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projection and Fourier methods [1, 2] are used to recon-
struct high resolution images in a variety of applicationsIn this work, we develop statistically based algorithms to

reconstruct binary polygonal objects from sparse and noisy [1]. Although these methods produce high quality images,
tomographic-based observation data. Traditional approaches they require a large number of projections and a relatively
to the reconstruction of geometric objects from projection data high signal-to-noise ratio (SNR). In applications where
often lead to highly nonlinear estimation problems. To avoid number, spacing, or SNR of the projections are severely
the difficulties associated with such nonlinear problems, we constrained a high resolution image is virtually impossible.
first examine the problem of reconstruction of an object based In this paper, we develop algorithms that utilize a priori
on knot location measurements, i.e., measurements of the loca- knowledge about the nature of underlying object to extract
tions of abrupt change in the projections. The ties between this

geometric information from sparse and noisy projectionproblem and that of multitarget radar tracking enable us to
measurements. This approach follows from work in geo-develop a sequential hypothesis-testing algorithm requiring
metric-based algorithms [3–8] which develop parametriconly the solution of a series of linear estimation problems. In
reconstruction algorithms to obtain geometric informationparticular, data association hypotheses are generated, under
from data. The primary objective of these approaches iseach of which the inversion is linear. The complexity of the
to achieve focusing of the information in sparse and noisyassociation possibilities are kept in check through the use of

constraints on the reconstruction imposed by the tomography data to directly determine the shape of the underlying
problem. The solution of this first problem is then used as an object, rather than reconstructing all of the pixels of the
initialization to a more complete reconstruction which, while associated image. In this spirit, we assume that the under-
utilizing all the projection data, is nonlinear. We demonstrate lying object is a binary polygon and estimate the 2Nv pa-
that the estimates provided by the first, efficient algorithm are rameters that define the Nv vertices of the polygon. Thus,
of good quality on their own, and, when combined with a fully the sparse data are focused on the parameters that are
nonlinear inversion, produce excellent object estimates.  1996 instrumental to the reconstruction of the object.
Academic Press, Inc.

For a binary object, the projection data are a collection
of projected thickness or chord length measurements of
the object. The reconstruction of the vertices of a binary1. INTRODUCTION

In tomographic imaging, many algorithms have been 1 This work was supported by ARO under Contract DAAL03-92-
developed to reconstruct a multidimensional function from G-0115, ARPA Grant F49620-93-1-0604, and an Office of Naval Re-

search Fellowship.its projections. Widely used methods such as filtered back-
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polygon from such chord length measurements is a nonlin-
ear estimation problem [7], and thus subject to the same
difficulties of all such nonlinear problems (e.g., extraneous
local minima). To avoid these difficulties, we will first de-
velop vertex estimates based on a second, related set of
measurements which may be directly available or can be
derived from the chord measurements. These measure-
ments are of the locations of the projected vertices of the
object in the projection data, which we term ‘‘knot-loca-
tion’’ measurements, since they correspond to knots in
the projection function. Such observations have been the
subject of interest in their own right [9]. The use of such

FIG. 1. Relationship of object, projection, knots, and chords.data allows us to exploit algorithms developed for multitar-
get tracking together with the geometric constraints to
obtain an efficient estimation algorithm requiring only the
solution of a sequence of linear problems. The results of at angle uj and displacement ti , as shown in Fig. 1. For
this first, efficient, estimation algorithm are then used as convenience, term the collection of all such projections at
the basis for solution of the full nonlinear problem of a given angle uj as the projection at that angle. The support
estimating the underlying polygon based on both knot and values at uj are the two extrema of t that define the set of
chord length measurements (including the case of chord non-zero values of g(t, uj) (e.g., z1 and z4 in Fig. 1). Note
length measurements alone). that projections taken 1808 apart are reflections about t so

This paper is organized as follows. First, the tomographic data is only required over a 1808 angular range. Table 1
problem considered in this paper and in particular the role gives a list of symbols used throughout the paper.
that knot locations play in it are described. Then this knot-
based tomographic reconstruction problem is related to 2.2. Binary Polygonal Objects
the multitarget tracking problem in radar. Using some of

The focus for the remainder of this paper will be onthe approaches generally used in a radar context, an esti-
binary polygonal objects. The projection of a binary polyg-mation algorithm to reconstruct the vertices of a binary
onal object is a piecewise-linear spline function, as shownpolygon based upon knot location measurements is devel-

oped. Next, both chord and knot location measurements
are incorporated into a full nonlinear estimation algorithm
that uses our efficient knot-based reconstruction algorithm TABLE 1

List of Symbolsto provide the initialization. Reconstruction results for
both algorithms are presented and the effects of noise,

Symbol Description
chord length measurements, and limited angle measure-

f(x, y) 2D object to be reconstructedments are analyzed. Finally, conclusions and future work
g(t, u) 2D Radon transform of f(x, y)are summarized.

Nv Number of vertices in the object
Nt Number of chord length measurements in each view
Nu Number of angular views of projection data

2. BACKGROUND Nq Number of hypotheses retained at each stage of the Knot-
Based Reconstruction Algorithm

2.1. The Radon Transform mu
j Vector of observed chord length measurements in view uj

MN
u Overall vector of observed chord length measurements in

The goal of tomographic imaging is the reconstruction all Nu views
of a two-dimensional (2D) image, f(x, y), from the com- zu

j Vector of observed knot location measurements in view uj

ZN
u Overall vector of observed knot location measurements inplete set of 1D projections, g(t, u),

all Nu views
XN

u Overall vector of observed knot and chord measurements
for all uj

Lj Noise covariance matrix for vector noise process jg(t, u) 5 E
R2 f(x, y) d(t 2 [x, y] ? e(u)) dx dy, (1)

V Vertices of the underlying object f(x, y)
V̂ Estimate of the vertices of the underlying object f(x, y)
Ij jXj identity matrix
qk

i ith data association hypothesis for the first k viewswhere e(u) 5 [cos(u), sin(u)]T is a unit vector in direction
qk Set of all possible data association hypothesis for the firstu. The function g(t, u) is termed the 2D Radon transform

k views
of f and defines the projection of f along any line L(ti , uj)



TOMOGRAPHIC RECONSTRUCTION OF POLYGONS 235

in Fig. 1 for the case of a 4-gon. In the projection, each
knot location, or position of abrupt change in the slope of
the spline function g(t, uj) [10], corresponds to the location
of the projection of one of the vertices of the object. In
each projection of the polygon the number of knots is
equal to the number of vertices Nv of the object (except
in degenerate cases). The chord length of a binary object
is the thickness of the object along the line L(ti , uj), thus
the magnitude of the projection g(ti , uj) at a particular ti

is precisely this length. Therefore, the projection of a binary
object is simply a collection of chord lengths of the object.
This relationship between chord length, knot location, and
the underlying vertices provides the basis of the algorithms
described in this paper.

2.3. Chord Length Measurements

We represent the vertices (xi , yi) of the underlying object FIG. 2. Initial knot association and notation.
(and thus the polygonal object itself) by the following
length 2Nv vector V containing their coordinates:

2.4. Knot Location Measurements
V 5 [x1 y1 u ? ? ? u xNv

yNv
]T (2)

The knot locations for the projection at angle uj can
be arbitrarily, and without loss of generality, labeled inThe vector of chord length measurements, m(uj) are then
increasing order as z1(uj), . . . , zNv

(uj), as shown in Fig. 2.modeled by
Each knot location corresponds to a particular vertex in
the object (e.g., in Fig. 2 z1(u1) corresponds to vertex a),m(uj) 5 f(V, uj) 1 v(uj), v(uj) p N(0, Lv), (3)
but without knowledge of the underlying object, the corre-
spondence of the set of knot locations z1(uj), z2(uj), z3(uj),

where m(uj) 5 [m(t1, uj), m(t2, uj), . . . , m(tNt
, uj)]T with . . . to the underlying vertices a, b, c, . . . of the object is

t1 # t2 # ? ? ? # tNt
is a vector of the Nt ordered chord unknown. In particular, the function h(V, uj) relating the

length measurements at angle uj, f(V, uj) is a nonlinear vertices to the noise-free knot locations at angle uj is
vector function relating the ordered, noise-free chord mea- given by
surements at a particular angle uj to the vertices of the
object and v(uj) is a vector Gaussian noise process indepen- h(V, uj) 5 sort (E(uj) V) (5)
dent from angle to angle and shift to shift. For this work
we will assume that Lv 5 s 2

v INt
, where IN is an N 3 N where sort(?) sorts the argument in ascending order,

identity matrix. Each of the Nu views can now be combined E(uj) 5 INv
^ eT(uj) with ^ representing the Kronecker

(stacked) to form a single overall measurement equation, product,2 and e(u) 5 [cos(u), sin(u)]T a unit vector in direc-
tion u. From the definition of E(u), we see that E(u)V

M (Nu) 5 [mT(u1) u ? ? ? u mT(uNu
)]T

(4) is simply the projection of the vertices at angle u. The
observations are a nonlinear function of the vertex loca-

5 F(V) 1 Y, Y p N(0, LY),
tions due to the sort operation, which destroys the associa-
tions of the knot locations to the object vertices.

where F(V), Y, and the covariance LY are defined in the Based on this discussion, we will use the following model
obvious way. for the noisy knot location observations at each view uj :

Because the function F(V) is a nonlinear function of
the vertices, reconstructing V based on (4) is difficult. In- z(uj) 5 h(V, uj) 1 n(uj), n(uj) p N(0, Ln(uj)

). (6)
stead of immediately attempting solution of this nonlinear
problem, we will first develop methods based on knot loca-

Here z(uj) 5 [z1(uj), z2(uj), . . ., zNv
(uj)]T with z1(uj) #tion measurements because they can be extracted directly

z2(uj) # ? ? ? # zNv
(uj) is the vector of observed, orderedfrom the projection data [9, 10], are geometrically related

knot location measurements at angle uj, h(V, uj) is theto the parameters of interest (the vertices), and will allow
us to develop estimates based on solving a series of linear
estimation problems. 2 A ^ B 5 [AijB].
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nonlinear vector function given in (5), and n(uj) is a vector 3. RECONSTRUCTION ALGORITHMS
Gaussian noise process, independent from angle to angle

Given our observation data, as defined by (7) or (8), weand knot to knot. We assume that Ln(uj)
5 diag[s 2

n
l
(uj)] .

seek estimates of the polygonal object (i.e., its vertices)Thus while the noise is assumed independent, the variance
based on maximum likelihood (ML) estimation tech-s 2

n
l
(uj) on each knot location measurement zl(uj) is thus

niques. In particular, we seekallowed to be different to reflect the belief that knot obser-
vations extracted from projections using methods such as
[10] will, in general, possess differing degrees of uncer-

V̂ 5 arg max
V

pyuV(Y u V), (9)tainty. If the measurements at each view are combined
(stacked), the following overall knot measurement equa-
tion is obtained:

where pyuV(Y u V) denotes the conditional probability den-
Z(Nu) 5 [zT(u1) u zT(u2) u ? ? ? u zT(uNu

)]T

(7)
sity of the observations Y given the vector V of vertices
of the object and Y 5 Z or Y 5 X, depending on our

5 H(V) 1 N, N p N(0, LN). focus, as described next. In addition to assuming that the
object is a binary polygon, we will also assume that the
object is convex with a known number of vertices Nv. WhileHere H(V), N, and the covariance LN are defined in the
convexity is not essential, it is convenient in determiningobvious way. Note that if we were given the association
a unique connection of the vertices to form the underlyingof the knot location data to the object vertices in each
object. In the absence of convexity, the chord length mea-view, the relationship between the knot observations
surements could be used to effectively disambiguate amongZ (Nu) and the unknown vertices V would be linear. The
possible vertex connections (e.g., by evaluating all possiblechallenge arises because we do not know these data associ-
connections of the vertices).ations a priori. To estimate the vertices of the object from

noisy measurements of these knot locations we thus ap-
proach the problem through a two-step procedure by first

3.1. Knot-Based Reconstruction Algorithmestimating the association of knot locations to the vertices
of the object in each projection through a hypothesis test- Vertex Reconstruction and Multitarget Tracking
ing method and then solving the resulting linear estima-

The reconstruction of the vertices V of a binary polygo-tion problem.
nal object from knot location measurements Z is very
closely linked to the multitarget tracking problem of radar.

2.5. Combined Chord and Knot Measurements In particular, note that the data of the tomography problem
can be viewed as arising from measurements of a rotatingThe two observation equations (4) and (7) can be com-
object taken at a single, fixed location. By viewing thebined to form an overall measurement equation,
problem in this way, we can interpret the vertex locations of
the polygon as targets and the corresponding knot location
measurements as radar reports. In this framework, the

X (Nu) 5 3Z(Nu)

M (Nu)45 3H(V)

F(V)41 3N

Y4 , 3N

Y4p N(0, L), association of knot location observations to object vertices
is analogous to the association of radar reports to targets.

(8) The similarity of these problems allows estimation tech-
niques developed in the radar context to be applied here.
A number of these algorithms are based on an adaptedwhere L captures the joint covariance of the noises. We

make the simplifying assumption that the noise from the form of a hybrid state estimation problem [11–14], which
propose a simultaneous solution to a discrete-state estima-chord length and knot location measurements are uncorre-

lated with each other. In practical situations where a knot tion problem (i.e., data association) and a continuous-state
estimation problem (i.e., target location estimation). Thereextraction process might derive knot location measure-

ments from the original projection data, there would un- is also an important difference between the tomography
and the radar problem that we exploit to our advantage.doubtedly actually be a correlation between the knot loca-

tion uncertainty and the chord length uncertainty. As we In contrast to the radar problem, ‘‘target’’ maneuverability
and dynamics are constrained by the fact that the targetswill show in Section 4.3, however, this simplifying assump-

tion appears quite good and does not have a significant or vertices define a rigid object. These constraints can be
used to drastically limit the number of possible knot-to-impact on reconstruction results. Finally, note that LN,

LY, and hence L are diagonal matrices because of our vertex correspondences and thus reduce the number of
data association hypotheses that must be considered.assumptions of noise independence.
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FIG. 3. Block diagram of KBA.

Overview of the Knot-Based Reconstruction Algorithm shown in Fig. 2 for a 4-gon. In general, such associations
will be represented by sequences of letters corresponding

A block diagram of the algorithm developed in this sec-
to the vertices of the underlying object, e.g., abcd for the

tion, which we term the knot-based reconstruction algo-
first view of the example of Fig. 2.

rithm (KBA), is depicted in Fig. 3. Basically, the algorithm
For convenience, we use the target tree approach de-

is a three stage process, based on the hybrid-state estima-
scribed by Kurien and co-workers [11, 13] to represent the

tion algorithm used in multitarget tracking. In the first
possible data associations in a hypothesis tree. Each level

stage, the possible associations of the current knot location
of the tree, arising from a given angular view, contains the

measurements to the object vertices are enumerated and
possible associations of the ordered knot observations of

merged with the existing set of such hypotheses carried
that view with the object vertices. As one moves along a

forward from the previous steps. The second stage then
branch of the tree from the root to a leaf, the data associa-

generates ML estimates of the vertex location for each
tions are listed in the order that the angular views are

association hypothesis under the assumption that it is cor-
introduced into the algorithm (which does not necessarily

rect; a linear problem. In the third stage the likelihood of
correspond to increasing angular order). A path from the

each of the data association hypothesis is evaluated given
root to a leaf of the tree thus provides a complete associa-

the current set of measurements of both the knot locations
tion of all ordered knot observations in all views to the

and chord lengths. The chord lengths are not required to
vertices in the object, and thus corresponds to one possible

rank the hypotheses, but because they provide additional
complete data association hypothesis, qk

i , up to the kth
information, are available anyway, and the computational

view. The set of all such hypotheses up to the kth measure-
cost of using them in the analysis in this way is minimal,

ment is denoted by qk 5 [qk
1 , qk

2 , . . .].
we include them. In particular, note that all that is required

In general, for an object with Nv vertices there are Nv!is the evaluation of a nonlinear function for this purpose,
total possible knot to vertex association hypotheses that

rather than minimization of it. Finally, to reduce complex-
must be considered for each view. Without further con-

ity, the likelihood ratios are used to prune the set of hypoth-
straint, each of these possibilities must be considered in

eses prior to the incorporation of the next view. We de-
combination with all the possibilities produced by the pre-

scribe each step in more detail next.
vious views and thus a combinatorial explosion occurs as
the number of views increases. This number can be greatlyPart I: Data Association. In the first stage of the algo-

rithm we update the current set of data association hypoth- reduced, however, by using the following constraints for
associations considered as an increasing function of contin-eses by incorporating the possible associations between

the current view of ordered knot location observations and uous angle u :
the vertices of the underlying polygon. Without loss of

Data Association Rules:
generality, we let the first view correspond to u1 5 08 and
associate the ordered knot locations z1, z2, z3, . . . in this 1. Maximum Number of Associations: The total

angular view range [0, 1808) can be split into at most Nvfirst view to vertices we arbitrarily label as a, b, c, . . . , as
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(Nv 2 1)/2 1 1 separate regions, within which the knot- V̂(Z(k) u qk
i ) 5 (E(k)T

PT(qk
i ) L21

N P(qk
i ) E(k))21

(11)to-vertex association is fixed. Thus there are at most Nv
E(k)T

PT(qk
i ) L21

N Z(k),(Nv 2 1)/2 1 1 distinct knot-to-vertex associations.
2. Uniqueness of Associations: The association

within each distinct region in Rule 1 is unique. Thus identi- where we have made the dependence of the estimate on
cal associations must be contiguous as a function of angle the data Z(k) and hypothesis qk

i explicit. Further, since we
(e.g., if the associations at u 5 u1 and u 5 u2 are the same, assume that the noise on each knot location is independent,
then so are any associations for u [ [u1, u2]). LN is a diagonal matrix, and the problem separates into

3. Reciprocal Associations: An association and its Nv separate estimation problems—one for each vertex. In
reciprocal cannot both appear, except for the association summary, an ML estimate of V is obtained for each of the
of the initial and final association regions, since g(t, uj) 5 association hypotheses from Part I.
g(2t, uj 1 1808).

Part III: Hypotheses Evaluation and Pruning. While
These rules are only a subset of the possible rules that can the knot-to-vertex association constraints presented earlier
be derived to determine the allowable data associations serve to greatly reduce the number of possible data associa-
given the geometry of this problem. They are meant only tions, there are still a large number of remaining possible
to provide a simple and efficient means of reducing the hypotheses. Thus, pruning techniques developed in the
total number of discrete data association hypotheses that multitarget target literature are also used to limit the num-
must be considered. A precise definition of the space of ber of possible hypotheses. In particular, the quality of each
valid data associations is still an open question. proposed hypothesis is found by evaluating the conditional

While we assume for simplicity that the number vertices log-likelihood of the complete knot and chord data up to
is known, in general this may not be true. In this case, the the kth view X (k), conditioned on the current hypothesis
knot location data may contain what are termed ‘‘missed qk

i and assuming the corresponding ML estimate V̂(Z(k) u
detections’’ or ‘‘false alarms’’ which correspond to missing qk

i ) of the vertices based on the knot observations alone
data measurements and extraneous data measurements, is correct,
respectively. To account for such cases, the algorithm can
be extended to include the global hypothesis techniques log[px uqk

i ,V̂ (X (k) u qk
i , V̂(Z(k) u qk

i ))], (12)
used in the track-oriented approach of multitarget
tracking [11].

where V̂(Z(k) u qk
i ) is defined, cf. (11), and X (k) is complete

Part II: Estimation of the Vertices Given the Data Associ- data vector; cf. (8). The primary departure of this log-
ations. Given the updated list of data association hypoth- likelihood from the standard Generalized Log-Likelihood
eses from Part I of the algorithm, this stage of the algorithm is that the unknown nonrandom quantity, V, is estimated
generates ML estimates of the vertices for each hypothesis, from a subset Z(k) of the total measurements X (k) (i.e.,
assuming it is correct. This is a simple linear problem. In from the knot location measurements but not from the
particular, under hypothesis qk

i , (7) can be written as chord measurements).
The hypotheses qk

i are now ranked based on the log-
P1(qk

i ) s E(u1) likelihoods of (12). The top Nq hypotheses are retained and
the remainder are pruned from the tree and thus further3 4 3 4. .. .. .Z (k) 5 V 1 N
consideration. Finally, the top ranked hypothesis q̂k is

s Pk(qk
i ) E(uk) taken as the optimal hypothesis at stage k and the associ-

ated ML vertex estimate V̂(Z(k) u q̂k) is taken as the optimal5 P(qk
i ) E(k) V 1 N, N p N(0, LN), (10)

estimate. Experimental results of this algorithm follow in
Section 4.

where Pj(qk
i ) is a permutation matrix for view j which

depends on the i-th association hypothesis qk
i for the k 3.2. Knot-and-Chord-Based Reconstruction

views, E(uj) is defined, cf. (5), and N and P(qk
i ) and E(k)

Algorithm
are aggregate matrices for the k-th step that are defined
in the obvious way. Note that E(k) V is the vector of the Here we develop a nonlinear algorithm to estimate the

vertices of a binary polygonal object from the full set ofprojected vertices at all the k views and P(qk
i ) is the permu-

tation matrix that rearranges this complete set of projected noisy measurements X (Nu) of both knot locations and chord
lengths. Like the KBA, the estimate is obtained by usingvertices to match the knot associations contained in the

hypothesis qk
i . Given hypothesis qk

i , this equation is linear ML estimation techniques. This algorithm, which we term
the knot-and-chord-based algorithm (KCBA), minimizedwith respect to the vertices, so the ML estimate of V is

given by the cost criterion of (9) from measurements of both



TOMOGRAPHIC RECONSTRUCTION OF POLYGONS 239

knot locations and chord lengths.3 This cost is equivalent a procedure similar to that in [10], which would produce
knot location measurements and their corresponding noiseto the following weighted nonlinear least-squares error

(WNLSE) criterion, statistics. These data, along with the original chord projec-
tion data, would then be used as the input to the reconstruc-
tion algorithms developed in this paper. In Section 4.3 we
present a final set of experiments showing the results ofV̂ML 5 arg min

V 13Z

M42 3H(V)

F(V)42
T

an end-to-end system designed to capture the spirit of such
a scenario.

Performance MeasuresL21 13Z

M42 3H(V)

F(V)42 (13)

In the experiments that follow, the reconstructions are
performed by minimizing the L2 norm on the measure-5 arg min:

V
(Z 2 H(V))T L21

N (Z 2 H(V))
ments (i.e., in the Radon or projection space). Ultimately,
however, it is the difference between the true underlying1 (M 2 F(V))T L21

Y (M 2 F(V)),
shape and our reconstructed shape that is of direct interest
in quantifying the quality of the reconstructed object. Thewhere the dependence of the observations on Nu is sup-
measure we use is the Hausdorff distance [15] DH(S, Ŝ)pressed for clarity. Being nonlinear, this problem is plagued
between two convex sets S and Ŝ, defined asby multiple local minima, etc., and must generally be solved

iteratively. To ameliorate such difficulties, a good initial
DH(S, Ŝ) 5 infh« u S , Ŝ(«), Ŝ(«) , Sj, (14)guess is required, which is provided by the KBA. In sum-

mary, the steps of the algorithm are: (i) Use the KBA to
where S(«) 5 hS u d(s, S) # «j is the «-neighborhood of thegenerate an initial guess V0 from knot measurements and
set S and d(s, S) is the minimum distance between the(ii) solve the knot and chord based ML problem (13) using
point s and set S. Thus the Hausdorff distance is a measureany iterative technique starting from this initial value. Note
of the largest distance by which the two sets differ. In orderthat by setting L21

N 5 0 in (13) we will obtain the ML
to make reconstruction evaluations with this measure com-estimate based on chord length measurements alone.
parable, we will use a normalized version, we term the
percent Hausdorff error and define as4. RECONSTRUCTION RESULTS

This section provides three sets of numerical experi-
% Hausdorff error 5

DH(S, Sˆ)
DH(S, 0/ )

3 100, (15)ments: experiments using the KBA, experiments using the
KCBA, and for completeness, experiments with a complete
end-to-end system. Although the algorithms are valid for where S is the true object, Sˆ the estimate, and 0/ is the
the reconstruction of n-gons, for brevity we limit our recon- single point at the origin.
struction results to 4-gons. The principal algorithmic im-
pact of including more vertices is that there are more data 4.1. Knot-Based Algorithm Experiments
association hypothesis to consider at each stage of the

Here we present results of the KBA developed. Forreconstruction. In addition, the inclusion of many vertices
these experiments our chord measurements are generatedsuggests the desire for detailed structural information
according to (4). The variance s 2

m of the actual appliedabout the underlying object. Given that our focus is on
additive noise depended on the experiment and was chosenlimited and noisy data, the reconstruction detail implied
to yield a given equivalent average signal-to-noise ratioby such a large number of parameters is not really war-
(SNR) of the chord length observations, defined asranted anyway.

For the first two sets of experiments in Sections 4.1
and 4.2, the knot and chord measurements we use are

SNR (dB) 5 10 log10
iF(V)i2

Nt Nus
2
m

, (16)independently generated from the underlying object and
perturbed with additive independent Gaussian noise. In
an actual tomographic reconstruction scenario, the noisy where F(V) are the noise-free chord lengths and NtNu is
projection data (or chord length measurements) might be the total number of data points. In all our experiments we
put through a separate knot extraction algorithm, such as assume that this variance is known, so that s 2

v 5 s 2
m.

Our knot observations are generated according to (7).
The variance s 2

zi
(uj) of the noise actually applied to the3 This algorithm was implemented via the Matlab function FMINS

based on the simplex search method of Nelder and Mead. noise-free knot i in view j is chosen according to



240 BELCASTRO, KARL, AND WILLSKY

FIG. 4. Sample reconstructions of KBA, Nu 5 27 views, Nq 5 10 retained hypotheses, 10 dB SNR on chords. (a) Kite reconstruction. (b)
Square reconstruction

is known, so that s 2
ni

(uj) 5 s 2
zi
(uj) and the model variance

s 2
zi

(uj) 5
K 2

uDsi(uj)u2Mi(uj)
s 2

m , (17) in (6) is correct. We also consider a simplified case where
the model variance is set to s 2

ni
(uj) 5 (1.5 sm)2, so the

model assumes an identically distributed noise on thewhere s 2
m is the variance of the noise actually applied

knots. This more simplistic model, which we refer to asto the noise-free chord length measurements from (16),
the IID model, assumes no information is available fromuDsi(uj)u is the magnitude of the change in slope of the noise
the knot extraction algorithm about the relative goodnessfree projection at knot i in view j, Mi(uj) is the separation
of one knot measurement compared to another, so it offersbetween adjacent knots at location i in view j, and K is a
a form of worst case scenario for the algorithms.global scaling constant. For interior knots, Mi(uj) is defined

as the magnitude of the distance between the knots adja-
Sample Reconstructions

cent to knot i, while for a boundary knot, we use twice the
distance to the adjacent interior knot. Thus Mi(uj) is a For all of the reconstructions shown, the true object

is depicted by solid lines while the reconstructions aremeasure of local knot separation. The value of the scaling
constant K, which can be viewed as setting the overall represented by dashed or dotted lines. Two objects are

considered, a square and a ‘‘kite’’ with noisy chord lengthrelative strength of knot noise verses chord noise, is some-
what arbitrarily chosen so that the average standard devia- and knot location data generated so that the SNR on the

chord length data is 10dB. Projection data were taken attion of knot location noise terms is 1.5 times greater than
the standard deviation of the chord measurement noise 27 equally spaced angles over the interval [08, 1808) with

five chord measurements in each view uniformly spacedterms. This choice of applied noise variance for the knot
observations attempts to capture the most important fea- over t 5 [21, 1]. Note that this results in views where some

of the chord measurements are zero (i.e., the object is nottures we would expect from a knot extraction routine. In
a complete implementation this noise model would follow in the field of view) and conversely, in views where the

chord measurements are confined to the interior of thefrom the particular knot extraction algorithm. Our goal
here is to focus on the use of knot location and chord object (for the kite object). Thus, each object had a total

of 108 knot location measurements (used to estimate thelength measurements to reconstruct the underlying object
and the behavior of this part of the process, so we have vertices and prune the hypotheses) and 135 chord measure-

ments (used to prune the hypotheses). Finally, only Nq 5intentionally simplified our knot noise model.
In the examples of this section we perform experiments 10 hypotheses are retained at each stage of the algorithm.

Figure 4 shows sample reconstructions of two objects.where we assume that this actual applied noise variance
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FIG. 5. Performance as a function of number of views used in the KBA. (a) Hausdorff error, correct model. (b) Hausdorff error, IID model.

In each case two reconstructions are shown: the dashed model are slightly worse than those that assume the correct
applied noise model (as expected).line represents the reconstruction generated assuming the

correct applied noise model on the knot measurements
Reconstruction Error as a Function of Limited Angle

while the dotted line represents the reconstruction assum-
Projection Data. The reconstruction performance of the

ing the IID knot-noise model. Figure 4a shows the kite
KBA over limited angular ranges was also examined. A

object. The Hausdorff percent errors are 6.5 and 20.4%,
full set of projection data (i.e., chord measurements and

respectively. Similarly, Fig. 4b shows a sample reconstruc-
knot location measurements) was generated over the speci-

tion of the square. The Hausdorff percent errors are 15.79
fied angular range with five chord measurements per view

and 19.22%, respectively.
at a SNR of 10dB. Next, reconstructions were performed
on subsets of the projection data containing 18 uniformlyMonte-Carlo Simulations
spaced views over limited angular ranges. For each angular

Monte-Carlo simulations were used to test the perfor- range, 100 independent Monte-Carlo reconstructions were
mance of the KBA. All simulations are performed using performed with Nq 5 15 hypotheses retained at each step
the kite test object. The Monte-Carlo simulations consisted of the KBA.
of 100 independent reconstructions for each scenario. In As the results in Fig. 6a demonstrate, the reconstruction
each plot error bars denote the 95% confidence intervals errors decrease significantly as the angular range is in-
of the sample mean values that result from the 100 runs creased. This result is attributed to poor triangulation ge-
of the algorithm. Data are generated under the same condi- ometry over the smaller angular ranges. In addition, above
tions but, depending on the experiment, we will vary the a 458 range the error appears to level off.
SNR, number of retained hypotheses, etc. In addition, a second set of Monte-Carlo simulations

was done over the range [08, 458). For this case, 100 recon-Reconstruction Error as a Function of SNR and Number
structions were performed for cases of 4, 5, 9, 18, and 27of Views. Figure 5 summarizes the effect on the KBA of
views. The remainder of the parameters (chord length,varying the SNR and number of views. The number of
SNR, etc.) were set exactly as before. Figure 6b showschord measurements per view Nt was 5 in all reconstruc-
that the limited angle reconstruction errors decrease astions. Figures 5a and 5b present the Hausdorff errors for
a function of the number of views used to perform theboth the correct and the IID knot-noise model, respec-
reconstruction. The results of Fig. 6 are significant in thattively. The most dramatic decrease in error occurs when
they show that the KBA behaves robustly under limitedthe SNR is increased from 0 to 10 dB. The KBA is unable
angle scenarios.to resolve the knot-to-vertex data associations in the high

noise scenario. At a given SNR all of the reconstructions 4.2. Knot-and-Chord-Based Algorithm Experiments
behave similarly as a function of the number of views even
though the relative error levels vary as a function of the In this section we present experiments with the KCBA.

Recall this algorithm uses the output of the KBA to initial-SNR. The results that assume an IID knot location noise
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FIG. 6. Performance as a function of limited angular views using the KBA. (a) Varying angular range. (b) Number of views.

ize a minimization of a nonlinear cost function. The data Reconstruction Error Versus Quantity of Chord Mea-
surements. The performance of the algorithm as a func-was generated in the same way described in Section 4.1.

Further, while the knot data were generated using the tion of the number of chord measurements was tested.
Each reconstruction was based on 18 uniformly spacedvariance given in (17), the assumed knot-variance model

for the reconstruction was the IID knot-noise model views for a total of 72 knot location measurements. The
variance on the noise added to the chord length measure-s 2

ni
(uj) 5 (1.5 sm)2.

ments was set to a constant value throughout, so as the
Sample Reconstructions number of measurements per view is varied, the SNR will

also change. This variance s 2
m was chosen to yield a SNRFor all of these results the true object is depicted by

solid lines, the initial guess is represented by the dash-
dotted lines, and the final nonlinear reconstruction is de-
noted by dotted lines. The sample reconstructions of this
section use the same data set used to generate the sample
reconstructions of Section 4.1. Figure 7 shows sample re-
constructions of the kite using the KBA to generate the
initial guess. The percent Hausdorff error decreases from
20.4% for the KBA to 8.9% for the KCBA showing signifi-
cant improvement from the initial estimates provided by
the KBA.

Monte-Carlo Simulations

Monte-Carlo simulations were also used to test the
KCBA. All simulations were performed using the kite
object. The Monte-Carlo simulations consist of 50 indepen-
dent reconstructions for each reconstruction scenario. In
each plot error bars denote the 95% confidence intervals
of the sample mean values. The initial estimates of the
vertices were generated using the KBA with the IID as-
sumed knot location noise model. Finally, unless otherwise
stated, Nq 5 15 hypotheses were retained at each step, five
uniformly spaced chord measurements over the range t 5
[21, 1] were taken per view, and the SNR on the chord FIG. 7. Sample reconstructions of KCBA, Nu 5 27 views, Nq 5 10

hypotheses retained, 10 dB SNR on chords.length measurements is set to 10 dB.
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the claim that a good initial guess is important for the
nonlinear optimization routine. Additionally, the knot lo-
cation and chord length measurements may be too noisy
to resolve this problem. As a result, the algorithm produces
results that have reconstruction errors on the same order
of magnitude as the initial estimate.

4.3. End-to-End System Experiments

For completeness, we also perform some experiments
based on an end-to-end system. We directly use the noisy
projection data as the starting point in the experimental re-
constructions, extracting our knot location observations
from thesedata. To extract the knot locations ineach projec-
tion, we find the ML estimate of the linear spline which best
fits the projection data. Further, we do not assume that we
know the number of knots in any particular view a priori.
Instead, we use the Akiake criterion [16] to determine this

FIG. 8. Performance as a function of number of chords used in the value. For each view uj we generate a dense set of noisy pro-
KCBA. jection data as described in Section 4.1. We then take as the

knot observations for the view at angle uj the knot locations
which minimize the following criterion:

of 10 dB for the case of 10 chord measurements per view
and the noise on the knot locations was set with (17) using

arg min
P, N̂v(uj)

1
2

im(uj) 2 m̂(P, uj)i2
L21

v
1 2N̂v(uj). (18)this variance.

The results are given in Fig. 8. The solid line represents
reconstruction errors of the initialization while the dashed

Here m(uj) are the noisy chord length measurements at
line represents final reconstruction error obtained from the

angle uj, m̂(P, uj) are the corresponding chord estimates
algorithm. As the number of chord length measurements

obtained from a linear spline defined by the vector P, of
increases, the difference between the reconstruction errors

length N̂v(uj) which contains the estimated knot locations
of the initial estimate and those of the final nonlinear

and corresponding chord lengths at these points. Thus P
reconstruction become more pronounced. This occurs be-

defines the linear spline fitting projection uj, and gives us
cause the KCBA uses the information in the chord mea-

the knots locations in that view. Rather than searching
surements to obtain the estimate of the vertices while the

over all possible values of N̂v(uj), we consider only the two
KBA (used to generate the initial estimate) only uses chord

possibilities N̂v(uj) 5 3 or N̂v(uj) 5 4 for tractability. Since
length to prune the possible discrete data association

the problem is nonlinear and our focus is not on the knot
hypotheses.

extraction algorithm, we initialize the minimization (18)
with the true projection spline parameters to avoid localReconstruction Error as a Function of SNR and Number

of Views. This section characterizes the effect of SNR minima and focus on the subsequent stages of the algo-
rithm.and number of views on the algorithm. Figure 9 presents

the results for both the initial estimate (generated from The Monte-Carlo simulations consisting of 50 indepen-
dent reconstructions of the kite test object were used tothe KBA) and the final nonlinear reconstruction for four

cases: (a) SNR 5 0 dB, (b) SNR 5 10 dB, (c) SNR 5 20 test the performance of the end-to-end system. The esti-
mates were generated with the KCBA using the KBA asdB, and (d) SNR 5 30 dB. As expected, each error curve

decreases as the number of views is increased and as the the initialization. Projection data were taken at 18 equally
spaced angles over the interval [08, 1808) with equallySNR is increased. Thus, the sample reconstructions of Fig.

7 are representative of the kind of error reduction possible spaced chord measurements over the range t 5 [21, 1] in
each view. The noisy chord length data were generatedwith the KCBA (note that in the previous section, the

reconstruction errors are more than halved compared to such that there were 50 measurements in each view. These
measurements were used to detect the knot location mea-the sample reconstruction of Section 4.1). As for the recon-

struction results at a SNR of 0 dB, the errors are also surements as outlined above. A subset of these noisy chord
length data (five equally spaced measurements per view)consistent with the previous results. The initial estimate

provided to the nonlinear optimization algorithm is too were then used along with the extracted knot observations
as input to the KCBA. The SNR on this subset of chordfar away from the true vertices of the object, supporting
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FIG. 9. Performance as a function of number of views used in the KCBA at different SNRs. (a) SNR 5 0 dB. (b) SNR 5 10 dB. (c) SNR 5

20 dB. (d) SNR 5 30 dB.

length measurements was set to 10 dB and, for simplicity, from sparse and noisy measurements of projection data.
Specifically, our techniques concentrated on reconstruc-the assumed noise model on the knot locations used the
tions that use the geometric-based information found invariance of method (18), which was empirically determined
measurements of chord lengths and knot locations to esti-by Monte-Carlo simulation.
mate the vertices of a polygonal object. We have shownReconstruction results are presented in Fig. 10. Even
that these algorithms can be used to produce quality recon-though the SNR on the chord length measurements was
structions in the face of limited and noisy projection data.the same as the cases when we used simulated knot location

The first algorithm, the KBA, focuses on techniques thatdata, the reconstruction errors are smaller. Therefore, the
are traditionally used in multitarget tracking problems toknot extraction process used in this end-to-end system
determine the position of targets. By solving a simultane-produced significantly better data than was assumed in the
ous discrete-valued hypothesis testing problem and contin-simulated knot location data used in the previous recon-
uous-valued ML estimation problem, we avoided the directstruction results.
nonlinear estimation of the vertices.

The second algorithm developed in this paper, the5. CONCLUDING REMARKS
KCBA, directly uses both knot location and chord length
data to estimate the vertices of the object. Thus, the KCBAIn this paper, we have developed two statistically-based

algorithms to reconstruct convex binary polygonal objects extends the work of the KBA by incorporating both the
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