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I. INTRODUCTION 

In this work, we both develop and test a new 
algorithm for discriminating man-made objects from 
natural clutter in synthetic-aperture radar (SAR) 
imagery. In the context of automatic target recognition 
(ATR), this algorithm provides a computationally 
fast and simple way to reject regions of exclusively 
natural clutter, so resources can be focused on 
the classification of remaining regions, containing 
man-made objects that are potentially targets. 

The novel feature of our algorithm is its 
exploitation of characteristic variations in speckle 
pattern, for imagery of natural clutter and of 
man-made objects, as image resolution is varied 
from coarse to fine. These characteristic variations 
arise, because for natural clutter, there is typically a 
large number of equivalued scatterers in a resolution 
cell, while for man-made objects, there is typically 
only a small number of prominent scatterers [l]; this 
difference leads to very different statistics for the 
variation in speckle pattern as resolution changes. 

The fact that speckle has multiresolution 
characteristics is also noted and exploited in [l]. 
However, in contrast to that work, where the different 
characteristics of natural clutter and man-made 
objects are used to analyze individual image pixels, 
we model and exploit these characteristics over 
entire blocks of imagery. To capture mathematically 
these scale-to-scale variations, we use a direct 
scale-recursive extension of the widely used method 
of autoregressive modeling of time series. To be 
more specific, let us suppose coherent processing has 
been applied to a complex-valued SAR image Z, to 
create a sequence of images, I,, I , ,  . . . , I,, where each 
successive image has half the resolution (in both range 
and cross-range) of its predecessor in the sequence. 
Fig. 1 illustrates such a multiresolution sequence of 
images, mapped onto a so-called quadtree, for the 
case L = 2. We model the statistical coupling of the 
images Zo,Zl,. . .,I, using an autoregression in scale, 
wherein each pixel in a given finer resolution image 
is related to its coarser resolution ancestor pixels by a 
white-noise-driven autoregressive relationship. 

Fig. 1. Illustration of multiresolution sequence of 3 SAR images, 
together with quadtree onto which we map pixel values. 



For our discrimination application, we build a pair 
of multiscale stochastic models: one model for S A R  
imagery of natural clutter and another for imagery of 
man-made objects. We then use these models to define 
a multiresolution discriminant. This discriminant is 
the likelihood ratio for distinguishing between natural 
clutter and man-made objects, given a multiresolution 
sequence of SAR images. Thanks to the structure of 
our models, the calculation of these likelihoods turns 
out to be a computationally simple task. 

We incorporate our new discriminant into an 
existing SAR ATR system developed at Lincoln 
Laboratory [2, 31. We then apply the augmented 
ATR algorithm to a data set of HH polarization, 
millimeter-wave SAR imagery having 0.3 m resolution 
and representing 56 square kilometers of terrain. As 
shown in Section IV, this augmented system leads to 
an improvement in receiver operating characteristics, 
compared with the standard Lincoln system. For 
instance, at a probability of detection of 0.95, the 
number of natural-clutter false alarms produced by 
the augmented system is one-sixth the number of false 
alarms produced by the original system. 

The body of this work is divided into five major 
sections. In Section 11, we describe in greater detail 
the Lincoln SAR ATR system. Then in Section 111, 
we describe our class of multiscale models for SAR 
imagery, our procedure for identifying these models, 
and our procedure for calculating our multiresolution 
discriminant. In Section IV, we show the results of our 
testing of these discriminators. Finally, we summarize 
the main points and suggest directions for future 
work in SAR applications of multiresolution-based 
techniques. 

I t .  LINCOLN SAR ATR SYSTEM 

The Lincoln SAR ATR system is conveniently 
decomposed into a sequence of three processors: 
a prescreener, a discriminator, and a classifier (see 
Fig. 2). The prescreener searches through imagery 
representing many square kilometers of terrain, and 
outputs a collection of so-called regions of interest 
(ROIs). Each ROI is a subimage extracted from the 
original SAR data set and centered at a possible target 
location; collectively, all ROIs represent only a small 
fraction of this original data set. The discriminator 
applies further processing to distinguish between two 
kinds of ROIs: those containing man-made objects and 
those containing natural clutter. All ROIs that appear 
to contain natural clutter are discarded. Finally, the 
classifier assigns each remaining ROI to a predefined 
target category, or to a none-of-the-above category if 
the ROI appears to contain man-made clutter; in our 
study, we do not concern ourselves with the third (i.e., 
classification) stage, and consequently, no detailed 
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Fig. 2. Illustration of input-output operation of SAR ATR system 
described in [2]. 

description of this stage is provided and no further 
mention of it is made. 

A. Description of Prescreening Algorithm 

The prescreener uses a two-parameter CFAR 
(constant false-alarm rate) algorithm. This algorithm 
is a pixel-by-pixel adaptive image processing scheme 
that takes advantage of the fact that in SAR imagery, 
targets typically appear brighter than nontargets. At 
each pixel, this algorithm performs the following test: 

target present 
target absent 

Declare 

where x is the intensity of the test pixel under 
consideration, ,Lc and t?c are estimates of the local 
clutter mean and standard deviation, respectively, and 
K is a threshold parameter. To avoid contaminating 
bC and GC with pixels from a spatially extended 
target, these estimates are computed using an annular 
window at a prespecified radius from the test pixel. 
Under certain idealized conditions [4], this detection 
procedure will indeed yield a CFAR, which is a 
function of the threshold value K .  However, even 
under more realistic conditions where the CFAR 
property may not prevail, the algorithm is often 
employed, because it provides a fast, simple, and 
reasonable detection algorithm. 

In many instances, the CFAR algorithm will 
yield multiple detections on a single target. These 
detections are clustered together to form an ROI, with 
the centroid of the cluster aligned with the center of 
the ROI. Each ROI is passed on to the discriminator 
for further processing. 

8. Description of Discrimination Algorithm 

The main idea underlying the second stage 
discriminator is that an ROI has a number of 
characteristics, or so-called features, whose statistical 
distribution will significantly depend on whether 
the ROI represents a man-made object or natural 
clutter. The measured values of these features are 
combined to form a single, scalar-valued measure of 
the so-called distance of the ROI from the class of 
targets of interest. All ROIs having a large distance 
are labeled nontarget and the remaining ROIs are 
labeled target. 

nine features available to the standard Lincoln 
1) Description of Features: There are 



discriminator. These features span the categories 
texture, size and contrast, and are measured using 
finest resolution imagery only. 

deviation, fractal dimension and ranked fill-ratio) 
are calculated using the pixel values in a special 
target-sized region within the ROI. This region is 
chosen in the following way. A target is hypothesized 
to exist in the ROI; then, the position and orientation 
of this hypothesized target are estimated by applying 
simple matched-filtering with a rectangular-shaped 
target-sized template. We denote the resulting 
target-sized region by 7.  The standard-deviation 
feature is calculated as simply the sample standard 
deviation of the log-detected pixel values in the 
region 7.  The fractal-dimension feature provides an 
estimate of the Hausdorff dimension of the spatial 
distribution of the brightest 50 pixel values in the 
region T [ 3 ] ;  the details of this feature's calculation 
are too involved to include here. The rank-fill-ratio 
feature is the percentage of power that is contained 
in the brightest five percent of the pixels in the 
region 7.  

and rotational inertia) are calculated using the 
pixel values in the region of the ROI containing 
the ROIs principal object. In a rough sense, this 
principal object is defined to be the bright blob near 
the center of the ROI, and is found by applying 
morphological processing [ 3 ] ;  we denote the resulting 
principal-object region by P. The mass feature is 
calculated as simply the number of pixels in the 
region 'P. The diameter feature is equal to the length 
of the diagonal of the smallest rectangle (either 
horizontally oriented or vertically oriented) that 
encloses the region 'P. The rotational-inertia feature 
is calculated as the second mechanical moment of the 
region P around its center of mass, normalized by the 
inertia of a square having equal mass. 

The values of the contrast features (i.e., peak 
CFAR, mean CFAR, and percent bright CFAR) are 
calculated by first applying the CFAR algorithm (see 
Section IIA) to a log-detected version of the ROI. 
In this way, we obtain a CFAR image, in which the 
pixel value at location ( k , l )  is equal to the CFAR 
statistic at that location. The values of the contrast 
feature are calculated using the pixel values in the 
region P of the CFAR image. The peak-CFAR feature 
is simply the maximum value of the CFAR image 
within the region 'P. The mean-CFAR feature is the 
sample mean of the CFAR image within the region P. 
The percent-bright-CFAR feature is the percentage of 
pixels in the region P of the CFAR image that exceed 
a certain CFAR value. 

2) Processing Features into Discrimination 
Decision: A so-called one-class classification 
scheme [3 ,  51 is used to process the features into 
a discrimination decision. To describe this scheme, 

The values of the textural features (i.e., standard 

The values of the size features (i.e., mass, diameter, 

we assemble the measured values of our (scalar) 
features into a vector Z .  We assume that the 
conditional probability density function (pdf) P(Z I 
target) is known, and this pdf alone is used to make 
the discrimination decision, using the rule 

} 
target present 
target absent 

if P ( Z  I target) { z} T' Declare 

(1) 

where T' is a threshold parameter. 
To implement the decision rule in (I) ,  we must 

of course specify the conditional pdf P(Z I target). In 
this regard, an empirical analysis in [3] demonstrated 
that for many choices for features, the conditional 
distribution of 2 is approximately Gaussian. We 
invoke the Gaussian assumption, thereby allowing us 
to express the decision rule (1) in the more explicit 
form 

target present 

target absent 
Declare { } 

where T is another threshold parameter, and where 
Mt and E, are the mean and covariance, respectively, 
of the Gaussian distribution. To implement this rule, 
estimates of M, and C, are first calculated off-line, 
using training imagery. 

In the numerical experiments Section IV, we 
actually use an optimized version of the decision rule 
in (Z), in which a simple modification is incorporated. 
This modification is motivated by the empirical 
observation that the diameter size feature works best 
when it is used in isolation. In the first stage of the 
modified rule, the diameter feature is evaluated; only 
ROIs having a diameter within a prespecified range 
are passed to the second stage, while the others are 
assigned to the nontarget class. In the second stage, 
the remaining ROIs are processed using the quadratic 
discriminator described in (2). 

Ill. MULTIRESOLUTION MODEL FOR SAR IMAGERY 

In this section, we develop our multiscale 
stochastic models for SAR imagery, and we define 
our new multiresolution-based discriminant. Our 
model for natural clutter, hereinafter referred to as 
our natural-clutter model, is specifically designed 
to describe imagery of grass, while our model for 
man-made objects, hereinafter referred to as our 
man-made model, is specifically designed to describe 
imagery of tactical targets. A natural question is 
whether these simple modeling choices lead to a 
discriminant that is robust to variations within each 
of the two large classes. We see in Section IV that the 
answer is yes. 
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A. Generation of Multiscale Image Sequences In terms of ?, we define Z,!,, via 

We begin with complex-valued SAR imagery, 
formed to the highest resolution available. Each pixel 
value in this imagery represents a measurement of 
both the amplitude and phase of the radar reflectivity 
of the scatterers within a resolution cell. In all of our 
work, we use HH polarization imagery gathered with 
the Lincoln Laboratory millimeter-wave SAR [6]. 
Although this choice will affect the specifics of the 
models we build, our general procedures should be 
more broadly applicable. 

From this full resolution imagery, we assume that 
ROIs have been extracted. For each (complex-valued) 
ROI Z, we create a multiresolution sequence of 
images, Zo,Zl,. . . ,ZL. This sequence is created directly 
from Z, with no dependence on the rest of the SAR 
data set from which Z was extracted. We assume for 
simplicity that the image Z has the same resolution 
in both range and cross-range, and we denote 
this resolution by 6 (for the Lincoln Laboratory 
millimeter-wave SAR, 6 = 0.3 m). We denote by 
Z(k,  I) the measured reflectivity at rangekross- 
range position ( k ,  1). Finally, for convenience only, 
we assume that this image array is square, 
consisting of N x N pixels, where N = 2M for some 
integer M .  

is denoted by Io; it has resolution 6 x 6 and consists 
of N x N pixels. We create Io from an intermediate, 
log-detected image Z& where Zb(k,l) = 2010g,, / Z ( k , l ) l .  
To eliminate dependence on the absolute calibration 
of the radar sensor (which is susceptible to spurious 
fluctuations), we normalize Z& thereby yielding I,, 
with Zo(k,l) = Zh(k,l) - C,. Here, Co is set equal to 
the sample mean of the pixel values in Z;. Because 
I ,  has no dependence on absolute calibration, our 
decisionmaking exploits only the relative variation 
of image intensity, with respect to a mean level of 
zero. 

scale images by Z,,Z,, . . .,I,, respectively. We form 
these images from the original complex, fine-scale 
data T by sequentially applying three processing 
steps: a) lowpass filtering, b) decimation, and 
3) log-detection with normalization. For image Z,, this 
processing ultimately yields a 2-" x 2-" square 
array image having resolution 2m6 x 2"s. 

To describe the first processing step, we denote the 
inverse discrete Fourier transform of the 2-D complex 
data Z by f, where 

1) Finest Scale Image: The finest scale image 

2)  Coarse-Scale Images: We denote the coarser 

~ N - I N - 1  

xexp (.2;k J - p  ) exp (.2;l j-q ) . 

p = o  q-0 

x exp (- j F p )  exp (- j g q )  

where Hm(p)Hm(q) represents a separable 2-D 
Hamming window with Hm(p)  defined to be 

( 0.54 + 0.46~0s - 2np 
2-"lN 

0 5 p < 2'"-'N & 

i 0  

N - 2"-'N 5 p < N 

2"-'N 5 p < N - 2"-'N 

In the second processing step, we decimate I,!,, by a 
factor of 2" in both range and cross-range. The result 
is denoted by Z i  and is related to Z,!,, by 

Zi(k,l) = ZL(2"k,2"1), 0 I k ,  I < 2-"N. 

Finally, in the third step, we apply log-detection and 
normalization. The image Zm(k, 1) is thus related to I; 
via 

3 )  Mapping the Multiscale SAR Image Sequence 
onto a Quadtree: The multiresolution image sequence 
Zo,Zl,. . . , IL  is matched quite naturally to the structure 
of a quadtree, and we consequently use the quadtree 
for all our SAR image modeling. In Fig. 1, we 
illustrate our convention for the correspondence 
between pixel values and tree nodes. To formalize this 
convention, we associate each node s on the quadtree 
with a 3-tuple (m, k ,  I), where m denotes scale and 
(k ,  1 )  denotes 2-D location; correspondingly, we denote 
by Z(s) the image pixel residing at node s, namely 
Zm(k,l) .  For example, in the context of Fig. 1, Z(0) 
corresponds to Z2(0, 0). 

We define m(s) to be the scale at which the node s 
resides. We also define an upward (i.e., fine-to-coarse) 
shift operator 7, such that s /̂ is the parent of node 
s and s q  is the kth order ancestor of node s. For 
instance, in the context of Fig. 1, when s corresponds 
to the 3-tuple (0,2,3), then sy corresponds to (1,1,1) 
and sT2 corresponds to (2,0,0). 

While our example in Fig. 1 illustrates a special 
case in which we have formed a complete sequence of 
images, down to a single-pixel image at the coarsest 
resolution possible (i.e., L = M ) ,  we allow more 
generally the possibility of truncating the image 
sequence at some image having more than a single 
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pixel (i.e., L < M). When this possibility occurs, 
the nodes at the coarser scales of the tree have 
no corresponding measurements. This additional 
flexibility is useful, because beyond a certain 
coarseness of resolution, SAR imagery conveys very 
little meaningful information. 

B. Identifying the Multiscale Dynamics 

coupling of a sequence of SAR images, Zo,Z,, . . . ,IL 
spanning multiple resolutions, we use a class of 
statistical models representing a direct scale-recursive 
quadtree extension of a well-known modeling 
technique for time-series. Specifically, we relate the 
SAR pixel value residing at node s (ie., Z(s)) to its 
ancestors by a linear autoregression in scale: 

To characterize jointly the scale-to-scale statistical 

+ “Rm(’)z(s7‘R) + w(S)* (3) 
In this relation, R is the order of the regression, while 
ul,m(s)r u2,m(s), . . . , uR,m(s) are the real, scalar-valued 
regression coefficients. These regression coefficients 
are allowed to be scale-varying, but are restricted to 
be shift-invariant for any fixed scale. We will have 
occasion to refer collectively to the whole set of 
coefficients for a given scale, and for this purpose, 
we define the vector ak as 

T 
ak = (a l , k  a2,k ..’ aR,k)  ‘ 

The term w(s) in (3) represents the residual 
error in the prediction of Z(s). We assume that w(s) 
and w(a)  are statistically independent for s # a. As 
we will see, this independence assumption is what 
allows us to develop an extremely simple procedure 
for likelihood calculation for the entire piece of 
multiresolution imagery; thus, the validation of this 
whiteness assumption is critical. The probability 
distribution of w(s) is allowed to be non-Gaussian, 
and furthermore the distribution is allowed to 
vary with scale. However, for any fixed scale, the 
distribution is assumed to be spatially invariant. We 
denote the standard deviation of the residuals at scale 
m by am. 

To accommodate the fact that we only have a 
finite number of SAR images, namely for the finest 
L + 1 resolutions, we must statistically characterize the 
initial condition of the recursion in (3). This initial 
condition comprises the values of the pixels in the 
R coarsest scale images ZL,ZL-l,. . . , Z L - R + l .  Since we 
are more interested in the scale-to-scale variation of 
the speckle pattern than in the initial condition of 
this pattern, we choose to impose no prior knowledge 
about the initializing values. We simply observe these 
images, and use the observed values to initialize the 
recursion in (3). 

1)  Identification of the Regression CoefjLicients: 
For each model we build, we identify a regression 

Fig. 3. (a) Image of grass, used to build our natural-clutter 
model. (b) Image of target-like man-made object, used to build 

our man-made model. 

order R and corresponding regression coefficients, 
using complex-valued, training images generated 
with the Lincoln Laboratory millimeter-wave S A R .  
For our natural-clutter model, we use a single image, 
which is displayed in Fig. 3(a). This image represents 
a homogeneous region of grass at 6 x 6 resolution,’ 
and consists of 256 x 256 pixels. Fig. 3(b) depicts an 
example of a scene containing a man-made object. 
In contrast to the case of natural clutter the object in 
Fig. 3(b) is spatially localized and nonstationary, and 
thus it makes no sense to build our model based on a 
large region of “homogeneous targets” analogous to 
Fig. 3(a). Thus, to build our target model, we use a 
training set of 64 SAR images (having 32 x 32 pixels 
each) of howitzers, each imaged at a different aspect 
angle. 

We convert a given training image Z into a 
multiresolution sequence of images Zo,Z,, . . . , IL,  
as described in detail in Section IIIA. We then 
systematically consider a sequence of possible 
regression orders, R = 1,2,3. For each proposed order, 
we apply the autoregression to the training data and 
solve for the regression coefficients that minimize the 
sum of the squares of the residuals, 

4 2 
[I(s) - al,kz(sT) - . . . - aR,kz(sy )I - (4) 

{s;m(s)=k} 

This least-squares approach is the most widely used 
method for parameter estimation, and is eminently 
reasonable here, especially given our absence of prior 
knowledge about the statistics of the residuals w(s) [6, 
p. 461 of Appendix 111. As we will see, the outcome 
of this procedure suggests both a natural model order 
and appropriate regression coefficients for each of the 
models we build. 

Table I summarizes the outcome of applying 
our estimation procedure. The first column of 
the table lists the resolution of the image pixels 
to be predicted (i.e., the resolution of Z(s) in the 
autoregression in (3)). The second column lists the 

‘As defined in Section IIIA, 6 = 0.3 m. 
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TABLE I 

0.30 

0.32 0.02 

0.28 0.02 0.02 

l 3  
5.3 

5.3 

5.3 

2s x 26 

1 3  

1 

2 

: 
0.25 

0.25 0.008 

0.25 -0.008 0.007 

I 1  5.5 

5.5 

5.5 

46 x 46 I 2 

0.58 

0.58 0.002 

0.57 -0.009 0.01 1 3  

8.5 

8.5 

8.5 

Note: This table summarizes the outcome 

Natural-clutter m.odel 

I 

Man-made model 

Regression Residual 

coeficients std. dev. 

0.67 0.10 

0.69 0.12 0.008 

0.87 I 7.6 
I 

0.82 -0.11 0.009 

0.84 -0.16 

I 

coefficients a,>,. 

proposed order of the regression. Finally, the last 
two sets of columns list the regression coefficients 
a, and the residual standard deviation a, for the 
natural-clutter and man-made models, respectively. 
For example, according to the table, the appropriate 
second-order regression for prediction of 26 x 26 
resolution pixels Z(s) in imagery of man-made objects 
is Z(s) = 0.841(4) - O.16Z(sT2) + w(s),  with the 
residual w(s) having standard deviation of cr, = 7.5. 

suggests that there is no practical benefit to using 
a model order greater than one; the higher order 
regression coefficients have negligible magnitude and 
the standard deviation of the prediction error is not 
noticeably reduced by an increased model order. For 
these reasons, we use a first-order autoregression for 
the natural-clutter model. On the other hand, for the 
man-made model, a second-order regression appears 
to be preferable. In particular, the second-order 
regression coefficient is not negligible (at least for the 
6 x S and 26 x 26 images), and the standard deviation 
of the prediction error is reduced by increasing the 
model order from one to two. Because a third-order 
regression fails to continue this trend of increased 
benefit, we use a second-order autoregression for the 
man-made model. 

As we 
have previously noted, a critical assumption in our 
modeling framework is that the residuals w(s) in 
our models are statistically independent, both in 
space (for a fixed scale) and in scale. In [l], our 
assumption of whiteness in scale is justified, using a 

With regard to the natural-clutter model, the table 

2) Validation of Residual Whiteness: 

theoretical model. We here validate our assumption 
of whiteness in space, by examining the sample 
correlation of the residuals that result when the 
appropriate autoregression is applied as a predictor 
to a multiresolution sequence of images. 

natural clutter is provided in Fig. 4. The left column 
of this figure displays a multiresolution sequence 
of three images of the region of grass we used for 
training. Proceeding downward, the images have 
resolution 46 x 46, 26 x 26 and 6 x 6, respectively. 
The right column of the figure displays images of 
prediction residuals; in keeping with Table I, the 
top image represents the residuals formed by the 
difference Z(s) - 0.3Z(s?), where Z(s) is a pixel in the 
image having 26 x 26 resolution; the bottom image 
represents the residuals formed by the difference 
Z(s) - 0.28Z(sT)), where Z(s) is a pixel in the image 
having 6 x 6 resolution. 

are approximately uncorrelated. This is further 
confirmed by Fig. 5 ,  which displays the sample 
correlation function of the residual image from 
the lower-right corner of Fig. 4. One can readily 
discern the impulse-like shape of this correlation 
function, which renders it in agreement with our 
model assumption. Although not shown, the same 
impulse-like shape is exhibited by the sample 
correlation functions of coarser scale residuals. 

We now consider our man-made model. 
Proceeding in a manner parallel to our validation 
procedure for the natural-clutter model, we display in 

An example of the data used in this validation for 

At least visually, Fig. 4 suggests that the residuals 
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Fig. 4. Images used to validate our natural-clutter mode. 
assumption that prediction residuals are white. 

6 0.6 

e! ,< 0.4 

x Offset 
-64 -64 Y Offset 

Fig. 5. Sample correlation function for residuals in prediction of 
6 x S resolution image of region of grass, using only 26 x 26 

resolution image. 

Fig. 6 a collection of five images, three of which are 
SAR images and two of which are residual images. 
We immediately see that the residuals do not have 
the same completely uncorrelated appearance we 
observed in Fig. 4. In this sense. the man-made model 
does not capture as completely the scale-to-scale 
statistical coupling of the multiresolution sequence 
of images. Nevertheless, as we see in Section IV, if 
we ignore this remaining correlation and apply the 
resulting likelihood calculation methods based on 

Fig. 6. Images used to validate our man-made model assumption 
that prediction residuals are white. 

the assumption of white residuals, we obtain a useful 
discrimination feature. 

Finally, for both of our models, we can measure 
the correlation of residuals across different scales. 
We have empirically found that the peak correlation 
between residuals at different scales is roughly 0.2, 
which is quite modest. In general, we conclude that 
the correlation of measured residuals behaves in 
a manner consistent with our model assumption 
of uncorrelatedness, particularly in the case of our 
natural-clutter model. 

3 )  Identification of the Residual Distributions: 
To characterize the probability distributions of the 
prediction residuals w(s) for each model, we first 
calculate the sample cumulative distribution function 
(cdf) of the residuals associated with our training data 
(see Figs. 4 and 6). Then, we find a matching cdf that 
has a compact analytical form. 

In Figs. 7(a) and (b), we plot both empirical cdfs 
and our analytical fits to them; the first figure displays 
the entire cdfs, while the second focuses exclusively 
on the upper tails. We first consider the cdfs shown 
for the residdals associated with our man-made model. 
The sample cdf (i.e., the dashed line) summarizes the 
aggregate statistics of the residuals in the prediction 
of 136 finest scale images of tactical targets. Each 
of these predictions is based on an autoregression 
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Fig. 7.  (a) Sample cdfs of prediction residuals. (b) Upper tail of sample cdfs of prediction residuals. 

using the coefficients listed in Table I, applied to the 
coarser scale images of the respective target. Our 
corresponding analytical fit (Le,, the dash-dot line) 
is with a Gaussian distribution, having mean zero 
and variance a&), where this variance is chosen to 
match the sample variance associated with the training 
data. We note that the match between measurement 
and analytical fit is reasonably good. Although not 
shown in the figure, the same reasonably good match 
is also obtained for coarser scale residuals, where we 
continue to use a Gaussian fit. 

Turning to our natural clutter model, the measured 
sample cdf (i.e., the solid curve in Figs. 7(a) and 
(b)) is based upon the residuals in the prediction 
of 256 x 256 finest scale image of a homogeneous 
region of grass, using the 128 x 128 second-finest 
scale image. The corresponding analytical fit (Le., 
the dotted line) is with a zero-mean log-Rayleigh 
distribution, 

P(w(s)) = kexp[kw(s) - y - exp(kw(s) - y)] 
In 10 

10 ’ 
k = -  

y N 0.57721566 (Euler’s constant). 

4) State-Space Representation of Models: To 
facilitate the development of our multiresolution-based 

state-space form. The state x(s)  is defined to be an 
R-dimensional vector, containing the pixel value Z(s) 
together with the pixel values residing at the R - 1 
ancestors of node s. For our natural-clutter model, 
R = 1 and for our man-made model, R = 2, and thus 
we have 

discriminant, we recast our final model choices in 

( I ( s )  (natural-clutter model), 

5 

To be consistent with (3), the scale-recursive dynamics 
for x(s) are thus defined to be 

x ( s )  = 

(natural-clutter model), 

(man-made model). 

(7) 

In this recursion, w(s) is scalar valued and white 
&e., w(s) is independent of w(a), for s # a). For 
the natural-clutter model, the distribution of w(s) is 
log-Rayleigh, given by (9, while for the man-made 
model, the distribution is Gaussian. The values of 
the model-dependent regression coefficients are 
given in Table I. 

C. Calculation of Multiresolution Discriminant 

Our multiscale stochastic models implicitly specify 
the following two pdfs: 

~ ( ~ ~ , ~ ~ , . . . , ~ L - 2  I zL-1,ZL3Hi) (i = 1,2) (8) 

where Ho(Hl) denotes the hypothesis that the ROI 
represents natural clutter (a man-made object). 
As we describe below, these conditional pdfs can 
be calculated efficiently. Thus, with their ready 
availability, we are led naturally to define our 
multiresolution discriminant E to be the logarithm of 
the likelihood ratio, 

= ( (man-made model). To describe the calculation o f t ,  we first introduce 
some convenient notation. We let ak,Ho(ak,H,) 
denote the kth scale regression coefficients for the (6) 
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natural-clutter model (man-made model). We let w M  (s) 
denote the residual in the autoregressive prediction 
of the pixel value Z(s), using the model underlying 
Hi; in keeping with the conventions established in 
Section IIIB4, wfi(s) is given by 

- 

ROI Gene,ntroii. Tactical Total Man-made Natural 

step targets FAs FAs FAs 

Prescreener 136 8739 2266 6473 

Size filter 136 2071 849 1222 Finally, we define P(w(s)  1 Ho)(P(w(s) I H , )  to be a 
log-Rayleigh distribution (5 )  (Gaussian distribution). 

The multiresolution discriminant can now be 
expressed in the following way: 

log[P(w,,(s) IH1)I 

This formula is justified in detail in Appendix A. Each 
summand here represents a penalty associated with a 
single residual. This penalty provides a quantitative 
measure of the mismatch between actual data and the 
predictive fit of our models to these data. 

IV. PERFORMANCE OF THE DISCRIMINATION 
ALGORITHMS 

In this section, we determine the detection 
performance improvement that results by 
incorporating our new multiresolution discriminant 
into the standard Lincoln Laboratory discrimination 
algorithm. In particular, we compare the performance 
of two discrimination algorithms: the first is the one 
described in Section IIB, and the second represents 
extension of the first, in which the feature set used 
to make the discrimination decision is augmented to 
include the multiresolution discriminant. The structure 
of the decision rule in both cases is identical; the only 
difference between the two algorithms is that our new 
multiresolution feature is available to the second. 

A. SAR Imagery Used in Study 

For our study, we have used actual imagery 
gathered with the Lincoln Laboratory millimeter-wave 
SAR. All of this imagery has 0.3 m resolution (in 
both range and cross-range) and has HH polarization. 
There are two components to this data set. The 
first is a training data set, used to build our two 
multiscale stochastoc models and to estimate the 
parameters M, and E, associated with the conditional 
pdf P ( Z  I target). The second component is 
a testing data set, used to test the discrimination 
algorithms. 

The first is a SAR image of a large, homogeneous 
The training data set itself has two components. 

TABLE I1 

region of grass. This is used to build our 
natural-clutter multiscale model. The second is a 
collection of 136 SAR images, each representing an 
uncamouflaged tactical target. This collection is used 
both to build our man-made multiscale model, and 
to estimate the parameters M, and E, associated with 
P(Z I target). 

The testing data set contains imagery representing 
56 square kilometers of Stockbridge, New York. This 
imagery includes 136 tactical targets (i.e., 68 tanks 
and 68 howitzers) that are realistically deployed, 
all having a single layer of radar scattering netting; 
this netting reduces the radar cross section of the 
targets by roughly 5-6 dB. The testing imagery also 
includes a large number of man-made clutter objects, 
including pcwerline towers, a farmhouse, a golf 
course clubhouse, and a junkyard (complete with 
buildings, a crane and old'military jeeps). Finally, 
there are natural clutter regions of trees, grass, and 
shrubs. In the sequel, we refer to this testing data set 
as the Stockbridge imagery. 

B. Generation of ROls 

To generate a collection of ROIs for testing 
purposes, we proceed in two steps, using the 
Stockbridge imagery. In the first step, we apply the 
Lincoln Laboratory prescreening algorithm (see 
Section IIA) to the Stockbridge imagery. We adjust 
the sensitivity of this algorithm so that none of the 
136 tactical targets are discarded. At this sensitivity 
level, the prescreening algorithm yields 136 ROIs 
representing tactical targets and an additional 8739 
ROIs representing false alarms, both natural and 
man-made. Each ROI consists of 128 x 128 pixels, 
corresponding to a region of approximately 38 
square-meters. In the second step, we apply the size 
filter described in Section IIB to the ROIs generated 
by the prescreening algorithm. We recall that this 
size filter is used by both discriminators of interest. 
The filter has the effect of eliminating all ROIs whose 
principal object's diameter is not within the range of 
diameters we expect a tactical target to have. Again, 
we adjust the sensitivity of this filter so that none 
of the 136 ROIs representing tactical targets are 
discarded. Table I1 summarizes the outcome of the 
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TABLE I11 

I I I 

Man-iiiade FAs 

Note: This table summarizes the discrimination performance at four particular operating points of the ROC curves in Fig. 8 

two steps we have just described, by categorizing the 
ROIs that are generated. 

C. Standard Lincoln Laboratory Discriminator Versus 
New Discriminator 

We now subject the collection of remaining 
ROIs to a quadratic discriminator. In keeping with 
our objective to evaluate the effectiveness of the 
multiresolution discriminant, we consider two versions 
of the quadratic discriminator. The sole difference 
between the two is that each has a distinct set of 
features available for use in the decision process. 
The first set Sstandard contains the features described 
in Section IIB; these are the ones traditionally 
available to the Lincoln discriminator. The second set 
Smr.augmented is an augmented version of the first set, in 
which the multiresolution discriminant is added. 

the effectiveness of every possible combination 
of features, where these combinations are simply 
subsets of the available features. In this way, for each 
version of the discriminator, we search for the feature 
combination that results in the smallest number of 
nontarget ROIs being classified as targets, subject 
to the constraint that all 136 of the ROIs actually 
containing tactical targets are correctly classified. 

The resulting optimal features, corresponding to 
Sbtanddrd are standard deviation, fractal dimension, 
peak CFAR, and percent bright CFAR. The optimal 
features corresponding to Smr.augmented are peak CFAR, 
mean CFAR, new multiresolution discriminant. The 
corresponding discrimination results are summarized 
by the receiver operating characteristic (ROC) curves 
shown in Fig. 8 and in Table III. 

These results merit a couple of comments. 
First, we note that the performance of our new 
discriminator, using the optimal features in the set 
Smr-augmented, represents an improvement over the 
standard Lincoln discriminator. For example, at the 
operating point PD = 0.95, the new discriminator 
reduces the number of natural-clutter false alarms 
'by almost a factor of six. Second, we note that the 
optimal feature combination corresponding to the set 

For each version of the discriminator, we evaluate 

1 oo IO' 1 o2 

ROC curves summarizing performance of discrimination 

False Alarms per Square Kilometer 

Fig. 8. 
algorithms when applied to HH-polarization SAR imagery 

representing 56 square kilometers of Stockbridge, New York. 

Smr.augmented is in a certain sense consistent with the 
optimal feature combination corresponding to the 
set Sstandard. To clarify this comment, we recall that 
the features standard deviation and fractal dimension 
are part of the optimal combination corresponding 
to Sstandard. But our new multiresolution discriminant 
essentially captures both of these characteristics: 
standard deviation information is directly captured in 
the structure of the log-likelihood ratio, as expressed 
in (1 l), and fractal characteristics are fundamental 
to the structure of our multiresolution models and 
processes, as discussed in [81. This observation is 
reinforced by the features in the optimal combination 
corresponding to Smr-augmented, where use of the new 
multiresolution discriminant essentially supersedes 
joint use of standard deviation and fractal dimension. 

V. CONCLUSION 

We have developed a new algorithm for 
discriminating man-made objects from natural 
clutter in SAR imagery. This algorithm uses an 
autoregression in scale to capture and exploit the 
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characteristically distinct variations in speckle pattern 
for imagery of man-made objects and of natural 
clutter, as image resolution is varied from coarse 
to find. We tested the algorithm by applying it to a 
dataset of 0.3 m resolution, HH polarization SAR 
imagery, representing 56 square kilometers of terrain. 
At a probability of detection of 0.95, the number 
of natural-clutter false alarms generated by the new 
discriminator was one-sixth the number generated by 
the standard Lincoln discriminator. 

Our results suggest a number of interesting 
possibilities to pursue in future work. For one, 
there are connections between the multiresolution 
approach taken here and the one taken in [l]; the 
two works could be combined and extended. For 
example, theoretical models are developed in [ 11 
that could possibly be used to either validate or 
refine the multiresolution models we developed here. 
Furthermore, certain optimal resolutions are identified 
and exploited in [I]; perhaps we could use these 
optimal scales in lieu of the dyadic progression of 
scales used here. 

would be to develop more sophisticated multiscale 
models. Recall, for example, the residuals in 
Fig. 6 resulting from application of our man-made 
model to a multiresolution image sequence. These 
residuals demonstrate that the man-made model is 
not completely capturing the scale-to-scale statistical 
coupling of the images; there is a need for better 
accounting of the dominant scatterers in the images. 
Perhaps this need could be fulfilled by developing 
a whole collection of man-made models, with each 
individual model specialized to a particular target 
configuration. Given this collection of models, we 
could then envision carrying out likelihood-based 
target recognition. 

the multiresolution models to carry out image 
compression, in a manner analogous to the use of 
linear predictive coding for time-series (e.g., speech) 
compression. Finally, there is the possibility of 
developing multiscale models for remote sensing 
applications, such as classification of terrain cover, for 
which we could develop a number of natural-clutter 
models, including one for trees, another for grass, and 
so forth. 

A second possible extension of the work here 

Another possible extension would be to exploit 

APPENDIX A. 
MULTIRESOLUTION DISCRIMINANT 

DERIVATION OF EXPRESSION FOR 

In Section IIIC, we described a straightforward 
procedure for calculating our multiresolution 
discriminant. Here we establish the validity of 
the decomposition (1 1) of that discriminant. We 
continue to use the notation that was established in 
Section IIIC and additionally we define X, to be a 
vector containing all the state vectors x(s) at scale k. 

The key to our development here is to exploit 
the Markov property of our multiscale stochastic 
processes. To describe this property, we first note 
that any given node on a quadtree can be viewed as 
a boundary between five subsets of nodes, where four 
of these subsets correspond to paths leading towards 
offspring and one corresponds to a path leading 
towards the parent.2 With this boundary notion in 
mind, the Markov property can be stated as follows: 
conditioned on the value of the state at any node, the 
values of the states in the corresponding five subsets 
of nodes extending away from s are independent. 
Hence, in light of (6) ,  

{s ;m(s)=k}  

To establish (1 I), we begin by examining in 
greater detail the numerator and denominator terms 
of (9); by elementary probability, 

f'(Io,Il>...$IL-z I I L - l > I L , g )  

L 

= '('L-2 I r L - l ? r L ? ~ ) ~ p ( z L - k  I ' L - k + l > ' . ' 9 ' L ? g ) '  

k=3 

To simplify the right side of (1 3), we note that by 
construction (see Section IIIB4) of our state-space 
models, the conditioning information contained in the 
following two sets 

{Ik+l,Ik+2.. . . and 

{&+I 9 Xk+Z,.. . J-1 ,e} 
is equivalent with respect to the statistics of Ik.  By 
combining this fact with the Markov property of the 
multiscale model class, we find that each element of 
the product on the right side of (13) can be factored 
as 

n 
k = 3  {s;m(s)=L-k] 

Finally, combining (9), (15), and the fact that 

P u b )  1 x(sY),H,> = P(W&) 14) 
we conclude that (1 1) is valid. 

'%e root node is an exception, having only q offspring and no 
parent. Also, the finest scale nodes are exceptions, each having a 
single parent, but no offspring. 
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