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Tomographic Reconstruction and Estimation
Based on Multiscale Natural-Pixel Bases

Mickey Bhatia, William C. Karl,Member, IEEE, and Alan S. Willsky,Fellow, IEEE

Abstract—We use a natural pixel-type representation of an
object, originally developed for incomplete data tomography
problems, to construct nearly orthonormal multiscale basis func-
tions. The nearly orthonormal behavior of the multiscale basis
functions results in a system matrix, relating the input (the
object coefficients) and the output (the projection data), which is
extremely sparse. In addition, the coarsest scale elements of this
matrix capture any ill conditioning in the system matrix arising
from the geometry of the imaging system. We exploit this feature
to partition the system matrix by scales and obtain a reconstruc-
tion procedure that requires inversion of only a well-conditioned
and sparse matrix. This enables us to formulate a tomographic
reconstruction technique from incomplete data wherein the object
is reconstructed at multiple scales or resolutions. In case of
noisy projection data we extend our multiscale reconstruction
technique to explicitly account for noise by calculating maximum
a posterioriprobability (MAP) multiscale reconstruction estimates
based on a certain self-similar prior on the multiscale object co-
efficients. The framework for multiscale reconstruction presented
here can find application in regularization of imaging problems
where the projection data are incomplete, irregular, and noisy,
and in object feature recognition directly from projection data.

I. INTRODUCTION

I N THIS PAPER we consider the solution of ill-posed
tomographic reconstruction problems where the projection

data are noisy and incomplete. The conventional methods for
tomographic image reconstruction require high quality (i.e.,
noise-free) projection data to provide accurate reconstructions.
Further, while those methods suited to the availability of a
complete set of projection data (for example, the filtered back-
projection (FBP) method) are fast, the conventional methods
of coping with incomplete data lead to very computation-
ally intensive solutions. We have developed a multiscale
reconstruction technique that yields computationally tractable
reconstructions from incomplete data and can be extended to
yield statistically optimal reconstructions from noisy, nonsta-
tionary data with very little added computational complexity.
In addition, our multiresolution framework for tomographic
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reconstruction is natural or desirable if the ultimate objectives
are multiresolution in some way, for example if the interest
is not to fully reconstruct the field but to gather information
about coarse scale (i.e., aggregate) or fine scale (for example,
boundary) features of the field. Using conventional techniques
we would first have to reconstruct the entire field and then use
postprocessing to extract such features.

To develop our multiscale reconstruction technique, we
start with the natural pixel (NP) object representation [6],
[7], which was originally developed for the incomplete data
tomography problem. The NP representation results in a matrix
based reconstruction method which has the advantage that the
resulting reconstructions are devoid of many of the incomplete
data artifacts present in the FBP reconstruction. The disadvan-
tage of the NP reconstruction, or matrix-based reconstruction
methods in general, is that solutions of very large, generally
ill-conditioned systems of equations are required.

In this paper, we build on the NP approach by using wavelet
bases to transform the NP basis functions. The standard NP
system matrix, relating the input (the object coefficients) and
the output (the projection data), is full. The use of wavelet
bases leads to a transformation matrix, which is amenable
to sparsification. We accomplish this sparsification of the NP
projection operator through the novel use of one-dimensional
(1-D) wavelet transforms defined in the projection domain, in
contrast to general wavelet-based operator compression results.
In addition to sparsification, the coarsest scale elements of this
transformed matrix capture any ill conditioning in the system
matrix arising from the geometry of the imaging system. We
exploit this feature to partition the multiscale system matrix by
scales and obtain a reconstruction procedure that only requires
inversion of a well-conditioned and sparse matrix. The use
of wavelet bases also enables us to formulate a multiscale
tomographic reconstruction technique wherein the object is
reconstructed at multiple scales or resolutions. The overall
reconstruction is obtained by combining the reconstructions
at different scales.

Noisy imaging problems arise in a variety of contexts
(e.g., low-dose medical imaging, oceanography, and in several
applications of nondestructive testing of materials) and in such
cases standard matrix-based reconstruction methods (including
NP) often yield unacceptable results, particularly when the
noise is nonstationary. These situations generally reflect the
fact that more degrees of freedom are being sought than
are really supported by the data and, hence, some form of
regularization is required. In contrast to the standard NP
method, we are able to extend our multiscale reconstruc-
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tion technique in the case of noisy projections to obtain
a statistically regularized, multiscale maximuma posteriori
probability (MAP) object estimate. We do this by realizing
that for ill-posed problems the lower resolution (i.e., the
coarser scale) reconstructions are often more reliable than their
higher resolution counterparts and by using prior statistical
models constructeddirectly in the multiscale domain, which
capture such intuition. Our multiscale MAP regularized re-
constructions are no more computationally intensive than our
unregularized multiscale reconstructions.

This paper contrasts other multiscale tomography ap-
proaches that either concentrate on the complete data
tomography problem [4], [31], [32], assume prior knowledge
of the object edges to reconstruct an object from incomplete
data [33], or are focused on localization of the Radon transform
or radiation reduction [14], [29]. In addition, in the approaches
[14], [31]–[33] the object is expanded in a two-dimensional
(2-D) wavelet basis for the original spatial domain and the
resulting coefficients of this expansion are then calculated
from the projection data. In contrast, in our multiscale
approach based on the incomplete data NP framework, a
two-dimensional (2-D) multiscale representation is obtained
by a 1-D wavelet expansionof the NP basis functions.

Finally, while the work here focuses on the case of in-
complete data, when complete data are available, additional
efficiencies may be obtained through the use of explicit
Radon transform inversion formulas, such as FBP. In such
complete data cases, the multiscale methodology described
herein may be applied using the FBP method as a starting
point to obtain both unregularized and regularized multiscale
reconstructions with the same computational complexity as the
FBP reconstruction. Such application is described in detail in
[4].

The paper is organized as follows. Section II contains
preliminaries. In Section II-A we describe the standard to-
mographic reconstruction problem and in Section II-B we
describe the NP reconstruction technique. We outline the
theory of 1-D multiscale decomposition in Section II-C. In
Section III, we develop the theory behind our wavelet-based
multiscale reconstruction method starting from the NP object
representation. In Section IV we build on this framework to
provide a method for obtaining MAP regularized reconstruc-
tions from noisy data. The conclusions are presented in Section
V.

II. PRELIMINARIES

A. The Tomographic Reconstruction Problem

In tomography, the goal is to reconstruct an object or
a field, , from line-integral projection data [23]. For a
parallel-beam imaging geometry, the projection data consists
of parallel, nonoverlapping strip integrals through the object at
various angles (see Fig. 1). Each angular position corresponds
to a specific source–detector orientation. Suppose we have

positions between 0 and 180 and parallel strip
integrals at each angular position. Let us label the observation
corresponding to projection at angular position by ,

Fig. 1. Projection measurements of an object (shaded) at two different
angular positions (k = 1 andk = 2). Also shown are three basis functions,
T11; T18, andT28, which are the indicator functions of the corresponding
strips. Each angular projection is composed ofNs = 8 strips in this example.

where and . Furthermore,
let be the indicator function of the strip integral
corresponding to this observation so that has value
one within that strip and zero, otherwise. Given this notation

(1)

where are the usual rectangular spatial coordinates and
the integration is carried over a region of interest.

Due to practical considerations, we have to work with a
discretized version of (1). By using standard discretization
techniques (see, for example, [7]), the projection data at angle

is given by

(2)

where is an matrix representing
and is an vector representing on an

square pixel lattice, and is the corresponding
vector of measurements . Thus row of is the
(discrete) representation of the strip function and
the inner product of with this strip yields the data contained
in the corresponding entry of . Finally, by combining the
projection data from all angles we get the following
overall observation equation:

(3)

where is the vector containing the projection data,
is the matrix representing the complete set of

discretized basis functions
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and is defined in the obvious way, andis a
vector representing the discretized object. The tomographic
reconstruction problem then reduces to finding an estimate
of the discretized object given the projection data contained
in .

B. Conventional Reconstruction Techniques

In this section we discuss two conventional reconstruction
techniques, the widely used FBP reconstruction technique and
the NP reconstruction technique used by us as a starting point
for our multiscale reconstruction. In both the FBP and the
NP reconstructions, the object is expanded in a nonorthogonal
basis that is closely related to the data acquisition process.
In particular, the estimated object is represented as a linear
combination of the same functions along which
the projection data are collected. Similar to (2) and (3), a
discretized version of this representation may be obtained as

(4)

where is a vector
containing the object expansion coefficients. Note that (4)
can be interpreted as the backprojection operation where the
coefficients in are backprojected along the basis functions
in the rows of [23].

To complete the reconstruction the coefficientsmust now
be determined. The FBP and the NP methods differ in how the
coefficients are calculated from the projection data. The
standard FBP method calculates the coefficientsat each
angle according to the Radon inversion formula by filtering
the projection data at that particular angle with a ramp filter
[23]. Thus, for a fixed angle

(5)

where the matrix captures this ramp-filtering operation.
Thus, (4) and (5) together represent the two operations used
in the standard FBP reconstruction. Since the FBP method is
based directly on the Radon inversion formula, it is valid (i.e.,
yields exact reconstructions) only when a continuum of noise-
free line integral projections from all angles are used [23]. In
practice, as indicated in (1), we only have access to sampled
projection data which are collected using strips of finite width.
In this case, the quality of the FBP reconstruction is a function
of the quality and fineness of the corresponding projection data
used. By collecting the object coefficient and data vectors at
different angles we obtain the following overall equation which
reflects the identical and independent processing from angle to
angle performed on the projection data by the FBP method

...
(6)

An important point to note in the above equation is that the
matrix is fixed and is not a function of the imaging system
(i.e., the quality and the quantity of the acquired projection

Fig. 2. Elements of the matrixC are the areas of intersection of various
strips. One such area of intersection, corresponding to two strips delineated
by bold lines, is shown shaded. The matrixC is full as most of these areas
are nonzero.

data). It is this simple, regular structure in the explicit formula
(6) that results in the computational efficiency of FBP.

The NP representation [6], [7], on the other hand, was
originally developed for incomplete data tomography prob-
lems and belongs to the class of matrix-based reconstruction
methods [24], [25]. It has found use in a variety of disciplines
[1], [9], [10], [18], [28], [37]. In the NP reconstruction, an
implicit equation relating the expansion coefficients,, to the
projection data, , is derived by substituting from (4) for in
(3) and assuming that equality holds in the resulting equation:

(7)

The coefficients are then calculated from the projection
data by solving the implicit equation (7). These coefficients
are backprojected according to (4) as before to obtain the
reconstruction . Note that in the NP reconstruction, since
the matrix is full, the processing of data is not independent
from angle to angle, in contrast to FBP. Theadvantageof
the NP reconstruction over the FBP is that since the matrix

is calculated for each specific acquisition geometry, the
reconstruction can be customized for any imaging system,
so that a complete set of angular projection data is neither
assumed nor required for adequate reconstruction as in FBP.

Unfortunately, solution of the large system of (7) for the
coefficients leads to significant difficulties. The first obstacle
is the sheer size ( ) of the matrix . The elements
of are the areas of intersection of the strips defined by the
basis functions (see Fig. 2). Most of these areas are not
zero and hence the matrix is full, requiring a tremendous
amount of storage. The large size ofalso makes it difficult
to solve for directly from (7). In [6], [7], and [15] this
problem is circumvented by two different approaches. The
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first is to use iterative techniques and a suitable initial value
to solve for . This is commonly done using a Kaczmarz-like
method as found in ART [19], [23]. It is well known that the
computational burden of such algorithms is proportional to the
number of nonzero matrix elements together with the number
of iterations required for convergence, which itself depends on
the conditioning of the matrix through parameter choice. The
second approach is to concentrate on some specific imaging
geometries which result in a matrix that can be directly
inverted in a computationally efficient manner. The problem
with the second approach is that these imaging geometries
may not be practical. A final major difficulty in obtaining the
NP reconstruction is that there is an inherent nonuniqueness
in the NP object representation arising from its tie to the data
acquisition process, which results inbeing rank deficient or
at best being badly conditioned for most imaging geometries.
None of the existing NP related work [6], [7], [15] discusses
this conditioning issue brought on by the nonuniqueness of
the NP representation.

The ill-conditioned nature of the matrix can be understood
at an intuitive level if one assumes an infinite field-of-view for
the imaging geometry (rather than the finite rectangular field-
of-view we show in Fig. 1) so that edge effects are absent.
Recall that the columns of are the basis functions of the
NP representation at angle, c.f. (4). Now the sum of all the
columns of equals the sum of all the columns of since
both correspond to the same indicator function of the field-of-
view. This simply reflects the physical fact that both of these
sums provide DC shifts of the object field. Thus, the same
underlying object can be represented in a variety of ways,
corresponding to different allocations of its DC component to
the different angular basis sets. Hence the representation (4) is
nonunique, does not have full column rank, and
is not invertible. For the case of our finite field-of-view, the
above discussion is exact only if and correspond to
projections at 0 and 90 due to nonuniform edge effects. Even
when the projections are not exactly at right angles, however,
while not dropping rank, is quite ill conditioned, as will be
discussed in Section III-D.

The above discussion provides us with a preview of things
to come. In Section III, we use 1-D wavelet bases to transform
the NP basis functions in into a multiscale framework. The
use of wavelet bases, in addition to providing a multiscale
framework, enables us to overcome the above limitations of
the NP reconstruction. Use of the wavelet transform leads to
a multiscale system matrix corresponding to, which can be
sparsified. Further, the coarsest multiscale basis function at
any angle turns out to be the sum of all the columns of ,
responsible for the ill conditioning of the resulting multiscale
matrix. We exploit this feature to partition the multiscale
system matrix by scales to obtain a reconstruction procedure
that requires inversion of only a well-conditioned and sparse
matrix.

A final difficulty in NP arises when we consider noisy
observations. In order to obtain statistically based regularized
solutions to the ill-posed reconstruction problem which arises
when the projection data are noisy, we need to combine (7)
with a prior probabilistic model for the object coefficients.

While there is no natural way to construct a prior for these
coefficients in the original projection domain that leads to a
computationally efficient estimation algorithm, the transfor-
mation of these coefficients to a multiscale projection domain
allows us to use simple yet powerful self-similar prior models
which have been developed in this domain [4]. Specifically, in
Section IV we use prior statistical models constructed directly
in the multiscale projection domain that capture the intuition
that for ill-posed reconstruction problems the lower resolution
(i.e., the coarser scale) reconstructions are more reliable than
their higher resolution counterparts. Later we will see that
not only are these models conceptually and computationally
simple, but they also result in good reconstructions, even in
cases with nonstationary noise.

C. 1-D Wavelet Transform-Based Multiscale Decomposition

We begin with a brief review of the wavelet-based multi-
scale decomposition of functions. The reader is referred to [27]
for details. Let denote the vector space of measurable,
square-integrable, 1-D functions , and let denote the
set of integers. A multiscale approximation of is a
sequence of subspaces with
having the interpretation that the projection of on

gives the approximation of at scale . The scales become
finer with increasing . Now, as shown in [27], there exists
a unique function , called thescaling function,
such that for each scale is
an orthonormal basis of . Thus, the approximation of the
function at scale can be written as

(8)

with

(9)

where refers to the inner product operation. The dif-
ference in information between the approximation of the
function at successive scalesand is captured by the
detail functionat scale . This detail function is obtained as
the projection of on the subspace which
represents the orthogonal complement ofin . Similar
to the scaling function, there exists a function
called an orthogonal wavelet, such that for each scale

is an orthonormal basis of .
Thus the detail function at scale, capturing the difference in
information between and , can be written as

(10)

where

(11)

Let and be functions satisfying

(12)
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The discrete approximation and detail coefficients at scale
, and respectively, can then be obtained from the

next finer scale discrete approximation coefficients, ,
by convolution with and followed by downsampling by
a factor of 2:

(13)

In above, refers to 1-D convolution. Conversely, the finer
scale discrete approximation can be synthesized from
the next coarser scale discrete approximation and detail coef-
ficients, and , respectively, by first up-sampling by a
factor of 2 followed by convolution with and

(14)
In practice, we do not have access to the continuous function

but rather to a finite number of its samples. We assume
these samples to be the approximation coefficientsof
at some finest resolution. For convenience we assumeto
be a power of 2 so that .

The discrete multiresolution decomposition of is then
represented in a vector form as

...

Finest scale detail

Coarsest scale detail
Coarsest scale approximation

(15)
where is the matrix representation of the multiscale de-
composition operation (13), which can be performed in an
extremely efficient manner [2]. The matrix is
square and invertible and, since we consider orthonormal
multiresolution decomposition in this paper, .
The vector represents thedetail associated with scale
and is of length . Thus, the length of is twice that of

, which is consistent with the downsampling implied by
(13). The last element in is theapproximationof
the signal at the coarsest scale . For our purpose, this
is the same as some multiple of the DC term (i.e., the sum of
the elements) of .

In our work in this paper, in addition to the Haar wavelet
we use the wavelets of Daubechies [12], the separate elements
of which are denoted , where the length and the regularity
of the wavelets increases linearly with. Finally, since our
signals are of finite length, we need to deal with the edge
effects which occur at the ends of the interval in the wavelet
transform. While there are a variety of ways in which to do
this, such as modifying the wavelet functions at the ends of
the interval in order to provide an orthogonal decomposition
over the interval [13], we have chosen here to use one of
the most commonly used methods, namely that of cyclically
wrapping the interval [16], [27]. While this does introduce
some edge effects, these are of negligible importance for the
objectives and issues we wish to emphasize and explore and

Fig. 3. Each of the two delineated strips from Fig. 2 are broken down into
two substrips having a positive and a negative weight, respectively. The area
of intersection of the two strips is zero in this case due to the cancellation of
the positive (lightly shaded) and the negative (darkly shaded) terms.

for the applications considered here. Further, the methods we
describe can be readily adapted to other approaches for dealing
with edge effects as in [13]. As a result of cyclic wrapping, the
coarsest scale scaling function is the same for all wavelets
and is the same as the scaling function for the Haar case. In
particular the coarsest scale approximation term is always
a constant multiple of the DC component of the signal.

III. A M ULTISCALE APPROACH TO

NATURAL PIXEL (NP) RECONSTRUCTION

A. Multiscale Transformation of the NP Basis Functions

The multiscale reconstruction is motivated by the following
observations. Recall that the elements of the NP matrixin
(7) are the areas of intersection of the basis functions. If we
are able to modify these basis functions so that they are mostly
orthogonal, then the corresponding areas of intersection will
be nearly zero, resulting in a sparse matrix and a simplified
solution for the underlying object coefficients. Specifically,
suppose that we are able to modify the basis functions (i.e.,
strips) such that they have the form shown in Fig. 3. Each strip
is a linear combination of two NP strips, one given a positive
weight and the other negative. The new matrix relating the
object coefficients and the projection data, according to the
above choice of strips, will have as its elements the (signed)
areas of intersections of the newly defined strips. It is clear
from Fig. 3 that most of these elements will be zero due to the
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Fig. 4. Original NP basis functions contained inTk (shown in the top half of the figure) and multiscale transformed basis functions ofTk (shown in the
bottom half of the figure) for a fixed anglek. The multiscale basis functions are grouped into different scale components based on their spatial extent.
The Haar wavelet is used for multiscale decomposition in this example. The heavy boundaries indicate the extent of support of the corresponding basis
function and the shading and+=� indicate the sign of the basis function over the region.

cancellation of the positive and the negative terms. Only those
elements that correspond to strip intersections near the edge of
the field-of-view will be nonzero. Thus we can expect this new
matrix to be sparse with the degree of sparsity increasing with
the size of the field-of-view (since the fraction of intersections
near the edge decreases with increasing size).

The above redefinition of the basis strips with positive and
negative weights is reminiscent of the finest level of a Haar
transform and, in fact, we can imagine repeating the process
at other levels as well. However, an important point to note is
that here the Haar transform is taken only in one direction, i.e.,
the direction perpendicular to the long axis of the strip. This is
the key to our multiscale reconstruction method: We expand
the basis functions in a 1-D wavelet basis which then
induces a corresponding 2-D multiscale object representation.1

For a projection at a fixed angle (and 8), the full
such Haar transform of the original basis functions shown in
Fig. 4 (including contributions from all levels) will look as
shown in the bottom half of Fig. 4. A notion of scale emerges
from the use of the Haar transform. The original strips have
been broken down into a series of strips at multiple scales
having positive and negative weights. The finest scale involves
strips that have twice the width of the original strips and the
coarsest scale involves strips extending over the entire field-
of-view. We call the above transformed strip functions the
natural wavelet basisbecause of the adaptation of the natural
pixel representation. While we have used the Haar wavelet in
the multiscale transformation described above and shown in

1Our multiscale object representation is fundamentally different from
previous multiscale-related representations for tomography (for example,
[31]). In these approaches a direct 2-D expansion of the object (i.e., a 2-
D wavelet transform) is used, the coefficients of which are then calculated
from the projection data.

Fig. 4, one can imagine using a more general wavelet for the
same purpose, as discussed next.

In particular, let be a matrix representation of the
linear operator that performs a 1-D orthonormal multiscale
decomposition on a discrete sequence of finite length(as
described in Section II-C) so that . Further, let

be a block-diagonal matrix with
blocks along the diagonal, all equal to (so that again

). We define our general multiscale transformation
of the strip basis functions as

(16)

where the matrix now contains the multiscale basis functions
at all the different angles

(17)

and the columns of matrices represent the discretized
multiscale basis functions at angle(see Fig. 4 for the Haar
case).

Now suppose we define the vectors

(18)

which contain the stacked set of wavelet coefficients of the
projection data and the object coefficients

at each angle . Then by applying (16) to (7) we get the
following relationship between the multiscale representation
of the object coefficients,, and the multiscale representation
of the data, :

(19)

where the multiscale system matrixis given by

(20)
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Note that (20) implies that the elements of the transformed
matrix are the (signed) areas of intersection of the various
multiscale basis functions . From our previous discussion
we expect to be sparse. if reflects the use of the
Haar wavelet for multiscale decomposition. In general, the
use of any compactly supported Daubechies wavelet results
in approximately the same effective sparsity as that achieved
in the Haar case. Note that the transformed multiscale system
matrix in (20) is naturally obtained through a series of 1-D
wavelet transforms defined in the projection domain, and is
not simply a 2-D wavelet transformation of.

Finally, by combining (18) and (4), we obtain the following
representation of the object in the multiscale domain

(21)

Thus, the reconstruction is obtained by back-projecting the
multiscale coefficients at angle along the corresponding
multiscale basis functions .

Before proceeding, we note that the multiscale object rep-
resentation (21) is essentially the same as that used in [4],
thus permitting us to define object reconstructions at multiple
scales, as we discuss in Section III-C. However, the coef-
ficients used in the representation are obtained from the
NP derived relationship (19) rather than from the FBP based
scheme used in [4], and it is this more complicated solution
that allows us to solve incomplete data problems.

For the development to follow it will prove convenient
to order the multiscale vectors and according to scales
rather than projection angles, with the finest scale detail
terms from all projections grouped first and the coarsest scale
approximation terms grouped last. This rearrangement of (19)
results in the following scale ordered and partitioned equation:

(22)

where the vectors and contain all the detail terms at
various scales and angles and are of length , and
the vectors and contain the coarsest scale approximation,
i.e., the DC, terms at all angles (one for each angle) and are
of length . The upper left block is a

symmetric matrix, the elements of which are the
areas of intersection of the detail basis functions (i.e., strips)
at various scales and angles. The lower right block is
a symmetric matrix the elements of which are the
areas of intersection of the coarsest scale basis function at each
angle. Finally, the off-diagonal block is a
matrix, the elements of which are the areas of intersection of
the coarsest scale approximation basis functions and the detail
basis functions at various scales.

B. Multiscale Object Coefficient Determination

Let us turn our attention now to the calculation of the object
coefficients which, through the backprojection equation,
(21), specify the reconstruction. Recall that the vector
consists of the object detail and approximation coefficients,

and , respectively, which are related to the projection data
through (22). For clarity, let us first consider the ideal case
of an infinite field extent where edge effects are absent. In
this case, as argued in Section II-B, the NP matrixis rank
deficient due to the nonuniqueness of the NP representation.
Thus the multiscale matrix (or, equivalently, ) is also rank
deficient. Since a unique solution does not exist in this case, a
rational approach is to seek the minimum norm solution to (7)
or, in the multiscale domain, to (22). The NP matrix equation
(7) represents a large and full system of equations and so
it is difficult in practice to find the minimum norm solution
in this case. The multiscale relationship (22), however, has a
structure that can be exploited to simplify the computations.
In particular, first note that in the ideal case with no edge
effects, the elements of , capturing the areas of intersection
between the coarsest scale approximation and finer scale detail
basis functions, are identically zero.2 Further, one can show
that the matrix has full rank, while the matrix is rank
deficient.3 This is hardly surprising in view of our earlier
discussion in Section II-B since we have grouped all the
terms contributing to the DC value of the object (and hence
to the ill conditioning of ) in the block. Thus, our
multiscale transformation has served to “compress” and isolate
the nonuniqueness that is present in the NP representation.
Now, with 0, the minimum norm solution to (22) is
easily found since the detail and the approximation equations
decouple. In particular, the minimum norm solution is given by

(23)

(24)

where is the pseudoinverse of [17]. Thus, (23)
captures the unique part of the solution and (24) provides a
particular distribution of the DC components of the object over
the coefficients in . Before proceeding we note that since

represents a large but sparse system of equations
we will not, in practice, find the solution to this system by
explicitly calculating the inverse of (as suggested by (23))
but rather we will exploit its sparse structure and favorable
conditioning to use any of the methods created especially to
solve such sparse systems [17].

If we assume that the object is completely contained in the
field-of-view, then we obtain the following simplification4 of
(24) for :

(25)

where refers to a vector of length with all elements equal
to unity, and is the total mass under the object. This

2This is because these elements represent the area under each wavelet
(which is zero) due to the fact that the coarsest scale approximation basis
functions are just indicator functions of the field-of-view.

3In fact, for this ideal case it is easy to see thatCaa is anN� �N� matrix
of ones scaled by a constant.

4With no edge effects all elements of theN� � N� matrix Caa are
equal toNs. If the object is completely contained in the field-of-view then
�a = (�=

p
Ns)1N . Further, it can be shown that ifCaa is circulant, as is

the case here, thenC+aa1N = (1=r)1N , wherer is the row sum ofCaa.
By combining these facts (25) is obtained.
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Fig. 5. Binary plot of system matrices. Left: ART system matrix,T . Middle: Natural pixel system matrix,C. Right: Multiscale system matrix,Cdd, thresholded
at 3.75% of the absolute maximum. An imaging geometry withN� = Ns = 32 was assumed and the D3 wavelet is used for multiscale decomposition.

Fig. 6. Phantom used for reconstructions.

simply corresponds to spreading the DC component of the
object equally among the different projections.

The development to this point has focused on the ideal case
in which field-of-view edge effects are absent. In any practical
situation, the field is finite and such effects arise. However, as
we discuss below, they have minimal impact on the preceding
development. First, due to these edge effects the off-diagonal
block in (22) is no longer zero. This block now will
have a few nonzero elements corresponding to the areas of
intersection of the basis functions near the domain boundary.5

Even though a variety of methods exist for modifying the
solutions (23) and (24) to account for this neglected coupling,6

our experience is that practical reconstructions based on (23)
and (24) (which assume 0) are visually indistinguishable
from ones where a correction is made for the coupling. As
a result we use (23) and (24) for all the reconstructions we
present in this paper.

The other impact the inclusion of edge effects has is to
change the structure of . In particular is no longer truly
singular (unless we take views 90apart) though it is nearly
so. In any case, is still a circulant matrix with row sums
nearly equal to the case when the edge effects are neglected
and, hence, (25) is still valid. Finally, since the edge effects
have no impact on the matrix , the latter still has full rank
and is well conditioned.

5In [5], we calculate numerical bounds on the absolute values of the
elements inCda for the Haar case.

6For example, in [5] we use the matrix inversion lemma [20] to refine the
estimate of�d in (24) by introducing theCda coupling.

C. Object Reconstruction at Multiple Scales

Once we obtain the multiscale object coefficientsthe
object estimate is then obtained via (21) through appropriate
combination of the corresponding multiscale basis functions.
The multiscale nature of these basis functions naturally induce
a multiscale object representation [4]. In particular we can
imagine using, for example, only the coarsest scale basis
functions and corresponding coefficients in (21) (effectively
treating the other, finer scale coefficients as zero) to obtain a
coarse reconstruction of the object. Conversely, if our interest
is in fine object details, such as edges, we might only wish to
use the fine scale coefficients. More generally we define the
object reconstruction at scale as follows:

(26)

where , the reconstruction at the coarsest scale (i.e., the
average or DC value), and , the incremental detail added
in going from scale to , are defined as

(27)

where is the component of (at angle ) associated with
scale as defined in (15), is the average or the coarsest
scale approximation component at angle(see (15)), is
the block of associated with in (21), and is the
block of associated with . Note that contains the
basis functions corresponding to scale(see Fig. 4) and thus
the term captures the information added at scalewhile

is just the DC (i.e., the coarsest scale) information about
the object. Thus, (26) decomposes the object in a natural way
into components at different scales. From (26) we can write
the recursion

(28)

where the reconstruction at the current scale is obtained
from the corresponding reconstruction at the next coarser
scale by adding the corresponding level of incremental detail.
The complete reconstruction,, is equal to the finest scale
reconstruction where .
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Fig. 7. Reconstructions at various scales using theD3 wavelet andN� = Ns = 32. Top row, left: f̂ (1). Top row, middle:f̂ (2). Top row, right: f̂ (3).
Bottom row, left: f̂ (4). Bottom row, middle:f̂ (5). Bottom row, right: unwindowed ramp FBP reconstruction.

D. Computational Considerations

Our multiscale reconstruction procedure involves three
steps: 1-D wavelet transformation of the data, solution of
the set of (23), (24) for the multiscale coefficients, and
backprojection of the results. The major computational
burden lies in the second step, involving the solution of the
large system of equations represented by (23) for the detail
coefficients . This will be the computational bottleneck of
any matrix-based technique, including ART and NP, so we
focus on this step. Typically, the solution of such large systems
of equations found in matrix-based reconstruction methods is
obtained by iterative methods, like the Kaczmarz method
used in ART [19], [24], [25]. The computational complexity
of such iterative schemes are proportional to the product of
the number of computations required per iteration and the
number of iterations needed for convergence. The number
of computations required per iteration is itself proportional
to the number of nonzero elements in the associated system
matrix—which is for our approach, of (7) for the
standard NP approach, and of (3) for ART. In addition,
the number of iterations required for convergence depends on
the condition number of the matrix. In particular, for poorly
conditioned systems of equations, the convergence can be
slow and will depend critically on the order that the elements
are accessed and the value chosen for a relaxation parameter
[19]. We discuss each of these points next.

1) Matrix Sparsity: While general choices of the wavelet
transform operator in (16) lead to a multiscale matrix that
is itself full, it appears that we may threshold a significant
fraction of the elements in to zero with only slight
impact on the resulting reconstructions. For example, when

32 and the wavelet is used in the definition

Fig. 8. A horizontal section through the phantom (solid line), the multiscale
reconstruction (broken line), and the unwindowed ramp FBP reconstruction
(dash-dot line).

of in (16), then setting to zero all those elements of
whose magnitude is below 3.75% of the absolute maximum
yields reconstructions comparable to the full NP method in
the noise-free, complete data case. In general, such a threshold
would be chosen as large as possible consistent with the quality
of the underlying data and goals of the problem. Thresholding
of similar magnitude of the ART matrix or NP matrix
produces severe artifacts in the reconstructions in addition to
having much smaller effects on the sparsity of the resulting
reduced matrix. This is because our transformation process
has served to concentrate the “energy” in the matrix in fewer,
higher amplitude elements. Exhaustive examination of these
issues is a topic of current research.
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Fig. 9. Detail reconstructions at various scales,�f̂ (j), usingN� = Ns = 32 and theD3 wavelet. Top row, left:�f̂ (0). Top row, middle:�f̂ (1).
Top row, right:�f̂ (2). Bottom row, left:�f̂ (3). Bottom row, middle:�f̂ (4).

Fig. 5 shows the system matrices of ART, of the
NP method, and a 3.75% thresholded version of from
our multiscale NP-based method, from left to right for an
imaging geometry with 32 angular projections and
32 strips per each angular projection. The ART matrixis
about 94% sparse (i.e., this percentage of the total number of
elements are zero). In contrast, the NP matrixis only about
39% sparse. Finally, the multiscale matrix thresholded at
the 3.75% level is about 95% sparse. This implies that ART
is about 25% more costly per iteration than our multiscale
technique while the standard NP method will be about six
times more costly than either. Also, recall that the effective
degree of sparsity of will naturally increase as the size of
the field-of-view is increased, since relatively fewer of the
pixels will be near an edge. Finally, note that most of the
nonzero elements in correspond to the coarser scale terms
where field-of-view edge effects are more pronounced. Thus,
by focusing on reconstruction of only finer scale components,
even greater gains may be obtained.

2) Matrix Conditioning: In addition to matrix sparsity (in-
fluencing the computations per iteration), matrix conditioning
also has a bearing on the overall computational complexity of
the reconstruction through the rate of convergence. Iterative
schemes typically involve a choice of both the order in which
the elements will be accessed and the value of a relaxation
parameter. The choice of these parameters is typically done
based on test images believed to be similar to those to
be encountered, andad hoc. For poorly conditioned system
matrices, these choices coupled with the specific data and
initial condition used will have a dramatic effect on the
resulting convergence. Conversely, well conditioned systems
will be largely insensitive to such effects; thus, good con-

ditioning is highly desirable. One of the advantages of our
multiscale transformation is that it results in a comparatively
well-conditioned system of equations. For example, for the

32 case, the condition number of and
are both orders of magnitude larger than that of the

truncated (naturally, the full matrix is a similarity
transformation of and so will have the same conditioning).
Further, our experience has been that even with good choices
for access order and relaxation parameter, our multiscale
technique require at least half as many iterations as fast as
ART or NP.

E. Examples

For all our example multiscale reconstructions the
wavelet was used in the definition of and, except where
otherwise noted, the full matrix was used for simplicity.
In Fig. 7 we show reconstructions at various scales, of
the 32 32 phantom shown in Fig. 6, from projection data
collected at angles with strips per angular
projection. For this reasonably complete data case we expect
the FBP reconstruction defined in (5) and the complete, finest
scale, multiscale reconstruction to be similar since the NP and
the FBP solutions converge in the case of complete data. This
is precisely what is seen in Fig. 7 and confirmed in Fig. 8,
which shows a section through the reconstructions. Finally, in
line with the multiscale nature of our reconstructions, notice
that the information about the phantom becomes more focused
as we proceed from coarse to fine scales. In Fig. 9 we show the
corresponding detail reconstructions at various scales.
Note that the finest scale detail reconstruction (bottom
row, middle in the figure) contains information about the edges
and boundaries in the phantom.
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Fig. 10. Finest scale detail reconstructions usingN� = Ns = 32, and the
D3 wavelet. Left: Using the fullCdd. Right: TruncatingCdd at 3.75% of its
absolute maximum.

Fig. 11. Horizontal section through the full reconstruction (solid line) and
the truncated reconstruction (broken line).

In Fig. 10 we show both the finest level multiscale recon-
struction based on the full matrix (i.e., of Fig. 7)
together with the finest level reconstruction which results when

is thresholded at the 3.75% level. Fig. 11 shows a section
through the corresponding reconstructions.

In Fig. 12 we show an example of an incomplete data case.
Here we reconstruct the phantom at different scales using

5 angular projections with 32 strips in each
projection, and the wavelet for multiscale decomposition.
We also show the corresponding (unwindowed ramp) FBP
reconstruction for comparison. In this incomplete data case
our NP-based multiscale reconstructions are free of many of
the finest scale artifacts which arise in the FBP reconstruction.
The figure also illustrates the resolution-accuracy tradeoff that
is inherent in reconstructions from incomplete data, wherein
the coarse scale reconstructions have fewer artifacts due to
incomplete data effects at the expense of reduced resolution.

Finally, in Fig. 13, we show the finest scale detail recon-
struction for the this case obtained by making the assumption
that is an identity matrix. Such an assumption neglects
all cross-scale and cross-angle terms in resulting in an
even simpler inversion procedure. In the same figure, we also
show for comparison the reconstruction based on finest scale
detail from Fig. 12 that uses no approximation of . We

can see from the figure that if the goal is edge reconstruction,
it is enough to approximate by an identity matrix. This
reduces the computational complexity even further. Such an
edge-oriented reconstruction, based on an identity assumption
for in the multiscale framework, only requires 1-D wavelet
transformation of the strip integral data and subsequent back-
projection of just the fine scale coefficients.

IV. REGULARIZED MULTISCALE NATURAL

PIXEL (NP) RECONSTRUCTIONS

In this section, we consider the estimation of an object
from noisy projection observations. We extend our multi-
scale reconstruction method presented in Section III to obtain
statistically regularized estimates with the same efficiency
as obtained for our unregularized estimates. This regularized
solution is obtained by first solving for the MAP estimate
[34] of the multiscale object coefficient vector,, based on
observations (19), a noise model, and a certain naturally
derived multiscale prior model and then backprojecting these
multiscale coefficient estimates along the corresponding mul-
tiscale basis functions as before.

In the presence of noise our original observations, (3),
become

(29)

where the noise is taken as an additive Gaussian vec-
tor and the notation denotes a Gaussian
distribution of mean and covariance . Further, we as-
sume that the elements of the noise vectorare uncor-
related, with equal variance at each angle, so that
block diag , where is the vari-
ance of the noise at projectionand refers to a
identity matrix. Note that this simple model allows for the
possibility of nonstationary noise, arising, for example, from
projections of differing fidelity.

By substituting the object representation (4) into (29), as was
done in the noise-free case, we obtain the following equation
(the noisy version of (7)):

(30)

The multiscale decomposition of (30) using (18) and (20),
followed by rearrangement in scales as described in Section
III-A, results in the following partitioned equation (the noisy
version of (22)):

(31)

where the vector contains the similarly scale
rearranged and partitioned elements of the multiscale noise
vector . Note that the block orthogonality of
means that will simply be a scale ordered version of ,
and will still be diagonal. In particular, if is the
scale at the finest level then

block diag

(32)

diag (33)
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Fig. 12. Reconstruction at various scales using theD3 wavelet andN� = 5 andNs = 32. Top row, left: f̂ (1). Top row, middle:f̂ (2). Top row, right:
f̂ (3). Bottom row, left: f̂ (4). Bottom row, middle:f̂ (5). Bottom row, right: unwindowed ramp FBP reconstruction.

Recall from Section III-B that in the ideal case with no
edge effects the off-diagonal blocks in (31) are identically
zero. More generally, as mentioned in Section III-B, due to
finite field effects these blocks are not exactly zero, however
reconstructions which assume these to be zero are visually
indistinguishable from those that do not. As a result, in the
development to follow we neglect these field-of-view edge
effects and assume in our formulas.

A. Prior Model for the Multiscale Object Coefficients

To find the MAP estimate of and , we also need a
prior statistical model for these quantities, i.e., we need a prior
model for the multiscale object coefficients. The scale-based
prior model we use for the object coefficients has been shown
[4] to successfully capture the intuitively expected behavior of
these coefficients while resulting in computationally efficient
estimation algorithms. In particular, we assumeand to
be distributed according to

(34)

i.e., we assume and to be Gaussian, zero mean, indepen-
dent, with variance and , respectively. For the variance
of the approximation coefficients , capturing the prior DC
behavior of the object, we choose

(35)

with sufficiently small (i.e., ) to prevent a bias in
our estimate of the average (DC) behavior of the coefficients
, letting them be determined instead by the data, i.e., via

maximum likelihood estimation.

Fig. 13. Finest scale detail reconstructions usingN� = Ns = 32, and the
D3 wavelet. Left: Using the fullCdd. Right: AssumingCdd to be the identity
matrix.

For the variance of the detail object coefficientswe use
a self-similar prior model obtained by choosing the elements
of the detail vector (i.e., the wavelet coefficients) at
angle and scale as independent, random
variables [36]. The parameter determines the nature, i.e.,
the texture, of the resulting self-similar process while
controls the overall magnitude. This model says that the
variance of the detail added in going from the approximation
at scale to the approximation at scale decreases
geometrically with scale. If the resulting finest level
representation (the elements of ) corresponds to samples
of white noise (i.e., the components of are completely
uncorrelated), while as increases the components of
show greater long range correlation. This self-similar prior
model results in a diagonal covariance matrix for the
detail coefficients , the elements of which depend on the
regularization parameters and , i.e., the texture and the
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Fig. 14. Reconstructions withN� = Ns = 32 and�k = 360 fork even and�k =36 000 fork odd to yield�2 dB overall SNR projection data. From left: (a)
Hanning windowed FBP with:3� cutoff filter; (b) Unregularized finest level multiscale reconstruction; (c) Regularized finest level multiscale reconstruction
with � =0.2 and�2 =360; and (d) Regularized finest level multiscale reconstruction with� = 0.7 and�2 =360.

overall magnitude, respectively. In particular, if

block diag

(36)

Our self-similar, -type prior model in the projection
domain that is given above is equivalent to prior model in the
original image domain which is also a self-similar process,
but with a different, though related, fractal dimension [3], [21],
[22]. Such self-similar models are commonly and effectively
used in many application areas such as modeling of natural
terrain and other textures, biological signals, geophysical and
economic time series, etc. [8], [11], [26], [35], [36]. In
addition, since theobservation noisepower is uniform across
scales or frequencies, the geometrically decreasing variance of
the prior model implies that the projection data most strongly
influences the reconstruction of coarse scale features and the
prior model most strongly influences the reconstruction of
fine scale features. This reflects our belief that the fine scale
behavior of the object (corresponding to high frequencies) is
the most likely to be corrupted by noise.

B. NP-Based Multiscale MAP Estimate

The MAP estimates of and based on the observations
(31), the prior model (34)–(36) (with ), and assuming

are given by

(37)

(38)

where is the square root of the diagonal matrix
and we have used the fact that as

. The structure
of this estimator mirrors that of known optimal statistical
estimators for stationary fields from a continuum of complete
data [21], [22]. Note that in the case of angle-independent
noise, where is a multiple of the identity, the estimate
of the approximation coefficients from (38) becomes the
same as we had earlier in the unregularized case (24). Recall

Fig. 15. Horizontal section through the phantom (solid line) and various
reconstructions of the previous figure.

that (38) serves to estimate the DC component of the field.
Most important, since is still effectively
a sparse, well-conditioned matrix due to the compression
achieved in the multiscale domain, the discussion of Section
III-D still holds and fast and efficient iterative algorithms
[30] can be used to solve for in (37). Note that this
result is due both to the structure of the original problem, as
reflected in , and the structure of the prior, reflected in .
Finally, in obtaining the MAP estimates (37) and (38) we have
assumed to be zero. The inclusion of the effects of this
neglected coupling into the MAP estimates, while negligible,
is straightforward, as discussed in Section III-B.

Before proceeding, we discuss some aspects of the solution
given in (37) and (38). First note that when the noise is station-
ary and the projections are distributed evenly, by symmetry
our reconstruction is similar to applying a uniform filter to
the FBP reconstruction. However, our approach directly ties
the filter to prior models of both image and noise and thus
can easily be adapted to other situations. One can view the
change in the reconstruction induced by these new parameters
as new filters on the FBP reconstruction, but our approach
yields this automatically. In addition, because of the statistical
basis of our approach, we obtain useful statistics (e.g., error
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Fig. 16. Reconstructions withN� = 5; Ns = 32, and�k = 1; 200 for projection data with an SNR of about 10 dB. From left: (a) Hanning windowed
FBP reconstruction with:3� cutoff; (b) Unregularized finest level multiscale reconstruction; (c) Regularized finest level multiscale reconstruction with� =

3 and�2 = 1:2 � 10
6; (d) Regularized finest level multiscale reconstruction with� = 2 and�2 = 1:2 � 10

5.

variances) that can be used for tasks such as assessing the
statistically proper scale of reconstruction, validating models,
combining reconstructions with other information, detecting
statistically significant anomalies, etc. Such applications are
currently being pursued. Finally, our approach also directly
applies tononstationaryprior models or noise without change
to the algorithm. In such cases, the resulting reconstructions
may again be viewed as corresponding in some sense to
nonstationary, nonstandard filtering, but our approach provides
it automatically.

C. Examples

Next, we show reconstructions using our regularized mul-
tiscale method in the presence of noise. The noise-free pro-
jection data are generated from the phantom of Fig. 6 and
are then corrupted through the addition to projectionof
independent, zero-mean Gaussian noise of varianceto yield
our observations . We also define an overall signal-to-noise
ratio (SNR) for each example reconstruction as

SNR (dB) (39)

where are the noise-free projection data. Finally, in all
multiscale reconstructions we show here the Daubechies
wavelet is used in the definition of the multiscale decompo-
sition matrix .

Fig. 14 shows a nonstationary example in which projection
data was collected at 32 equally spaced angles with

32 strips per angular projection. Nonstationary noise was
added with the standard deviation at the odd numbered angles
ten times that of the even numbered angles ( 360, odd,

36 000, even) for an overall SNR of 2 dB. Finally,
was thresholded so that all elements below 3.75% of the

absolute maximum are set to zero. The figure shows the “best”
(chosen by eye) windowed or “rolled-off” FBP reconstruction
along with unregularized finest level multiscale, and various
MAP regularized finest level multiscale reconstructions. In
the unregularized finest level multiscale reconstruction the
noise completely obscures the object. Through uniform rolling
off of the ramp filter, the windowed FBP reconstruction is
somewhat better, supressing some of the noise, but still losing

detail. In contrast, in the regularized solution the details of
the object are now easily visible. These reconstructions are
obtained with essentially the same computational complexity
as the unregularized solution, and naturally and automatically
account for the nonstationarity in the noise. In both of the
multiscale regularized reconstructions the overall magnitude of
the prior model was 360; however, the reconstructions
differ in the decay rate of the detail variance across scales,

. From Fig. 14 and Fig. 15, which show a section through
the reconstructions, we see that as is expected, an increased
regularization (i.e., smoothness) results when the value ofis
increased from 0.2 to 0.5 (corresponding to a smoother prior
texture) keeping other parameters fixed.

Fig. 16 shows a stationary example, where limited data was
collected at 5 equally spaced angles with 32
strips per angular projection. Uniform noise was added at each
angle ( 1,200) for an overall SNR of about 10 dB. For this
small example, the full matrix was used. The figure shows
the best (by eye) windowed FBP reconstruction, along with
the unregularized finest level multiscale, and various MAP
regularized finest level multiscale reconstructions. Again, in
the unregularized finest level multiscale reconstruction the
noise and limited data serve to completely obscure the ob-
ject. In contrast, in the regularized solutions the details of
the object can now be discerned. The multiscale regularized
reconstructions differ in both the the magnitude of the prior
model used versus and the
decay rate of the detail variance across scales used
versus . Note that the effect achieved for this stationary
case is visually similar to the windowed FBP, but again, our
method can adjust automatically to changes in noise or prior
and also provides reconstructions at multiple resolutions and
estimation error information, essentially for free.

V. CONCLUSION

We have developed a multiscale reconstruction technique
based on the natural pixel (NP) approach that provides re-
constructions from incomplete data yet is computationally
efficient. Further, we extended this method to yield statisti-
cally optimal reconstructions from noisy data with essentially
no additional computational complexity. This is in contrast
to the conventional methods for image reconstruction from
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incomplete data (such as NP) which only provide adequate
reconstructions from high quality (i.e., noise-free) projection
data, and additionally are computationally intensive. In ad-
dition, our reconstruction framework provides estimates of
the field at multiple scales which is natural or desirable
if the ultimate objectives are multiresolution in some way,
for example if the interest is not to fully reconstruct the
field but to gather information about aggregate (i.e., coarse
scale) or fine scale (for example, boundaries) features of
the field. Finally, the method presented here followed the
standard NP development and assumed that the basis functions
used to represent the underlying object were exactly and
only those used to acquire the projection data (c.f. (3) and
(4)). There is no fundamental reason, however, why we
cannot use NP-type basis functions at more angles than we
have data in the definition of (4) and construct priors that
relate these sets of coefficients (which are relatively easy
to capture within the context of our multiscale NP-based
representation). The corresponding system matrixin (20)
will still be sparse and, coupled with appropriate priors, should
lead to computationally feasible algorithms. Such extensions
are currently under investigation.
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