IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 3, MARCH 1997

463

Tomographic Reconstruction and Estimation
Based on Multiscale Natural-Pixel Bases

Mickey Bhatia, William C. Karl,Member,

Abstract—We use a natural pixel-type representation of an
object, originally developed for incomplete data tomography
problems, to construct nearly orthonormal multiscale basis func-
tions. The nearly orthonormal behavior of the multiscale basis
functions results in a system matrix, relating the input (the
object coefficients) and the output (the projection data), which is
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reconstruction is natural or desirable if the ultimate objectives
are multiresolution in some way, for example if the interest
is not to fully reconstruct the field but to gather information
about coarse scale (i.e., aggregate) or fine scale (for example,
boundary) features of the field. Using conventional techniques

extremely sparse. In addition, the coarsest scale elements of thiswe would first have to reconstruct the entire field and then use

matrix capture any ill conditioning in the system matrix arising
from the geometry of the imaging system. We exploit this feature
to partition the system matrix by scales and obtain a reconstruc-
tion procedure that requires inversion of only a well-conditioned
and sparse matrix. This enables us to formulate a tomographic
reconstruction technique from incomplete data wherein the object
is reconstructed at multiple scales or resolutions. In case of
noisy projection data we extend our multiscale reconstruction
technique to explicitly account for noise by calculating maximum
a posterioriprobability (MAP) multiscale reconstruction estimates
based on a certain self-similar prior on the multiscale object co-
efficients. The framework for multiscale reconstruction presented
here can find application in regularization of imaging problems
where the projection data are incomplete, irregular, and noisy,
and in object feature recognition directly from projection data.

I. INTRODUCTION

postprocessing to extract such features.

To develop our multiscale reconstruction technique, we
start with the natural pixel (NP) object representation [6],
[7], which was originally developed for the incomplete data
tomography problem. The NP representation results in a matrix
based reconstruction method which has the advantage that the
resulting reconstructions are devoid of many of the incomplete
data artifacts present in the FBP reconstruction. The disadvan-
tage of the NP reconstruction, or matrix-based reconstruction
methods in general, is that solutions of very large, generally
ill-conditioned systems of equations are required.

In this paper, we build on the NP approach by using wavelet
bases to transform the NP basis functions. The standard NP
system matrix, relating the input (the object coefficients) and
the output (the projection data), is full. The use of wavelet

N THIS PAPER we consider the solution of ill-posedases leads to a transformation matrix, which is amenable

tomographic reconstruction problems where the projectieo sparsification. We accomplish this sparsification of the NP
data are noisy and incomplete. The conventional methods f@ojection operator through the novel use of one-dimensional
tomographic image reconstruction require high quality (i.e(1-D) wavelet transforms defined in the projection domain, in
noise-free) projection data to provide accurate reconstructioggntrast to general wavelet-based operator compression resullts.
Further, while those methods suited to the availability of @ addition to sparsification, the coarsest scale elements of this
complete set of projection data (for example, the filtered badkansformed matrix capture any ill conditioning in the system
projection (FBP) method) are fast, the conventional methogatrix arising from the geometry of the imaging system. We
of coping with incomplete data lead to very computationexploit this feature to partition the multiscale system matrix by

ally intensive solutions. We have developed a multiscalgales and obtain a reconstruction procedure that only requires
reconstruction technique that yields computationally tractabiersion of a well-conditioned and sparse matrix. The use
reconstructions from incomplete data and can be extendecstoyavelet bases also enables us to formulate a multiscale
yield statistically optimal reconstructions from noisy, ”O”St%mographic reconstruction technique wherein the object is
tionary data with very little added computational complexityeconstructed at multiple scales or resolutions. The overall

In addition, our multiresolution framework for tomographiGeconstruction is obtained by combining the reconstructions
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tion technique in the case of noisy projections to obtain y. : projection at angle 1 (k=1)
a statistically regularized, multiscale maximuanposteriori 1
probability (MAP) object estimate. We do this by realizing
that for ill-posed problems the lower resolution (i.e., the
coarser scale) reconstructions are often more reliable than their &
higher resolution counterparts and by using prior statistical 3’
. . h . . P

models constructedirectly in the multiscale domajnwhich (§o
capture such intuition. Our multiscale MAP regularized re-
constructions are no more computationally intensive than our
unregularized multiscale reconstructions.

This paper contrasts other multiscale tomography ap-
proaches that either concentrate on the complete data-

tomography problem [4], [31], [32], assume prior knowledge‘\“’ A
of the object edges to reconstruct an object from incomplete
data [33], or are focused on localization of the Radon transform
or radiation reduction [14], [29]. In addition, in the approaches
w
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[14], [31]-[33] the object is expanded in a two-dimensional
(2-D) wavelet basis for the original spatial domain and the
resulting coefficients of this expansion are then calculated
from the projection data. In contrast, in our multiscale
approach based on the incomplete data NP framework, a
two-dimensional (2-D) multiscale representation is obtained
by a 1-D wavelet expansioof the NP basis functions. , o , ,
Finally, while the work here focuses on the case of ir{:l-'g' } e e e (e o e i orent
ngular positionsi = 1 andk = 2). Also shown are three basis functions,
complete data, when complete data are available, additiomal, T:s, and Tus, which are the indicator functions of the corresponding
efficiencies may be obtained through the use of exp“(ﬁ@'ips. Each angular projection is composed\af = 8 strips in this example.
Radon transform inversion formulas, such as FBP. In such
complete data cases, the multiscale methodology describggbre , = 1,... N, and ¢ = 1,---,N,. Furthermore,
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— N/ //
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herein may be applied using the FBP method as a startigg 7;,(u,v) be the indicator function of the strip integral
point to obtain both unregularized and regularized multiscai@responding to this observation so that (v, v) has value

reconstructions with the same computational complexity as thge within that strip and zero, otherwise. Given this notation
FBP reconstruction. Such application is described in detail in

[4]. _ _ _ _ () = // I, 0)The (s, v)dudv,
The paper is organized as follows. Section Il contains Q
preliminaries. In Section II-A we describe the standard to- k=1, Ng; £=1,---,N; (1)

mographic reconstruction problem and in Section II-B we . .
describe the NP reconstruction technique. We outline ﬂtv}v]ehere(u, v) are the usual rectangular spatial coordinates and

: o . e integration is carried over a region of interékt
theory of 1-D multiscale decomposition in Section II-C. In : . . .
. . Due to practical considerations, we have to work with a
Section Ill, we develop the theory behind our wavelet-base . ; : : o
. . . . discretized version of (1). By using standard discretization
multiscale reconstruction method starting from the NP objetc

representation. In Section IV we build on this framework t%eci:hmques (see, for example, [7]), the projection data at angle

provide a method for obtaining MAP regularized reconstruc- s given by
tions from noisy data. The conclusions are presented in Section e =T f (2)
V.
whereT}, is an N, x N2 matrix representing Ty (u,v); £ =
1,---,N,} and f is an N2 vector representing(u,v) on an
Il. PRELIMINARIES N, x N, square pixel lattice, ang;, is the corresponding
vector of measurementg(£). Thus row ¢ of T is the
A. The Tomographic Reconstruction Problem (discrete) representation of the strip functi@,(u,v) and

In tomography, the goal is to reconstruct an object 6pe inner product (_)f with this strip_yields the data_c_ontained
a field, f, from line-integral projection data [23]. For an the corresponding entry aji.. Finally, by combining the

parallel-beam imaging geometry, the projection data consi§f@lection datayf“ from al! anglesk we get the following
of parallel, nonoverlapping strip integrals through the object gyerall observation equation:

various angles (see Fig. 1). Each angular position corresponds
to a specific source—detector orientation. Suppose we have
Ny positions between 0and 180 and N, parallel strip wherey is the Ny N vector containing the projection data,
integrals at each angular position. Let us label the observatifiris the Ny N, x N2 matrix representing the complete set of
corresponding to projectios at angular positiork by y(¢), discretized basis function§Ty,(u,v); k& = 1,---,Ng; £ =

T
y=Pwi | v | - | vk] =71 O
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1,...,Ny} and is defined in the obvious way, aifds a N2
vector representing the discretized object. The tomographic m
reconstruction problem then reduces to finding an estinfiate ,Y

of the discretized objecf given the projection data contained 4/‘
in .

A

B. Conventional Reconstruction Techniques

In this section we discuss two conventional reconstruction
techniques, the widely used FBP reconstruction technique and
the NP reconstruction technique used by us as a starting point
for our multiscale reconstruction. In both the FBP and the
NP reconstructions, the object is expanded in a nonorthogonal
basis that is closely related to the data acquisition process.

In particular, the estimated object is represented as a linear

combination of the same function®,(«,v) along which

the projection data are collected. Similar to (2) and (3), a

discretized version of this representation may be obtained as

]\‘rg
F=> Tlaw=T" (4)
k=1
where r = [af | x%‘ | | nge]T is a Ny, vector Fig. 2. Elements of the matriK’ are the areas of intersection of various

. . . . . Z;rips. One such area of intersection, corresponding to two strips delineated
containing the object expansion coefficients. Note that (f} hoid lines, is shown shaded. The mateixis full as most of these areas

can be interpreted as the backprojection operation where tne nonzero.

coefficients inz are backprojected along the basis functions

n 1t'rc]>eccr>(r)nm;/)sle(t);{h([ezfg;:onstruction the coefficientsust now data). It is this simple, regular structure in the explicit formula
: e 6) that results in the computational efficiency of FBP.

be determined. The FBP and the NP methods differ in how tﬁe).r P y

coefficientsz are calculated from the projection dajaThe he NP representation [6], [7], on the other hand, was
originally developed for incomplete data tomography prob-
standard FBP method calculates the coefficientsat each ginally aevelop ! P graphy p

lems and belongs to the class of matrix-based reconstruction

anglek.acc.ording to the Radon_ inversion formula by ﬁlte.rm%ethods [24], [25]. It has found use in a variety of disciplines
the projection datg, at that particular angle with arampfllter[l], [9], [10], [18], [28], [37]. In the NP reconstruction, an

[23]. Thus, for a fixed angle implicit equation relating the expansion coefficientsto the
(5) projection datay, is derived by substitutinj from (4) for f in

(3) and assuming that equality holds in the resulting equation:
where the matrixR captures this ramp-filtering operation.

— (T
Thus, (4) and (5) together represent the two operations used y =TT )z =Cu. )

in the standard FBP reconstruction. Since the FBP methodrige coefficientsz are then calculated from the projection
based directly on the Radon inversion formula, it is valid (i.egatay by solving the implicit equation (7). These coefficients
yields exact reconstructions) only when a continuum of noisgre packprojected according to (4) as before to obtain the
free line integral projections from all angles are used [23]. lzconstructionf. Note that in the NP reconstruction, since
practice, as indicated in (1), we only have access to samplad matrixC is full, the processing of data is not independent
projection data which are collected using strips of finite widthrom angle to angle, in contrast to FBP. Thevantageof
In this case, the quality of the FBP reconstruction is a functiqRe NP reconstruction over the FBP is that since the matrix
of the quality and fineness of the corresponding projection datgjs calculated for each specific acquisition geometry, the
used. By collecting the object coefficient and data vectors @lconstruction can be customized for any imaging system,
different angles we obtain the following overall equation whichy that a complete set of angular projection data is neither
reflects the identical and independent processing from anglest@umed nor required for adequate reconstruction as in FBP.
angle performed on the projection data by the FBP method ynfortunately, solution of the large system of (7) for the
R coefficientsz leads to significant difficulties. The first obstacle
R O is the sheer sizeNy N, x Ny N,) of the matrixC. The elements
T = . Y- (6) of C are the areas of intersection of the strips defined by the
O ' R basis functions!’ (see Fig. 2). Most of these areas are not
zero and hence the matri¥ is full, requiring a tremendous
An important point to note in the above equation is that themount of storage. The large size @falso makes it difficult
matrix R is fixed and is not a function of the imaging systeno solve forz directly from (7). In [6], [7], and [15] this
(i.e., the quality and the quantity of the acquired projectioproblem is circumvented by two different approaches. The

xr = Ry
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first is to use iterative techniques and a suitable initial valiWhile there is no natural way to construct a prior for these
to solve forz. This is commonly done using a Kaczmarz-likecoefficients in the original projection domain that leads to a
method as found in ART [19], [23]. It is well known that thecomputationally efficient estimation algorithm, the transfor-
computational burden of such algorithms is proportional to theation of these coefficients to a multiscale projection domain
number of nonzero matrix elements together with the numbalfows us to use simple yet powerful self-similar prior models
of iterations required for convergence, which itself depends arhich have been developed in this domain [4]. Specifically, in
the conditioning of the matrix through parameter choice. THgection IV we use prior statistical models constructed directly
second approach is to concentrate on some specific imaginghe multiscale projection domain that capture the intuition
geometries which result in a matrik' that can be directly that for ill-posed reconstruction problems the lower resolution
inverted in a computationally efficient manner. The probleifi.e., the coarser scale) reconstructions are more reliable than
with the second approach is that these imaging geometribsir higher resolution counterparts. Later we will see that
may not be practical. A final major difficulty in obtaining thenot only are these models conceptually and computationally
NP reconstruction is that there is an inherent nonuniquenassiple, but they also result in good reconstructions, even in
in the NP object representation arising from its tie to the datases with nonstationary noise.

acquisition process, which resultsdhbeing rank deficient or

at best being badly conditioned for most imaging geometrigS. 1-D Wavelet Transform-Based Multiscale Decomposition

None of the existing NP related work [6], [7], [15] discusses e pegin with a brief review of the wavelet-based multi-

this conditioning issue brought on by the nonuniqueness gfaje decomposition of functions. The reader is referred to [27]

the NP representation. _ for details. LetL?(R) denote the vector space of measurable,
The ill-conditioned nature of the matrX can be understood square-integrable, 1-D functions(w), and letZ denote the

at an intuitive level if one assumes an infinite field-of-view fogat of integers. A multiscale approximation &8(R) is a
the imaging geometry (rather than the finite rectangular fielgéquence of subspacél;}jcz with -+ V_; C Vo C Vi--

of-view we show in Fig. 1) so that edge effects are absepaying the interpretation that the projectidnz(v) of z(u) on
Recall that the _columns dfif’ are the basis functions of thevj gives the approximation aof at scalej. The scales become
NP representation at angie c.f. (4). Now the sum of all the finer with increasingj. Now, as shown in [27], there exists
columns of I} equals the sum of all the columnsBf’ since 4 unique functionp(w) € L2(R), called thescaling function
both correspond to the same indicator function of the field-of;,ch that for each scalp {¢;(u) = \/g¢(2ju —Dlnez is

view. This simply reflects the physical fact that both of thesg, orthonormal basis oF;. Thus, the approximation of the
sums provide DC shifts of the object field. Thus, the samgnction at scalgj can be written as

underlying object can be represented in a variety of ways, ,

corresponding to different allocations of its DC component to Aja(u) =Y 2O (1) u(u) 8

the different angular basis sets. Hence the representation (4) is !

nonunique ™ does not have full column rank, adid= 777  with

is not invertible. For the case of our finite field-of-view, the D

above discussion is exact only i, and ky correspond to x(J)(l) = (@(w), $ia(w) ©)

projections at © and 90 due to nonuniform edge effects. Everwhere (., .} refers to the inner product operation. The dif-

when the projections are not exactly at right angles, howevégrence in information between the approximation of the

while not dropping rank{" is quite ill conditioned, as will be function at successive scalgsand j + 1 is captured by the

discussed in Section IlI-D. detail functionat scalej. This detail function is obtained as
The above discussion provides us with a preview of thingge projectionD;z(u) of x(w) on the subspac®; which

to come. In Section IIl, we use 1-D wavelet bases to transfori@presents the orthogonal complement/fin V;_ ;. Similar

the NP basis functions iff” into a multiscale framework. The to the scaling function, there exists a functigu) € L?(R)

use of wavelet bases, in addition to providing a multiscakélled an orthogonal waveletsuch that for each scalg

framework, enables us to overcome the above limitations &f;,:(1) = v274)(2/u—1)},c~ is an orthonormal basis @;.

the NP reconstruction. Use of the wavelet transform leads thus the detail function at scaje capturing the difference in

a multiscale system matrix correspondingpwhich can be information betweem;xz(v) and A;,1x(u), can be written as

sparsified. Further, the coarsest multiscale basis function at

any anglek turns out to be the sum of all the columns&f, Djw(u) = 25(1)(1)%’1(“) (10)
responsible for the ill conditioning of the resulting multiscale !
matrix. We exploit this feature to partition the multiscaldVNere
system matrix by scales to obtain a reconstruction procedure ) = (x(u), j0(w)). (11)
that requires inversion of only a well-conditioned and sparse . .
matrix. Let h and g be functions satisfying

A final difficulty in NP arises when we consider noisy
observations. In order to obtain statistically based regularized P(u) = Z \/éh(l)‘f)@“ =0
solutions to the ill-posed reconstruction problem which arises ! (12)
when the projection data are noisy, we need to combine (7) P(u) = Z V2g(D)p(2u = 1).

l

with a prior probabilistic model for the object coefficients
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The discrete approximation and detail coefficients at sg¢ale + -
2\, and () respectively, can then be obtained from the
next finer scale discrete approximation coefficients "1,

by convolution withi and g followed by downsampling by m
a factor of 2:

201y = (b« U+ (21)
§9(1) = (g% 2D).

In above,x refers to 1-D convolution. Conversely, the finer
scale discrete approximatiarf’t1) can be synthesized from
the next coarser scale discrete approximation and detail coef-
ficients, z() and &), respectively, by first up-sampling by a \

(13) Y

—

factor of 2 followed by convolution witth and g

U0 = > h(2k = DaD (k) + > g(2k - DEV (k).
- %

(14) '\
In practice, we do not have access to the continuous function h
x(u) but rather to a finite numbéy of its samples. We assume \ \ .
these samples to be the approximation coefficightsof z(u) : !
at some finest resolutiosi. For convenience we assuméto
be a power of 2 so thal = log,(N).
The discrete multiresolution decomposition ofis then
represented in a vector form as x
(J—1) . . Fig. 3. Each of the two delineated strips from Fig. 2 are broken down into
<= Finest scale detail two substrips having a positive and a negative weight, respectively. The area
(J—2 X " Ve g ¢
3 of intersection of the two strips is zero in this case due to the cancellation of
£ = Wa:(‘]) _ : the positive (lightly shaded) and the negative (darkly shaded) terms.

¢© | <= Coarsest scale detall
(0 | <= Coarsest scale approximation for the applications considered here. Further, the methods we
(15) describe can be readily adapted to other approaches for dealing
where W' is the matrix representation of the multiscale dewith edge effects as in [13]. As a result of cyclic wrapping, the
composition operation (13), which can be performed in atbarsest scale scaling function is the same for all wavélgts
extremely efficient mannetO()) [2]. The matrix W is and is the same as the scaling function for the Haar case. In
square and invertible and, since we consider orthonormgrticular the coarsest scale approximation teff is always
multiresolution decomposition in this papey =! = W?. a constant multiple of the DC component of the signal.
The vectoré) represents theletail associated with scalg
and is of length27. Thus, the length of) is twice that of
£€U=1 which is consistent with the downsampling implied by
(13). The last element® in Wz() is the approximationof
the signalz at the coarsest scaje= 0. For our purpose, this
is the same as some multiple of the DC term (i.e., the sum R
the elements) ofs(”), The multiscale reconstruction is motivated by the following
In our work in this paper, in addition to the Haar wavelebbservations. Recall that the elements of the NP matrix
we use the wavelets of Daubechies [12], the separate eleméjsare the areas of intersection of the basis functibng we
of which are denoted,,, where the length and the regularityare able to modify these basis functions so that they are mostly
of the wavelets increases linearly with Finally, since our orthogonal, then the corresponding areas of intersection will
signals are of finite length, we need to deal with the eddee nearly zero, resulting in a sparse matrix and a simplified
effects which occur at the ends of the interval in the wavelsblution for the underlying object coefficients. Specifically,
transform. While there are a variety of ways in which to deuppose that we are able to modify the basis functions (i.e.,
this, such as modifying the wavelet functions at the ends sifrips) such that they have the form shown in Fig. 3. Each strip
the interval in order to provide an orthogonal decompositida a linear combination of two NP strips, one given a positive
over the interval [13], we have chosen here to use one wéight and the other negative. The new matrix relating the
the most commonly used methods, namely that of cyclicalbbject coefficients and the projection data, according to the
wrapping the interval [16], [27]. While this does introduceabove choice of strips, will have as its elements the (signed)
some edge effects, these are of negligible importance for tweas of intersections of the newly defined strips. It is clear
objectives and issues we wish to emphasize and explore drain Fig. 3 that most of these elements will be zero due to the

[ll. A M ULTISCALE APPROACH TO
NATURAL PIXEL (NP) RECONSTRUCTION

Multiscale Transformation of the NP Basis Functions
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Original Basis Functions

1w

Multiscale Basis Functions

+

C
Scale 2 Scale 1 Scale 0 App%’){lsglsétion

Fig. 4. Original NP basis functions containedd® (shown in the top half of the figure) and multiscale transformed basis functiofig ¢¢hown in the

bottom half of the figure) for a fixed angle. The multiscale basis functions are grouped into different scale components based on their spatial extent.
The Haar wavelet is used for multiscale decomposition in this example. The heavy boundaries indicate the extent of support of the corresponding basis
function and the shading angt/— indicate the sign of the basis function over the region.

cancellation of the positive and the negative terms. Only thoBg&y. 4, one can imagine using a more general wavelet for the

elements that correspond to strip intersections near the edgsarhe purpose, as discussed next.

the field-of-view will be nonzero. Thus we can expect this new In particular, let W be a matrix representation of the

matrix to be sparse with the degree of sparsity increasing withear operator that performs a 1-D orthonormal multiscale

the size of the field-of-view (since the fraction of intersectiondecomposition on a discrete sequence of finite lergth(as

near the edge decreases with increasing size). described in Section II-C) so thav — = W7. Further, let
The above redefinition of the basis strips with positive and;, = blockdiag(W) be a block-diagonal matrix withVy

negative weights is reminiscent of the finest level of a Haatocks along the diagonal, all equal # (so that again

transform and, in fact, we can imagine repeating the procd@%‘l = W}). We define our general multiscale transformation

at other levels as well. However, an important point to note & the strip basis functions as

that here the Haar transform is taken only in one direction, i.e., A

the direction perpendicular to the long axis of the strip. This is T=WT (16)

the key to our multiscale reconstruction method: We expaijhere the matrig now contains the multiscale basis functions

the basis functiong73} in a 1-D wavelet basis which theng; 41 the different angles

induces a corresponding 2-D multiscale object representation.

For a projection at a fixed angle (and N, = 8), the full T=[1" 1,7 - 7' - T%;]T (17)

such Haar transform of the original basis functions shown in ) r ) ]

Fig. 4 (including contributions from all levels) will look as&nd the columns of matrice2,” represent the discretized

shown in the bottom half of Fig. 4. A notion of scale emergdgultiscale basis functions at angle(see Fig. 4 for the Haar

from the use of the Haar transform. The original strips ha&@Se)- _

been broken down into a series of strips at multiple scales’NOW Suppose we define the vectors

haying positive and_ negative_ weights. Thg fi_nest sc_:ale involves nZ& Wy, 2 Wy (18)

strips that have twice the width of the original strips and the

coarsest scale involves strips extending over the entire fieghich contain the stacked set of wavelet coefficients of the

of-view. We call the above transformed strip functions thprojection datar, = Wy and the object coefficients, =

natural wavelet basi®ecause of the adaptation of the naturdlz;, at each anglé. Then by applying (16) to (7) we get the

pixel representation. While we have used the Haar waveletfppllowing relationship between the multiscale representation

the multiscale transformation described above and showndhthe object coefficients;, and the multiscale representation

of the data,n:

1our multiscale object representation is fundamentally different from n=_CE (19)
previous multiscale-related representations for tomography (for example . . .
[31]). In these approaches a direct 2-D expansion of the object (i.e., awhere the multiscale system matiixis given by
D wavelet transform) is used, the coefficients of which are then calculated

from the projection data. C=W,CW} =w,(1TT" YWl =777, (20)
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Note that (20) implies that the elements of the transformeohd £%, respectively, which are related to the projection data
matrix C are the (signed) areas of intersection of the variodisrough (22). For clarity, let us first consider the ideal case
multiscale basis function§". From our previous discussionof an infinite field extent where edge effects are absent. In
we expectC to be sparse if W reflects the use of the this case, as argued in Section 1I-B, the NP mafrixs rank
Haar wavelet for multiscale decomposition. In general, trgeficient due to the nonuniqueness of the NP representation.
use of any compactly supported Daubechies wavelet resultsus the multiscale matrig, (or, equivalently() is also rank

in approximately the same effective sparsity as that achieveefficient. Since a unique solution does not exist in this case, a
in the Haar case. Note that the transformed multiscale systestional approach is to seek the minimum norm solution to (7)
matrix C in (20) is naturally obtained through a series of 1-r, in the multiscale domain, to (22). The NP matrix equation
wavelet transforms defined in the projection domain, and (8) represents a large and full system of equations and so

not simply a 2-D wavelet transformation 6f. it is difficult in practice to find the minimum norm solution
Finally, by combining (18) and (4), we obtain the followingn this case. The multiscale relationship (22), however, has a
representation of the object in the multiscale domain structure that can be exploited to simplify the computations.
No In particular, first note that in t_he ideal case With no e_dge
f _ Z TT¢, = TT¢. 1) effects, the elements of,,, capturlng the_ areas of_ intersection _
— k between the coarsest scale approximation and finer scale detail

basis functions, are identically zefd=urther, one can show

Thus, the reconstructiofi is obtained by back-projecting thethat the matrixCyy has full rank, while the matrix,, is rank
multiscale coefficients;, at anglek along the corresponding deficient® This is hardly surprising in view of our earlier
multiscale basis functiong,. discussion in Section 1I-B since we have grouped all the
Before proceeding, we note that the multiscale object reffms contributing to the DC value of the object (and hence
resentation (21) is essentially the same as that used in [#],the ill conditioning ofC;) in the Co, block. Thus, our
thus permitting us to define object reconstructions at mu|tip[gultiscale transformation has served to “compress” and isolate
scales, as we discuss in Section III-C. However, the coéfe nonuniqueness that is present in the NP representation.
ficients ¢ used in the representation are obtained from tH¥OW, with C4, = O, the minimum norm solution to (22) is
NP derived relationship (19) rather than from the FBP basé&asily found since the detail and the approximation equations
scheme used in [4], and it is this more complicated soluti¢lecouple. In particular, the minimum norm solution is given by
that allows us to solve incomplete data problems.

d_ p—1,d
For the development to follow it will prove convenient 8% =Caa (23)
to order the multiscale vectorg and ¢ according to scales £ =Chn® (24)

rather than projection angles, with the finest scale detail L ]
terms from all projections grouped first and the coarsest sc4fBere C, is the pseudoinverse of., [17]. Thus, (23)
approximation terms grouped last. This rearrangement of (1&Ptures the unique part of the solution and (24) provides a

results in the following scale ordered and partitioned equatigp@rticular distribution of the DC components of the object over
the coefficients iné*. Before proceeding we note that since

{nd} _ |:Cdd cg;} Fd} _c [5‘1} (22) n? = Cyq¢? represents a large but sparse system of equations

n” Caa Caa] |§° s we will not, in practice, find the solution to this system by
explicitly calculating the inverse d@f;,; (as suggested by (23))

where the vectors;’ and ¢ contain all the detail terms atpyt rather we will exploit its sparse structure and favorable

various scales and angles and are of lemytiNV; — 1), and  conditioning to use any of the methods created especially to

the vectors;” and{” contain the coarsest scale approximatioolve such sparse systems [17].

i.e., the DC, terms at all angles (one for each angle) and arqf we assume that the object is completely contained in the

of length Ny. The upper left blociCyy is @ No(Ns — 1) X field-of-view, then we obtain the following simplificatibmof
Ny(N, — 1) symmetric matrix, the elements of which are thepa) for ¢a:

areas of intersection of the detail basis functions (i.e., strips)

at various scales and angles. The lower right blagk is g0 = < 1 ) a_ < n(f) )1 ) (25)

a Ny x N, symmetric matrix the elements of which are the  \NyN, T\ NyN,VN, )

areas of intersection of the coarsest scale basis function at each .

angle. Finally, the off-diagonal bloak, is a N x Ns(N, —1) wherglp refers to q vector of length with all eIement_s equaI.
matrix, the elements of which are the areas of intersection {f Unity, andu(f) is the total mass under the object. This

the _coarses_t scale appr0X|mat|on basis functions and the detazlj1'his is because these elements represent the area under each wavelet
basis functions at various scales. (which is zero) due to the fact that the coarsest scale approximation basis
functions are just indicator functions of the field-of-view.

3In fact, for this ideal case it is easy to see thal, is an Ny x Ny matrix
of ones scaled by a constant.

Let us turn our attention now to the calculation of the object*with no edge effects all elements of the; x Ny matrix Caq are
coeﬁicients£ which, through the backprojection equationequal toN;. If the object is completely contained in the field-of-view then

B . 7* = (u/v'Ns)1y,. Further, it can be shown thatdf.. is circulant, as is
(21), specify the reconstructiofi. Recall that the vectof e case here, theR, 1, = (1/r)1x,, wherer is the row sum ..

consists of the object detail and approximation coefficigffts, By combining these facts (25) is obtained.

B. Multiscale Object Coefficient Determination
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Fig. 5. Binary plot of system matrices. Left: ART system matiixMiddle: Natural pixel system matrix;. Right: Multiscale system matrix,,;4, thresholded
at 3.75% of the absolute maximum. An imaging geometry ulith= N, = 32 was assumed and the D3 wavelet is used for multiscale decomposition.

C. Object Reconstruction at Multiple Scales

Once we obtain the multiscale object coefficiegtshe
object estimate is then obtained via (21) through appropriate
combination of the corresponding multiscale basis functions.
The multiscale nature of these basis functions naturally induce
a multiscale object representation [4]. In particular we can
imagine using, for example, only the coarsest scale basis
functions and corresponding coefficients in (21) (effectively
treating the other, finer scale coefficients as zero) to obtain a
coarse reconstruction of the object. Conversely, if our interest
is in fine object details, such as edges, we might only wish to
Fig. 6. Phantom used for reconstructions. use the fine scale coefficients. More generally we define the
object reconstructiorf(*) at scales as follows:

simply corresponds to spreading the DC component of the X s=1 R
object equally among the different projections. fer & ZAf(]) + f©@ (26)
The development to this point has focused on the ideal case j=0

in which field-of-view edge effects are absent. In any practical £(0) . .
L L . where f\Y), the reconstruction at the coarsest scale (i.e., the
situation, the field is finite and such effects arise. However, as 20) : i
. o . .average or DC value), antl /), the incremental detail added

we discuss below, they have minimal impact on the precedllnrg oing from scalej to 7 + 1, are defined as

development. First, due to these edge effects the of“f-diagonalg 9 J 107 '

block Cgq in (22) is no longer zero. This block now will . . . Ne ONT_(0) AL GNT o)
have a few nonzero elements corresponding to the areas of VEN () s AFDES (B) Y @)
intersection of the basis functions near the domain bourtiary. k=1 k=1

Even though a variety of methods exist for modifying th@yhere¢” is the component of;, (at anglek) associated with

solutions (23) and (24) to account for this neglected cour?linggcmej as defined in (15)$§€0) is the average or the coarsest
our experience is that practical reconstructions based on (23

o )

and (24) (which assum@, = 0) are visually indistinguishable -2 ¢ aPProximation component at anglésee (1523;%F is

from ones where a correction is made for the coupling. AB€ Plock of 7 associated Wéﬂfk in (21), and7,"™ is the

a result we use (23) and (24) for all the reconstructions Wock of 7" associated witig[”. Note thatZ,” contains the

present in this paper. basis functjqns corresponding to scglésee Fig. 4) and thus
The other impact the inclusion of edge effects has is € termA f(9) captures the information added at scalehile

change the structure 6f,,. In particularC,,, is no longer truly /') is just the DC (i.e., the coarsest scale) information about

singular (unless we take views 9@part) though it is nearly the object. Thus, (26) decomposes the object in a natural way

so. In any casel,, is still a circulant matrix with row sums into components at different scales. From (26) we can write

nearly equal to the case when the edge effects are negledfi& recursion

and, hence, (25) is still valid. Finally, since the edge effects Fls+l) — £(s) 4 A F(® (28)

. _ : f o +Aarf
have no impact on the matrik,4, the latter still has full rank ) ) )
and is well conditioned. where the reconstruction at the current scale is obtained

from the corresponding reconstruction at the next coarser

5In [5],lwe calculate numerical bounds on the absolute values of ﬂ%‘?:ale by adding the corresponding level of incremental detail.
elements inC,, for the Haar case. ~

6For example, in [5] we use the matrix inversion lemma [20] to refine thl—he complgte Areconstructlotf,, 1S equal to the finest scale
estimate oft? in (24) by introducing the?,, coupling. reconstructionf”) where J = log, (N;).



BHATIA et al. TOMOGRAPHIC RECONSTRUCTION 471

Fig. 7. Reconstructions at various scales using Fhewavelet andN, = N, = 32. Top row, left: (). Top row, middle:f(2). Top row, right: f(*.
Bottom row, left: 7(*). Bottom row, middle:f(3). Bottom row, right: unwindowed ramp FBP reconstruction.

D. Computational Considerations 25 : l : ‘ : ;

Phantom ————
MS

Our multiscale reconstruction procedure involves three
steps: 1-D wavelet transformation of the data, solution of =zof
the set of (23), (24) for the multiscale coefficients, and
backprojection of the results. The major computational
burden lies in the second step, involving the solution of the
large system of equations represented by (23) for the deta
coefficients¢<. This will be the computational bottleneck of g
any matrix-based technique, including ART and NP, so we
focus on this step. Typically, the solution of such large systems s
of equations found in matrix-based reconstruction methods is
obtained by iterative methods, like the Kaczmarz method
used in ART [19], [24], [25]. The computational complexity
of such iterative schemes are proportional to the product of
the number of computations required per iteration and the % 5 10 15 20 25 % 35
number of iterations needed for convergence. The number Fixel
of computations required per iteration is itself proportionaﬂig- 8. A horizontal section through the phantom (solid line), the multiscale
to the number of nonzero elements in the associated Systgﬁiﬂ.sﬂcﬂﬁg),(bmken line), and the unwindowed ramp FBP reconstruction
matrix—which is Cyq for our approach,C of (7) for the

standard NP approach, arfd of (3) for ART. In addition, o 117 iy (16), then setting to zero all those elementsCgf
the number of iterations required for convergence depends gflose magnitude is below 3.75% of the absolute maximum
the condition number of the matrix. In particular, for poorlyie|gs reconstructions comparable to the full NP method in
conditioned systems of equations, the convergence can kg nojise-free, complete data case. In general, such a threshold
slow and will depend critically on the order that the elemen{§oy|d be chosen as large as possible consistent with the quality
are accessed and the value chosen for a relaxation paramgfhe underlying data and goals of the problem. Thresholding
[19]. We discuss each of these points next. of similar magnitude of the ART matrif” or NP matrix C

1) Matrix Sparsity: While general choices of the wavelefproduces severe artifacts in the reconstructions in addition to
transform operator in (16) lead to a multiscale maftiy that having much smaller effects on the sparsity of the resulting
is itself full, it appears that we may threshold a significaneduced matrix. This is because our transformation process
fraction of the elements irCy; to zero with only slight has served to concentrate the “energy” in the matrix in fewer,
impact on the resulting reconstructions. For example, whaigher amplitude elements. Exhaustive examination of these
Ny = N, = 32 and theD3; wavelet is used in the definition issues is a topic of current research.

15

T
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Fig. 9. Detail reconstructions at various scalesf(), using Ny = N, = 32 and theDs wavelet. Top row, left:A (%), Top row, middle:Af().
Top row, right: AF(2). Bottom row, left: A f(3). Bottom row, middle:AfF(1).

Fig. 5 shows the system matricds of ART, C of the ditioning is highly desirable. One of the advantages of our
NP method, and a 3.75% thresholded versionCgf from multiscale transformation is that it results in a comparatively
our multiscale NP-based method, from left to right for awell-conditioned system of equations. For example, for the
imaging geometry withiVy = 32 angular projectionsamdl, = N, = Ny = 32 case, the condition number & and
32 strips per each angular projection. The ART maffixs 1 are both orders of magnitude larger than that of the
about 94% sparse (i.e., this percentage of the total numbertrofncatedCyq (naturally, the full matrixC is a similarity
elements are zero). In contrast, the NP magftiis only about transformation ofC" and so will have the same conditioning).
39% sparse. Finally, the multiscale mat€ly,; thresholded at Further, our experience has been that even with good choices
the 3.75% level is about 95% sparse. This implies that ARPr access order and relaxation parameter, our multiscale
is about 25% more costly per iteration than our multiscat€chnique require at least half as many iterations as fast as
technique while the standard NP method will be about sRT or NP.
times more costly than either. Also, recall that the effective
degree of sparsity of will naturally increase as the size ofE. Examples
the field-of-view is increased, since relatively fewer of the £or a our example multiscale reconstructions thg

pixels will be near an edge. Finally, note that most of thgayelet was used in the definition & and, except where
nonzero elements i@, correspond to the coarser scale termsinenwise noted, the full matrig,; was used for simplicity.
where field-of-view edge effects are more pronounced. ThLI'ﬁ’Fig. 7 we show reconstructiorﬂj) at various scaleg, of
by focusing on reconstruction of only finer scale componenig,e 32 « 32 phantom shown in Fig. 6, from projection data
even greater gains may be obtained. collected at\y = 32 angles withN, = 32 strips per angular

2) Matrix Conditioning: In addition to matrix sparsity (in- projection. For this reasonably complete data case we expect
fluencing the computations per iteration), matrix conditioningye FBP reconstruction defined in (5) and the complete, finest
also has a bearing on the overall computational complexity &fale, multiscale reconstruction to be similar since the NP and
the reconstruction through the rate of convergence. Iteratifee FBP solutions converge in the case of complete data. This
schemes typically involve a choice of both the order in whicig precisely what is seen in Fig. 7 and confirmed in Fig. 8,
the elements will be accessed and the value of a relaxatighich shows a section through the reconstructions. Finally, in
parameter. The choice of these parameters is typically ddiige with the multiscale nature of our reconstructions, notice
based on test images believed to be similar to those timt the information about the phantom becomes more focused
be encountered, andd hoc For poorly conditioned system as we proceed from coarse to fine scales. In Fig. 9 we show the
matrices, these choices coupled with the specific data asuwtresponding detail reconstructionsf) at various scales.
initial condition used will have a dramatic effect on theNote that the finest scale detail reconstructidi*) (bottom
resulting convergence. Conversely, well conditioned systemmswv, middle in the figure) contains information about the edges
will be largely insensitive to such effects; thus, good corand boundaries in the phantom.
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can see from the figure that if the goal is edge reconstruction,
it is enough to approximaté,, by an identity matrix. This
reduces the computational complexity even further. Such an
edge-oriented reconstruction, based on an identity assumption
for C4q in the multiscale framework, only requires 1-D wavelet
transformation of the strip integral data and subsequent back-
projection of just the fine scale coefficients.

IV. REGULARIZED MULTISCALE NATURAL
PiXxEL (NP) RECONSTRUCTIONS

In this section, we consider the estimation of an objgct
Fig. 10. Finest scale detail reconstructions usfg = Ns = 32, and the from noisy projection observations. We extend our multi-
Da wavelet. Left: Using the fullss. Right: Truncatingas at 3.75% of ts - scale reconstruction method presented in Section Il to obtain
absolute maximum. statistically regularized estimates with the same efficiency

25 ' . . , ' ‘ as obtained for our unregularized estimates. This regularized

Ful solution is obtained by first solving for the MAP estimate
Truncated - - - - - [34] of the multiscale object coefficient vectqf, based on
observations (19), a noise model, and a certain naturally
derived multiscale prior model and then backprojecting these
multiscale coefficient estimates along the corresponding mul-
tiscale basis functions as before.

In the presence of noise our original observations, (3),
become

I y=Tf+n, n~N(0,A,) (29)

where the noisen is taken as an additive Gaussian vec-
tor and the notationz ~ A(m,A) denotes a Gaussian
distribution of mearrn and covariance\. Further, we as-
sume that the elements of the noise vectorare uncor-
related, with equal variance at each angle, so that =

201

Intensity
&

-
(=4
T

35

Pixel block diag(Ai1dn,, AN, -+, AN, In,), Wwhere) is the vari-
Fig. 11. Horizontal section through the full reconstruction (solid line) an_@nce_of the n_Oise at projeCtiqﬂar.]d Iy, refers to aN; x N
the truncated reconstruction (broken line). identity matrix. Note that this simple model allows for the

possibility of nonstationary noise, arising, for example, from

In Fig. 10 we show both the finest level multiscale recor2roiections of differing fidelity. _ _
struction based on the fulf,, matrix (i.e., f(5) of Fig. 7) By substituting the object representation (4) into (29), as was

together with the finest level reconstruction which results wh&@ne in the noise-free case, we obtain the following equation
C.a is thresholded at the 3.75% level. Fig. 11 shows a secti§j€ Noisy version of (7)):
through the corresponding reconstructions. y=Czx+n. (30)

In Fig. 12 we show an example of an |r_1complete data CaSkhe multiscale decomposition of (30) using (18) and (20),
Here we reconstruct the phantom at different scales usipgiowed by rearrangement in scales as described in Section
Ny = 5 angular projections withV, = 32 strips in each o  results in the following partitioned equation (the noisy
projection, and the)s wavelet for multiscale decomposition., o sion of (22)):

We also show the corresponding (unwindowed ramp) FBP 4 T d d

reconstruction for comparison. In this incomplete data case {77&} = {C‘“ Cda} Fa} + {’/a},

our NP-based multiscale reconstructions are free of many of N Caa  Caa ] [$ o

the finest scale artifacts which arise in the FBP reconstruction. [Vd} ~ /\/<0 |:Az/d 0 D (31)

The figure also illustrates the resolution-accuracy tradeoff that v 10 A

is inherent in reconstructions from incomplete data, wherejhere the vectof(rH)T | (»*)T]T contains the similarly scale
the coarse scale reconstructions have fewer artifacts duerd@rranged and partitioned elements of the multiscale noise
incomplete data effects at the expense of reduced resolutiGfector » = W,n. Note that the block orthogonality o,

FinaIIy, in Fig. 13, we show the finest scale detail reCommeans that\, will simply be a scale ordered version df,,
struction for the this case obtained by making the assumptigAd will still be diagonal. In particular, if = log,(N,) is the
that Cyy is an identity matrix. Such an assumption neglectsale at the finest level then
all crogs-scalg and_cross—angle termsCiy result_mg in an A = block diag(AsZys—1, - Any Lyst |
even simpler inversion procedure. In the same figure, we alst”
show for comparison the reconstruction based on finest scale Alyr—z, - AngDpa-2 [ -+ | Ar,.o 0 A, ) (32)
detail from Fig. 12 that uses no approximation @f;. We  A,. =diag (A1, -+, An, ). (33)
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Fig. 12. Reconstruction at various scales using Ithewavelet andVy = 5 and Ns = 32. Top row, left: FO . Top row, middle:f(). Top row, right:
£®). Bottom row, left: (). Bottom row, middle:f(®). Bottom row, right: unwindowed ramp FBP reconstruction.

Recall from Section IlI-B that in the ideal case with no
edge effects the off-diagonal blocKs, in (31) are identically
zero. More generally, as mentioned in Section IlI-B, due t
finite field effects these blocks are not exactly zero, howev
reconstructions which assume these to be zero are visu
indistinguishable from those that do not. As a result, in th
development to follow we neglect these field-of-view edg
effects and assum&,;, = 0 in our formulas.

A. Prior Model for the Multiscale Object Coefficients

,TO f'”q the MAP estimate OEd an,dlga’ _We also need a Fig. 13. Finest scale detail reconstructions ushvg = N, = 32, and the
prior statistical model for these quantities, i.e., we need a pripg wavelet. Left: Using the fullqq. Right: AssumingZ,, to be the identity
model for the multiscale object coefficients. The scale-bas@trix.
prior model we use for the object coefficients has been shown
[4] to successfully capture the intuitively expected behavior of
these coefficients while resulting in computationally efficient For the variance of the detail object coefficiegfswe use
estimation algorithms. In particular, we assufifeand ¢ to @ self-similar prior model obtained by choosing the elements

be distributed according to of the detail vectorg,ﬁ"’) (i.e., the wavelet coefficients) at
d A 0 anglek and scalen as independent\/(0, 022=7™) random
Ea} :/\/(0, { éd A D (34) variables [36]. The parametgr determines the nature, i.e.,
ga

the texture, of the resulting self-similar process whité
i.e., we assumé? and£@ to be Gaussian, zero mean, indeperfontrols the overall magnitude. This model says that the

dent, with variance\« andA¢-, respectively. For the variancevariance of the detail added in going from the approximation
of the approximation coefficients®, capturing the prior DC at scalem to the approximation at scale + 1 decreases

behavior of the object, we choose geometrically with scale. Ip = 0 the resulting finest level
1 representation (the elements of) corresponds to samples
Aga = <_>1N9 (35) of white noise (i.e., the components of, are completely
€

uncorrelated), while ap increases the components of,
with e sufficiently small (i.e..e — 0) to prevent a bias in show greater long range correlation. This self-similar prior
our estimate of the average (DC) behavior of the coefficienmzodel results in a diagonal covariance matix. for the
¢, letting them be determined instead by the data, i.e., witail coefficientst?, the elements of which depend on the
maximum likelihood estimation. regularization parameters and o2, i.e., the texture and the
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Fig. 14. Reconstructions withy = N, = 32 and\;, = 360 fork even and\;, =36 000 fork odd to yield—2 dB overall SNR projection data. From left: (a)
Hanning windowed FBP with3= cutoff filter; (b) Unregularized finest level multiscale reconstruction; (c) Regularized finest level multiscale reconstruction
with p =0.2 ande? =360; and (d) Regularized finest level multiscale reconstruction with 0.7 ands? =360.

overall magnitude, respectively. In particularJif= log,(Ny) 30
: " Phantom
251 : S Rho=02 - - - - - 1
Aga = o?block diag(2_”(‘]_1)]2J_1N9 ' Fap Woudpl — = -
201 T B
2D Ly, || Iy, ) (36) |

Our self-similar, 1/f-type prior model in the projection
domain that is given above is equivalent to prior model in the s5f
original image domain which is alsold f self-similar process,
but with a different, though related, fractal dimension [3], [21], S SN v
[22]. Such self-similar models are commonly and effectively -5f |~ . [ : N L 1
used in many application areas such as modeling of naturq!()» ' S : -
terrain and other textures, biological signals, geophysical and
economic time series, etc. [8], [11], [26], [35], [36]. In -15f
addition, since th@bservation nois@ower is uniform across 20 T ) , , ) o
scales or frequencies, the geometrically decreasing variance of? 5 10 15 20 25 80 35
the prior model implies that the projection data most stronghyg. 15. Horizontal section through the phantom (solid line) and various
influences the reconstruction of coarse scale features and "g¢@nstructions of the previous figure.
prior model most strongly influences the reconstruction of
fine scale features. This reflects our belief that the fine scale
behavior of the object (corresponding to high frequencies) tisat (38) serves to estimate the DC component of the field.
the most likely to be corrupted by noise. Most important, sincéA_" + Caad\, i Caq) is still effectively

a sparse, well-conditioned matrix due to the compression
achieved in the multiscale domain, the discussion of Section
B. NP-Based Multiscale MAP Estimate llI-D still holds and fast and efficient iterative algorithms
] ~ [30] can be used to solve fofd in (37). Note that this

The MAP estimates of? and¢® based on the observationsegylt is due both to the structure of the original problem, as

(31), the prior model (34)—(36) (with — 0), and assuming yeflected inC,y, andthe structure of the prior, reflected i..

Cao = 0 are given by Finally, in obtaining the MAP estimates (37) and (38) we have
. . assumed’,, to be zero. The inclusion of the effects of this
£ = (Agd1 + Cag i Caq) " Caghin? (37) neglected coupling into the MAP estimates, while negligible,
fa — (A;al/QCaa)JrA;l/Q e (38) is straightforward, as discussed in Section II-B.

Before proceeding, we discuss some aspects of the solution
given in (37) and (38). First note that when the noise is station-
where A;;/? is the square root of the diagonal matrixary and the projections are distributed evenly, by symmetry
A;Z and we have used the fact that as— 0, (cIy, + our reconstruction is similar to applying a uniform filter to
CaaA;aICaa)_lcaaA;} — (A,Tal/ QCaa)JFA;al/ %. The structure the FBP reconstruction. However, our approach directly ties
of this estimator mirrors that of known optimal statisticathe filter to prior models of both image and noise and thus
estimators for stationary fields from a continuum of completean easily be adapted to other situations. One can view the
data [21], [22]. Note that in the case of angle-independeciiange in the reconstruction induced by these new parameters
noise, whereA,. is a multiple of the identity, the estimateas new filters on the FBP reconstruction, but our approach
of the approximation coefficient§” from (38) becomes the yields this automatically. In addition, because of the statistical
same as we had earlier in the unregularized case (24). Rebalsis of our approach, we obtain useful statistics (e.g., error
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Fig. 16. Reconstructions wittiy = 5, Ny = 32, and A, = 1,200 for projection data with an SNR of about 10 dB. From left: (a) Hanning windowed
FBP reconstruction with3= cutoff; (b) Unregularized finest level multiscale reconstruction; (c) Regularized finest level multiscale reconstructipr=with
3 ando? = 1.2 x 10%; (d) Regularized finest level multiscale reconstruction with= 2 ando? = 1.2 x 105.

variances) that can be used for tasks such as assessingd#tail. In contrast, in the regularized solution the details of
statistically proper scale of reconstruction, validating modelse object are now easily visible. These reconstructions are
combining reconstructions with other information, detectingbtained with essentially the same computational complexity
statistically significant anomalies, etc. Such applications aas the unregularized solution, and naturally and automatically
currently being pursued. Finally, our approach also directhccount for the nonstationarity in the noise. In both of the
applies tononstationaryprior models or noise without changemultiscale regularized reconstructions the overall magnitude of
to the algorithm. In such cases, the resulting reconstructiahe prior model was? = 360; however, the reconstructions

may again be viewed as corresponding in some sensedtiffer in the decay rate of the detail variance across scales,
nonstationary, nonstandard filtering, but our approach providesFrom Fig. 14 and Fig. 15, which show a section through

it automatically. the reconstructions, we see that as is expected, an increased
regularization (i.e., smoothness) results when the valyeiof
C. Examples increased from 0.2 to 0.5 (corresponding to a smoother prior

texture) keeping other parameters fixed.

Next, we show reconstructions using our regularized mul- Fig. 16 shows a stationary example, where limited data was
tiscale method in the presence of noise. The noise-free puollected atNy = 5 equally spaced angles witly, = 32
jection data are generated from the phantom of Fig. 6 asttips per angular projection. Uniform noise was added at each
are then corrupted through the addition to projectforof angle ¢ = 1,200) for an overall SNR of about 10 dB. For this
independent, zero-mean Gaussian noise of variapde yield small example, the fulf;; matrix was used. The figure shows
our observationg. We also define an overall signal-to-noisehe best (by eye) windowed FBP reconstruction, along with
ratio (SNR) for each example reconstruction as the unregularized finest level multiscale, and various MAP
regularized finest level multiscale reconstructions. Again, in
the unregularized finest level multiscale reconstruction the
noise and limited data serve to completely obscure the ob-
ject. In contrast, in the regularized solutions the details of
where Tf are the noise-free projection data. Finally, in affhe object can now be discerned. The multiscale regularized
multiscale reconstructions we show here the Daubechigs reconstructions differ in both the the magnitude of the prior
wavelet is used in the definition of the multiscale decomprodel usedo® = 1.2 x 10° versuss? = 1.2 x 10°) and the
sition matrix W. decay rate of the detail variance across scales (ged 3

Fig. 14 shows a nonstationary example in which projectiorersusp = 2). Note that the effect achieved for this stationary
data was collected a, = 32 equally spaced angles withcase is visually similar to the windowed FBP, but again, our
N, = 32 strips per angular projection. Nonstationary noise wagethod can adjust automatically to changes in noise or prior
added with the standard deviation at the odd numbered angiesl also provides reconstructions at multiple resolutions and
ten times that of the even numbered anglgs+£ 360,k odd, estimation error information, essentially for free.

A = 36 000f = even) for an overall SNR of2 dB. Finally,

Cqq Was thresholded so that all elements below 3.75% of the

absolute maximum are set to zero. The figure shows the “best” V. CONCLUSION

(chosen by eye) windowed or “rolled-off” FBP reconstruction We have developed a multiscale reconstruction technique
along with unregularized finest level multiscale, and variousased on the natural pixel (NP) approach that provides re-
MAP regularized finest level multiscale reconstructions. loonstructions from incomplete data yet is computationally
the unregularized finest level multiscale reconstruction tledficient. Further, we extended this method to yield statisti-

noise completely obscures the object. Through uniform rollingally optimal reconstructions from noisy data with essentially

off of the ramp filter, the windowed FBP reconstruction imo additional computational complexity. This is in contrast

somewhat better, supressing some of the noise, but still losilogthe conventional methods for image reconstruction from

17511
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