η) otherwise

(15)

where

L j (η) = l j (η)− l0(η) j = 1, 2, . . . , M − 1 (16)

and for j = 0, 1, 2, . . . , M − 1

l j (η) = ηT P−1
η 2Bj âj − 1

2
âT

j BT
j 2

T P−1
η 2Bj âj . (17)
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3.3. The Binary Hypothesis Testing Case

While the algorithm for extracting anomaly information is based upon the M-ary GLRT,
much of the analysis of the anomaly detection problem is performed in the context of
the binary hypothesis testing(BHT) framework in which two alternatives,̄γ0 = B0a0

andγ̄1 = B1a1, are compared.2 Traditionally, the analysis of the BHT centers around the
probability of detection,Pd and the false alarm probability,Pf . For the linear-Gaussian
model considered in this work, it is shown in [49] thatPd andPf are related to the various
quantities defining the structure of the problem via

d = erfc−1
∗ (Pf )− erfc−1

∗ (Pd) (18)

where

d2 = (γ̄1− γ̄0)
T2T P−1

η 2(γ̄1− γ̄0) (19)

erfc∗(x) =
∫ ∞

x

1√
2π

e−t2/2dt. (20)

Thus, based upon (18), we see that our ability to distinguish between two anomaly structures
is intimately related to the Fisher discriminant,d, which has the interpretation of a “signal-
to-noise” ratio [49]. Note that for a givenPf , largerd results in largerPd and therefore
better performance.

From (19) we observe that the performance of the binary hypothesis test is a function of
both the geometric configurations, as captured in the matricesBi , and the magnitudes,ai ,
of the two candidate anomaly structures. To better understand the role of these two factors,
consider the case in which̄γi corresponds to a single rectangular region so that eachBi is a
column vector and eachai is a scalar. Substituting (9) into (19) and expanding the quadratic
yields

δ2
1a2

1 − 2δ1,0a1a0+ δ2
0a2

0 − (erfc−1
∗ (Pf )− erfc−1

∗ (Pd)) = 0 (21)

where

δ2
j = BT

j 2
T P−1

η 2Bj for j = 0, 1 (22)

δ1,0 = BT
12

T P−1
η 2B0. (23)

In [37], it is shown that when viewed as a function ofa0 anda1, (21) defines an ellipse
the form of which is illustrated in Figure 3.3 This ellipse indicates that, given the geometry
of the candidate anomalies,B0 andB1, there are only certain combinations ofa0 anda1

which will result in performance below that level dictated by a particularPd and Pf . In
fact, these points are precisely those that lie inside the plotted ellipse. Also, there exists a
minimum level,amin

1,0 (depending on the geometric structures ofbothanomalies) such that
for γ̄1 = B1a1 with a1 > amin

1,0 , the binary hypothesis test will achieve or exceed thePd and
Pf performance figuresindependentof a0.
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Figure 3. The structure of the ellipse defined by (21). The axes represent the magnitudes of anomaly structures
in a binary hypothesis testing problem. As discussed in Section 2,a0 anda1 are taken to be nonnegative so that
only the first quadrant is shown in this illustration. Herea∗1 is the minimum amplitude of̄γ1 required to detect
this structure when the alternate hypothesis isγ̄0 = 0 for a BHT with prespecifiedPd andPf . The valueamin

1,0 is
the minimum intensity of̄γ1 required to ensure that forany γ̄0 the performance of the resulting BHT meets or
exceeds that defined byPd andPf .

4. Detectability Analysis

The first issue we address in conjunction with the anomaly detection problem is that of the
detectability of an anomaly as a function of location, spatial size, and amplitude. After
defining a particular collection of anomaly structures, a set of binary hypothesis testing
problems are explored in whichH0 corresponds to there being no anomaly in the region
while underH1, a particular member of our anomaly collection is assumed to be present.
The objective of the detectability analysis is to determine the minimum magnitude each
such structure must possess to guarantee a prespecified level of performance from the binary
hypothesis test.

Detectability is of interest due to the physics governing the relationship between the ob-
servations,η, and the conductivity,γ and the constrained experimental conditions in which
data are collected only along the vertical edges ofA. From these facts, it is not expected
that arbitrarily small (in scale and magnitude) anomalies will be detectable with arbitrary
precision throughoutA. Rather, we anticipate that small anomalies should be readily de-
tected only close to the observation points while interior to regionA small scale structures
would require significantly larger magnitudes to be as detectable as their counterparts closer
to the edges.

With this intuition in mind, we consider a family of anomaly structures generated by a
set of dyadic tesselations ofA. For example, withNg,x = Ng,z ≡ Ng = 16, we take asJ1
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the set ofN2
g indicator functions which are one over single pixels inA and zero elsewhere.

Analogously,J2 is the collection ofN2
g/4 characteristic functions over disjoint 2× 2 sized

regions ofA. Thus, in generalJm (for m an integral power of 2) is the set of(Ng/m)2

non-overlapping square regions of sizem×m completely coveringA. Finally, we define
J as the union of allJm.

To begin our analysis of detectability, for each anomaly structure inJ , we consider
a collection of binary hypothesis testing problems where the two hypotheses in thej th

problem correspond to the situations in which no anomaly is present inA or a scaled
version of thej th element ofJ is in A. Recalling (13), these alternatives take the form

H0 : η = 2γ̃ + ν (24a)

H1, j : η = 2Bj aj +2γ̃ + ν. (24b)

The goal of our detectability analysis then is to determine for each anomaly structure inJ ,
the minimum value ofaj , denoteda∗j , such that the above hypothesis test attains a certain
level of performance as specified byPd andPf .

The primary quantity used to characterize the performance of the binary hypothesis test
in (24a)–(24b) is the Fisher discriminant discussed in the previous section which here takes
the form

d2
j = a2

j (BT
j 2

T P−1
η 2Bj ) ≡ a2

j δ
2
j (25)

whereδ2
j is defined in (22) and represents the Fisher discriminant for the unit amplitude

anomaly over thej th member ofJ . Now, for a givenPd andPf , (18) and (25) are combined
to give the following expression fora∗j :

a∗j =
erfc−1

∗ (Pf )− erfc−1
∗ (Pd)

δj
. (26)

In Figure 4,a∗j are plotted for all anomalies inJ for the case in which data from the 18
experiments described in Table 1 at an SNR of 10 are available and wherePd is set to 0.95
andPf is 0.05. In this work, the SNR associated with the anomaly-free observation process
ηi = 2i γ̃ + νi with νi ∼ (0, r 2

i I ) andγ ∼ (0, P0) is defined as

SN R2
i =

Power per pixel in2i γ

Power per pixel inνi
= tr (2i P02

T
i )

Ngr 2
i

. (27)

Thus, each 1× 1 pixel in Figure 4(a) corresponds to an anomaly inJ1 with the intensity
of that pixel proportional toa∗j . In all four cases, we see that near the middle of the region,
the magnitude required to obtain the desired level of performance in the binary hypothesis
test is significantly larger than that required near the vertical edges i.e. where the sources
and receivers are located. For vertical values roughly in the range 40≤ z≤ 60, this effect
is somewhat smaller. Also, as the areas of the anomalies increase, the required magnitudes
decrease. This coincides with the intuition that large scale structures should be easier to
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Figure 4. Value ofa∗j for all anomaly structures inJ where the data from the experiments described in Table 1
at an SNR of 10 are used as input to the likelihood ratio test. Here, we havePd = 0.95 andPf = 0.05. Note that
the scales in these images are all different witha∗ decreasing significantly as the size of the anomalies increases.

detect than their fine scale counterparts. Finally, the ABR values in Figure 4 are quite small
with the median values all less than 0.9. This implies that our statistical approach toward
anomaly detection should prove quite advantageous in detecting relatively small amplitude
conductivity anomalies.

To explain the behavior ofa∗j , we note that as described in [40] the low and medium
frequency kernels are most sensitive to the conductivity structure over the horizontal range
0≤ x ≤ 50 so that the required magnitude for an anomaly to be “seen” in this area should
be relatively low. The smaller values ofa∗j in the region 40≤ z ≤ 60 are due primarily to
the combined coverage of this region by more observation kernels,Ti , than is the case for
the top and bottom edges.
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5. Distinguishability Analysis

In this section, we explore issues associated with our ability to successfully distinguish be-
tween pairs of candidate anomalies in order to obtain quantitative insight into the ambiguity
which exists in attempting to differentiate between anomalous structures of differing sizes,
locations, and magnitudes. The results of this work then are used both in the formulation
as well as the analysis of the detection algorithm in Section 6.

Before proceeding with the analysis, we note that the issue of distinguishability has been
considered previously in the context of electrical impedance tomography [18, 22, 29]. In
that work, distinguishability was examined in a deterministic setting where observation
perturbation was modeled as a bounded but otherwise unknown signal. Under such a
model, two conductivity profiles were defined to be distinguishable if the norm of the
difference between the data sets produced by each exceeded the noise level. The notion
of distinguishability developed below is rather different as it rests upon a statistical model
for both the additive measurement noise and background perturbations in the medium’s
conductivity.

The mathematical formulation of the distinguishability problem of interest in this work
follows directly from Section 3.3. We begin by considering the following binary hypothesis
testing problem

Hj : η = 2Bj aj +2γ̃ + ν (28a)

Hi : η = 2Bi ai +2γ̃ + ν. (28b)

The primary tool for our distinguishability analysis is the quantityamin
i, j defined in Section 3.3

to be the smallest value ofai such that the performance of the binary hypothesis test in (28a)–
(28b) meets or exceeds that defined byPd,i, j andPf,i, j independent of the amplitude ofaj .
Finally, for all experiments and for alli and j of interest in this section,Pd,i, j is equal to
0.95 andPf,i, j = 0.05.

In Figure 6,amin
i, j is shown as a function ofj ∈ J in the case where the geometric structure

of anomalyγ̃i is given in Figure 5(a). Similarly,amin
i, j is displayed for the anomaly geometry

of Figure 5(b) in Figure 7. Essentially these two examples demonstrate the manner in which
the ability to differentiate structures is dependent upon the spatial position of the anomalies
in region A. In both cases, we see that the largest values ofamin

i, j are associated with
hypothesis tests in which̄γi is compared to a second, relatively close-by anomaly structure;
however, these amplitudes are roughly twice as large for the structure located toward the
middle of the region than for the anomaly closer to the source/receiver arrays.

In Table 2, the ABRs corresponding to the largest and smallest values foramin
i, j in Figures 6

and 7 are shown. That is fori fixed, the entries in the first column of Table 2 are the anomaly-
to-background ratios generated by

amax,min
i = max

j
amin

i, j
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Figure 5. Anomaly structures to be analyzed in distinguishability problems

while those of the second column are associated with

amin,min
i = min

j
amin

i, j .
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Figure 6. Images of the minimum magnitude of the anomaly in Figure 5(a) to guarantee aPd = 0.95 and
Pf = 0.05 in binary hypothesis tests involving this anomaly structure and elements ofJ . Note that while the
scales in these images are different the magnitudes are all less than 0.6.

Note that ifai is greater thanamax,min
i , a BHT with the anomalȳγi given byBi ai will meet

the Pd,i, j and Pf,i, j specification regardless of both the amplitude as well as the location
of γj , i.e. the performance will be independent ofj . On the other hand ifai is less
thanamin,min

i then forevery j there will be some range of amplitudesaj for which the
performance specifications will not be achieved. Now, from the first row of Table 2, we
see that for an anomaly with geometric structure in Figure 5(a), an ABR of 2.11 ensures
that any binary hypothesis test in which this structure is compared to a member ofJ will
meet the performance specifications ofPd,i, j = 0.95 andPf,i, j = 0.05. Alternatively, if the
ABR falls below 0.56 then for all structures inJ , (i.e. allBj ) the performance of the BHT
will fail to meet thePd,i, j andPf,i, j requirements for some range ofaj . Similar results hold
for the second anomaly structure located closer to the left side except that in this case, the
required values of the ABR are smaller.
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Figure 7. Images of the minimum magnitude of the anomaly in Figure 5(b) to guarantee aPd = 0.95 and
Pf = 0.05 in binary hypothesis tests involving this anomaly structure and elements ofJ . Again, the scales in (a)
through (d) are all different; however the overall range of values is between 0.2 and 0.3.

Table 2. Minimum and maximum anomaly-to-
background ratio associated with the smallest and
largest values foramin

i, j for the anomaly structures
in Figure 5(a) and 5(b).

Anomaly Maximum Minimum
γ̄i ABR ABR

Rightmost (Figure 5(a)) 0.49 0.24

Leftmost (Figure 5(b)) 2.11 0.56

6. A Multiscale Algorithm for Anomaly Characterization

In this section we describe and analyze a multiscale, decision-theoretic algorithm to deter-
mine the positions, sizes and magnitudes of an unknown number of anomalous structures
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in regionA. We begin with a small collection of relatively large rectangular areas in which
anomaliesmaybe located. Each region represents a top-level node in a tree of finer-scale
subdivisions ofA. We next use a decision-directed procedure for determining how best to
move from one level of the tree, corresponding to a collection of coarse-scale hypotheses,
to the next level in which anomalies are better localized using smaller-scale rectangles. The
result of this procedure is a collection of rectangular areas of varying sizes and positions
where we believe anomalies exist. To limit the number of targeted areas which contain
no anomalies, the algorithm concludes with a pruning step where we also estimate the
magnitudes of the final group of chosen anomaly structures.

6.1. A Scale Recursive, Decision Driven Detection Algorithm

The first step in our detection algorithm involves an M-ary Hypothesis test in which we
consider 10 ways to subdivideA in order to better localize anomalous structures. As seen
in Figure 8 the first configuration corresponds to the presence of a coarse scale anomaly
with support over all ofA. This particular structure indicates thatno further decomposition
is warranted. The next four possibilities each allows for a single anomaly localized to the
top, bottom, left and right halves ofA respectively. Because anomalies might lie both in the
left/right as well as the top/bottom halves, the sixth and seventh structures in Figure 8 are
included. Since multiple anomalies may be present in the region, the eighth configuration
corresponds to the presence of one anomaly located in the left half and one in the right
while the ninth presents the analogous situation but for the top and the bottom. Finally,
for this initial decomposition only, we consider the last case where we conjecture thatno
anomalous regions exists inA.

Given the 10 choices in Figure 8, we formulate a 10-ary hypothesis testing problem the
solution of which is obtained using the Generalized Likelihood Ratio Test (GLRT) discussed
in Section 3.2. Using (17) we compute the values of the generalized log-likelihood function
for each of the hypotheses under consideration. From Figure 8, ifH0 is chosen, no further
decomposition occurs and we conclude that there is a single anomaly covering the entire
region of interest. IfH9 is selected, the algorithm terminates with the conclusion that there
is no anomaly in regionA. Otherwise, we decompose that hypothesis with the largest
generalized log-likelihood value.

Our scale-recursive decomposition ofA continues by essentially repeating the hypothesis
testing procedure for each of the subregions indicated by the initial 10-ary hypothesis test as
being of interest. For example, consider the case whereH3 is chosen. Referring to Figure 8,
this selection corresponds to an anomaly located in the left half ofA. In an effort to better
localize the anomalous activity in this region, we consider an M-ary hypothesis test similar
to that described in the previous paragraph but where the underlying area involved in the
decomposition is now the left half ofA rather than all ofA. While the subdivision is of a
rectangular region as opposed to a square area, the form of the hypotheses fundamentally
remains the same as in those displayed in Figure 8 in that we consider the possibilities
of anomalies located in the top, bottom, left, and right halves, etc. of this long and thin
structure. We note that the first of these nine hypotheses,H0, corresponds to the case
where no further decomposition of the left half is warranted and thus serves as a means of
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Figure 8. Geometric structures of the possible decompositions used at each stage of our decomposition ofA. The
darkly shaded regions indicate the areas where anomalous structures are hypothesized to exist. While the figure
illustrates the decomposition of a square region, analogous subdivision schemes are used for rectangular areas as
well with the fundamental idea being the presence of anomalies in the top, bottom, left, right, etc.

terminating the scale recursive search over this region ofA. Instead of ten, there are only
nine hypotheses as we no longer include the possibility that no anomaly exists in the left
half of A since the previous iteration indicated thatsomewherein the left side there exists
an anomaly.

This nine-hypothesis GLRT is repeated recursively beginning with the regions selected in
the initial decomposition ofA. This decision-theoretic localization process continues until
no further subdivision in a particular region is warranted based upon the selection of the
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H0 hypothesis at some stage of the process or because no addition refinement is possible
because the structures under consideration are too small. Thus at the end of our scale-
recursive decomposition ofA we have a collection of rectangular regions where anomalous
structures are likely to exist. We then collect the wavelet-domain representations of these
rectangles as columns in a matrix labeledBlea f .

To limit the number of false alarms generated by our detection algorithm, we retain only
those structures inBlea f corresponding to sufficiently “detectable” anomalies. Specifically,
we begin computinĝalea f , the amplitudes associated withBlea f , using (14) withBi replaced
byBlea f . Next, for each column ofBlea f , we calculate the minimum required amplitude to
guarantee a set level of performance from a detectability-type hypothesis test developed in
Section 4 (here we usePd = 0.80 andPf = 0.10). The final estimated anomaly structure
generated by our algorithm is composed of those columns ofBlea f and elements ofalea f

corresponding to anomalies whose amplitudes exceed this required minimum and we label
these estimateŝB andâ respectively.

6.2. Algorithm Analysis

The scale-recursive detection algorithm described in Section 6.1 requires that we be able
to identify successfully large-scale structures covering the true, smaller-scale anomalies.
The results of the distinguishability analysis suggest that the correct large-scale structures
are likely to be selected. Indeed, Figures 6 and 7 showed that the largest values ofamin

i, j
corresponded to thosej in J which overlap anomalyi . From this, we conclude that small-
scale anomalies “look” most like those large-scale counterparts located in the same region
of A.

To further verify this intuition, we undertake a more detailed performance analysis of the
GLRT used in the detection algorithm. Specifically, we consider the case where a single
anomaly,ḡ∗, of unknown amplitude exists at some fine scale and we perform a generalized
binary hypothesis in which the two hypotheses correspond to coarse scale structures one
of which coversḡ∗ and one of which does not. We are interested in examining how the
probability of correctly choosing the overlapping structure (which we call the probability
of detection for these experiments) using the GLRT of Section 3.2 varies with the scale and
position of the non-overlapping alternate as well as the amplitude of the true anomaly. High
detection probabilities reflect favorably on the GLRT-based approach of the scale-recursive
algorithm.

Following the notation of (17), letl1(η) be the statistic associated with the overlapping
anomaly hypothesis andl0(η) be the statistic for the non-overlapping case. From (15) and
(16), the probability of choosing the overlapping structure given knowledge ofγ̄ ∗ =Wgḡ∗

is

Prob[L1(η) > 0|γ̄ ∗] = Prob[l1(η)− l0(η) > 0|γ̄ ∗]. (29)

Upon substituting (14) into (16) and using (17), straightforward linear algebra demonstrates
that the random variableL1(η) may be written as

L1(η) = x2
1(η)− x2

0(η) (30)
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where the two-vectorx(η) = [x1(η) x0(η)]T is

x(η) = BT
102

T P−1
η η ∼ N (BT

102
T P−1

η 2γ̄ ∗,BT
102

T P−1
η 2B10) (31)

and for j = 0, 1

B10 = [s1B1 s0B0] (32a)

s2
j =

1

2
[ Pj (1+ αPj )] (32b)

Pj = (BT
j 2

T P−1
η 2Bj + α)−1 (32c)

From (30), Prob[L1(η) > 0|γ̄ ∗] = Prob[ |x1(η)| > |x0(η)| |γ̄ ∗] which is the integral of
the probability density function forx(η) defined in (31) over the shaded region in Figure 9.

In Figure 10, detection probabilities are displayed for binary hypothesis tests whereḡ∗ is
the structure in Figure 5(a) and the hypotheses are pairs of structures fromJ . For example,
the shade of dark region in the lower left corner in Figure 10(a) is Prob[L1(η) > 0 |γ̄ ∗] for
the BHT where the first hypothesis is the large structure overlapping the true, smaller size
anomaly (represented by the white region in Figure 10(a)) and the alternate hypothesis is the
8× 8 pixel lower left corner ofA. Similar interpretations hold for the other two dark areas
in Figure 10(a) and for each of the smaller square areas in Figures 10(b)–(c). For all of these
images, the ABR for the true, small anomaly is set to 1.5. Figures 10(a)–(c) indicate the
manner in which the detection performance of the GLRT-based algorithm depends upon the
scale of the hypotheses relative to that of the true anomaly. At the coarsest scale, detection
probabilities are about 60%. However, for all finer scales,Pd rises sharply with the lowest
values confined to structures which are close to the true anomaly.

In Figure 10(d), we display the minimumPd at each scale as a function of true anomaly’s
ABR. For example, the points on each of the three curves at an ABR of 1.5 are the minimum
Pd values in each of the three images in Figure 10(a)–(c). From these curves we see that
at the coarsest scale, even at high ABRs, the detection probabilities reach about 80%. As
expected, when the hypotheses are drawn from the finer scales, the minimumPd rises
quickly to close to 100%.

The results in Figure 10 indicate that if the scale-recursive anomaly detection algorithm
developed in Section 6.1 correctly identifies the coarse scale structures overlapping the
true anomalies, then the detection performance at finer scales should be quite good even
at ABRs less than 1. Also, because thelowestdetection probabilities at fine scales are
associated with structures close to the true structure, it is anticipated that the scale-recursive
detection algorithm should be very successful in producing estimates of anomalies which
are “sufficiently close” to the truth if not exactly the truth. This idea will be made more
precise in Section 6.3.

The analysis in this section indicates that the primary difficulty associated with the al-
gorithm is that coarse scale detection probabilities can be low. To overcome the potential
problem of selecting the wrong area or areas ofA for further refinement at coarse scales
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Figure 9. Integration region inx1 − x0 space for evaluation of Prob[L1(η) > 0|γ̄ ∗] in (29)

we modify the scale-recursive algorithm in the following manner. At the opening stage
of the algorithm, rather than accepting thesinglehypothesis with the largest generalized
log-likelihood value, we consider further refinement ofA based upon those hypotheses
corresponding to thefour largest log-likelihood values (excludingH0 andH9). As will be
seen in Section 6.3, despite the additional computational requirements of this approach, the
overall complexity of the algorithm remains rather low. Finally, we note that one could
extend this strategy of keeping additional structures for further refinement to more than
just the first stage of the algorithm and could retain fewer or greater than four alternatives;
however for the application of interest here, the choices described above were sufficient.

6.3. Examples

In this section, we examine the performance of the scale-recursive algorithm described in
Sections 6.1 and 6.2. First, we use Monte Carlo studies to verify the ability of this approach
to detect anomalous structures. The quantities of interest here are the sample probability of
detection,P̄d, the sample average value of the number of false alarms per pixelP̄f , and the
sample probability of error,̄Pe. We say that a particular rectangular anomaly,γ̄ ∗, has been
detected if there exists a column inB̂which is sufficiently close tōγ ∗. Specifically, we define
a “region of ambiguity” associated with the anomaly structure currently under investigation.
This area is constructed such that anomaly structures identified in this region are “essentially
indistinguishable” from the true anomaly. More formally, we compute the probability of
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Figure 10. In (a)–(c) detection probabilities are displayed for binary hypothesis tests whereḡ∗ is the structure in
Figure 5(a) and the hypotheses are pairs of structures fromJ . For each such test, one of the hypotheses is a larger
scale structure overlappinḡg∗ while the second structures is from the same scale as the first but is disjoint from the
pixels ofḡ∗. The shade of each square in (a)–(c) is the probability of correctly choosing the overlapping structure
when the alternate is the anomaly occupying the square under investigation. The ABR for the true structure is 1.5.
The minimumPd at each scale as a function of true anomaly’s ABR is shown in (d).

successfully distinguishinḡγ ∗ from each member ofJ in a binary hypothesis test of the
form in (28a)–(28b). For each such test, the amplitudes of the two anomalies are chosen so
that relative to the anomaly-free background, the two structures are equally detectable (i.e.
they individually have the samed2 value as defined withPd = 0.85 andPf = 0.10 in (18)
and (26).) A pixel inA is said to be in the ambiguity region if (1) there exists a member
of J which is nonzero on that pixel and (2) the probability of distinguishing that element
of J from γ̄ ∗ is below a given threshold, taken as 0.85 for all problems considered in this
section. Finally, for an estimated structure to be called a detection the area of intersection
between it and the region of ambiguity must be at least a quarter of the area of the estimated
structure. Such a definition implies a constraint on the localization of an estimated anomaly
in both space and scale before we will call it a detection. As an example, the region of
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Figure 11.Region of ambiguity for structure shown in Figure 5 forPd = 0.85.

ambiguity atPd = 0.85 associated with the anomaly structure in Figure 5 is displayed in
Figure 11. The elements of̂B which do not correspond to detections are taken to be false
alarms and the per-pixel false alarm rate,P̄f , is defined as the total number of false alarm
pixels divided by the number of pixels in regionA. Finally, the sample probability of error
is P̄e = 1− P̄d + P̄f .

We also examine the computational complexity of the scale-recursive algorithm. The
complexity of the algorithm is quantified in terms of the number of Generalized Likelihood
Ratio Tests (GLRTs) which must be performed in the processing of the data. As the spatial
decomposition of regionA is driven by the noisy data, the number of GLRTs will vary from
one data set to the next. Thus, for a particularḡ∗, the computational performance is based
upon the average number of required GLRTs required per iteration of the corresponding
Monte-Carlo.

Finally as discussed in Section 1, the detection algorithm results are used to improve
the solution to the full reconstruction inverse problem. From our model forγ in (6), the
estimate of the overall conductivity is the sum of the estimates ofγ̄ and γ̃ , denoted ˆ̄γ
and ˆ̃γ respectively, wherê̄γ = B̂â is provided by our scale-recursive detection algorithm.
Now, the linear least-squares estimate (LLSE) ofγ̃ developed in [37, 40] is based upon
the assumption thatno anomalies exist in the data; however, the output of the detection
algorithm provides additional information throughˆ̄γ as to the structure of the conductivity
field. To make use of the information in order to improve the estimateγ̂ , we define ˆ̃γ c

as the LLSE ofγ̃ based upon a “corrected” data set in which the effects ofˆ̄γ have been
removed. Mathematically this corrected estimate takes the form

ˆ̃γ c = P2T R−1[η −2B̂â] (33)
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whereP = (2T R−12 + P−1
0 )−1 is the error covariance matrix for nominal LLSE. Thus,

the estimate of the overall conductivity field is

γ̂ = ˆ̃γ c + ˆ̄γ = P2T R−1η + [ I − P2T R−12]B̂â (34)

where we recognize the termP2T R−1η as the uncorrected LLSE estimate [49].
Unless otherwise stated, the data upon which the examples are based are generated using

the Born-based measurements model in (2) for the scattering experiments described in
Table 1. For all cases consider, the background conductivity,g0, is set to 1 S/m and at the
highest ABRs of interest, the anomaly amplitudes are only 0.7 S/m. As discussed in [25],
under these circumstances the Born approximation is known to be valid. In Section 7, we
discuss issues associated with extending the work in this paper to account for the underlying
non-linearity associated with the inverse conductivity problem. Finally, for all experiments
the parameterα in (14) is set to 0.25.

6.3.1. The Single Anomaly Case

We begin by considering the case where it is known that there is a single anomaly of unknown
amplitude and location in regionA. Given that there is only one structure, the combinatorial
complexity associated with an “exhaustive search” for the anomaly is sufficiently low that
we shall compare both the detection/false-alarm performance as well as the complexity of
the scale-recursive approach against an alternate algorithm akin to a multi-scale matched
filter. This algorithm detects the single anomaly by computing the GLRT for each of the
structures in familyJ taking that element ofJ associated with the largest GLRT statistic as
the estimate. Because this method is multiscale in nature and has a fixed number of GLRTs
per Monte-Carlo iteration (since there are a fixed number of structures inJ ) it allows
for a fair comparison against which we can judge the performance of the scale-recursive
algorithm. For the scale-recursive method, we shall account for the knowledge that there is
only a single anomaly inA by retaining only the column ofBlea f associated with the most
likely anomaly structure. Finally, for this example, the true anomaly structure is shown in
Figure 5 and the SNR for all scattering experiments is 10.

In Figure 12 we showP̄d, P̄f , P̄e and the average number of GLRTs per Monte-Carlo
iteration as a function of anomaly-to-background ratio obtained after 500 Monte-Carlo
iterations. The solid lines are the results for scale-recursive algorithm and the dashed lines
indicate the performance of the multi-scale exhaustive search procedure. Figure 12(a)
indicates that at low ABRs, the scale-recursive approach tends to have a higher detection
probability than the exhaustive search with a slightly higher probability of false alarm.
Even for the low ABR of 0.50,P̄d is well above 50% and rises to above 90% for ABR
values greater than one. At high ABRs the performance of the two algorithms is about
the same. Despite the slightly higherP̄f of the scale-recursive approach, the overall error
probability is lower for the scale-recursive method at these small ABRs. Finally, from 12(c)
the computational complexity of the scale-recursive characterization algorithm is seen to
be roughly constant across the ABR range at 65% that of the exhaustive search.

In Figure 13(a) we display one realization ofg = ḡ + g̃ obtained in our Monte Carlo
process at an ABR of 1.5. Using the LLSE to perform the full reconstruction as in [40]
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Figure 12.Performance curves as a function of ABR obtained after 500 Monte-Carlo iterations for the anomaly in
Figure 5(a). Solid lines = results for scale-recursive algorithm. Dashed lines = results for multi-scale exhaustive
search. The error bars are drawn at the plus/minus two standard deviation level.

results in the image in Figure 13(b). By incorporating the results of the scale-recursive
detection algorithm into the inversion procedure through the use of (34), we obtain the
estimate of the overall conductivity field shown in 13(c). Thus, successful identification of
the highly parameterized anomaly structures can significantly improve localization both in
space and scale and the GLRT procedure results in an accurate estimate of the structure’s
amplitude. Also, the details in the remainder of the estimate do in fact reflect the coarse
scale, fractal features of the conductivity profile in Figure 13(a).
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Figure 13.Comparison of reconstructed conductivity profile using the LLSE of [40] and an estimate based upon
the output of the scale-recursive anomaly detection algorithm. The true conductivity is shown in (a) and contains
a single anomaly near the center of the region. The LLSE is shown in (b) and the estimate obtained from (34) is
illustrated in (c). Here we see that the use of the information from the detection algorithm allows for the successful
localization of the anomaly in space and scale without sacrificing our ability to resolve the fractal features of the
conductivity profile in (a). Additionally, the GLRT procedure results in an accurate estimate of the anomaly’s
amplitude.

6.3.2. The Multiple Anomaly Case

We now turn our attention to the case where multiple anomalies exist in regionA.4 Lifting the
single anomaly assumption causes the computational complexity of an exhaustive-search-
type of approach to be prohibitive in that one would be required to examine the likelihood
of all combinations of all non-overlapping, structures in a collection such asJ assuming
separatelyn = 1 thenn = 2 throughn = Nmax anomalies exist in regionA whereNmax is
a pre-determined maximum number of anomalies. Thus, here we present only the results
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Figure 14.Two-region anomaly structure

of the scale-recursive detection algorithm. In particular, we explore the performance for
the anomaly configuration in Figure 14.

The Monte-Carlo results for this experiment are displayed in Figure 15 where the top two
curves of (a) correspond to the individualP̄d statistics for the two anomalies and the lowest
of the three curves is a plot of̄Pf . Here we see that both structures are quite easily detected
with a P̄d of well over 90% even at the low ABR of one. As is expected, removing the
single-anomaly assumption causes the algorithm to retain a greater number of candidate
structures (including the true anomalies) thereby raisingP̄f above that seen in Section
6.3.1.

In Figure 15(c) we plot the average number of GLRTs as a function of ABR. Note that
at worst the complexity of this algorithm is still well below the complexity of the single-
anomaly exhaustive search algorithm and only about 30% greater than the complexity
of the single-anomaly scale-recursive algorithm. Thus, despite the fact that the multiple
anomaly problem is, from a combinatorial viewpoint, significantly more complex than the
single anomaly case, we see that the scale-recursive localization method represents a highly
efficient and accurate means of localizing an unknown number of structures in the region
of interest.

In Figure 16, we compare the full reconstruction results obtained from the LLSE to those
where (34) is used to estimate the underlying conductivity for one run of the Monte-Carlo
at an ABR of 1.5. From Figure 16(b) we see that the LLSE is successful in reconstructing
the structure on the left; however, the lower amplitude/more pixel anomaly is almost com-
pletely undetected. Figure 16(c) indicates that the incorporation of the information from
the anomaly detection algorithm significantly improves the localization in space as well as
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Figure 15. Performance curves obtained after 500 Monte-Carlo iterations of scale-recursive detection algorithm
for the anomalies in Figure 14. Solid lines in (a) and (b) are detection and error probabilities for the upper left
anomaly while dashed lines are for lower right anomaly. The error bars are drawn at the plus/minus two standard
deviation level. In (c), the computational complexity associated with this scenario is shown by the solid line. For
comparison, the dashed line is the complexity associated with the single anomaly exhaustive search.

scale of both anomaly structures, especially the rightmost. Finally, the anomaly amplitudes
are better estimated using the GLRT method.

7. Conclusion and Future Work

In this paper, we have presented a framework based upon techniques from the areas of
multiscale modeling, wavelet transforms, and statistical decision and estimation theory for
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Figure 16.Comparison of reconstructed conductivity profile using the LLSE of [40] and an estimate based upon
the output of the scale-recursive anomaly detection algorithm. The true conductivity is shown in (a) and contains
a two anomalies. The LLSE is shown in (b) and the estimate obtained from (34) is illustrated in (c). Here we
see that the use of the detection information allows for the successful localization of both anomaly structures and
offers a significant improvement over the LLSE in localizing the anomaly in the lower right.

addressing a variety of issues arising in anomaly detection problems. Beginning with a lin-
ear model relating the data and the quantity to be reconstructed, we use the wavelet transform
to take the problem from physical space to scale space where computational complexity is
reduced for a wide variety of problems [1, 4, 41] and where we are able to take advantage
of the rich and useful class of models recently developed for describing the structure of the
medium in the absence of anomalous activity [21, 35, 47, 50]. The problems of character-
izing the number, positions, and magnitudes of anomaly structures was formulated using
the tools of statistical decision theory. To understand how the physics of the problem and
the constraints on the geometry of the data collection process affect our ability to isolate
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anomalous regions, we defined and explored the issues of anomaly detectability and distin-
guishability. This analysis led to the development of a scale-recursive algorithm employing
a sequence of Generalized Likelihood Ratio Tests for extracting anomaly information from
data.

This work was presented in the context of a linearized inverse scattering problem arising
in geophysical prospecting. The same scattering model is encountered in a variety of other
fields where some form of energy is used to probe a lossy medium [18–20, 22, 29, 31].
More generally, the analysis and algorithmic methods developed in this work require only a
measurements model of the form in (2) and are thus relevant for any linear inverse problem
(e.g. computed tomography) in which anomaly characterization is of interest.

An important extension of the work presented here is in development of algorithms and
analysis methods for detecting anomaly structures using thenonlinearphysics governing
the relationship between the conductivity and the observed scattered electric field. The
primary difficulty here is maintaining or improving the detection/false-alarm performance
of the current method while retaining the low computation complexity in an algorithm
based upon a significantly more complex scattering model. In [38] we present preliminary
results for one form of a scale-recursive anomaly characterization algorithm using the
computationally efficient, nonlinear Extended Born Approximation [48]. Further work
remains in the exploration of detectability and distinguishability in the nonlinear context
and the extension of this approach to higher frequency (e.g. microwave) problems.

Another avenue of research is in the use of alternate methods for progressively divid-
ing the region of interest. The problem of anomaly detection is similar to that of image
segmentation in that the goal of both is to partition a two-dimensional grid of pixels into
disjoint regions. The primary difference between these two problems is the data. In the
segmentation case the data are the pixels in the image whereas we wish to do the anomaly
localization given the significantly less informative observations of scattered radiation. For
the segmentation problem, significant work has been performed in the use of hierarchical
methods for performing this decomposition. For example, segmentation techniques have
been developed where (a) small structures are merged into larger regions [36, 42] and (b)
both splitting as well as merging operations are used in the segmentation process [28]. Ex-
amining the utility of merge- and split/merge-algorithms for the anomaly detection problem
would be of considerable interest especially as a means of overcoming the difficulties of
detecting small-scale structures using large scale hypotheses.

Acknowledgements

This work was supported in part by the Air Force Office of Scientific Research under Grant
AFOSR-92-J-0002, and the Advanced Research Project Agency under Air Force Grant
F49620-93-1-0604 and the Office of Naval Research under Grant N00014-91-J-1004. The
work of the first author was also supported in part by a US Air Force Laboratory Graduate
Fellowship.



182 ERIC L. MILLER AND ALAN S. WILLSKY

Notes

1. The notationx ∼ N (m, P) indicates that the random vectorx has a Gaussian probability distribution with
meanm and covariance matrixP.

2. Note that in the contexts where the binary testing scenario is to be explored, the values ofa0 anda1 are assumed
known so that a generalized test is not required.

3. For illustrative purposes only, in Figure 3 it is assumed that the major axis of the ellipse is oriented at an angle
less than 90◦ from thea0 axis. While this is not necessarily the case, the analysis which follows is independent
of which axis is the major and which the minor.

4. Note that in this multi-anomaly case, the ABR is used to determine the magnitude of each structure individu-
ally.For example at an ABR of one, the amplitude of the left anomaly is set so that if it were the only structure
in the medium, the ABR would be one.
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