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Multiscale Segmentation and Anomaly
Enhancement of SAR Imagery

Charles H. Fosgate, Hamid Krinvjember, IEEEWilliam W. Irving, Member, IEEE,
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Abstract— In this paper, we present efficient multiscale ap- In this paper, we apply a multiscale approach to the SAR
proaches to the segmentation of natural clutter, specifically grass jmage segmentation problem that exploits the coherent nature
and forest, and to the enhancement of anomalies in synthetic of SAR image formation. In particular, we build on the idea

aperture radar (SAR) imagery. The methods we propose exploit - . -
thpe coherent n(ature) of SgARy sensors. In particElarp they tgke of characterizing and exploiting the scale-to-scale statistical

advantage of the characteristic statistical differences in imagery Variations in SAR imagery due to radar speckle [6], [7], [10].
of different terrain types, as a function of scale, due to radar A SAR image measures the coherent sum of the returns from
speckle We employ a recently introduced class of multiscale g|| radar scatterers within each resolution cell (pixel). As the
stochastic processes that provide a powerful framework for de- oqq)tion of the imagery changes, the set of complex scatterers
scribing random processes and fields that evolve in scale. We o h luti Il ch . ivalentl
build models representative of each category of terrain of interest CONtributing to each resolution cell changes; equivalently,
(i.e., grass and forest) and employ them in directing decisions the relative contribution of each scatterer to the resolution
on pixel classification, segmentation, and anomalous behavior. cell changes. Since this is a coherent process, there can be
T;l_e_Scf"e'?”t?rt‘?gres?‘l’,i T,?Iturg Off OUQ_fTOde'tsta”OV_VS EiXtre_rer'y constructive and destructive interference among the scatterers.
efficient calculation of likelihoods for different terrain classifi- : i S -

cations over windows of SAR imagery. We subsequently use Consequent_ly, there is a_ staFlstlcaI variation in the imagery
these likelihoods as the basis for both image pixel classifica- Tom resolution to resolution (i.e., from scale to scale). These
tion and grass—forest boundary estimation. In addition, anomaly statistics depend on the distribution of the scattering elements
enhancement is possible with minimal additional computation. in the environment. More specifically, they depend on the type
Specifically, the residuals produced by our models in predicting ¢ the clutter being imaged.

SAR imagery from coarser scale images are theoretically un- To fullv exploit this phenomenon. we employ a recentl
correlated. As a result, potentially anomalous pixels and regions y exp P ! ploy y

are enhanced and pinpointed by noting regions whose residuals introduced class of multiscale stochastic models [1], [2].
display a high level of correlation throughout scale. We evaluate These models provide a powerful framework for describing

the performance of our techniques through testing on 0.3-m SAR random fields that evolve in scale. The framework uses a
data gathered with Lincoln Laboratory’s millimeter-wave SAR. pyramidal tree structure in which each node corresponds to
a pixel at a particular image location and resolution. The
offspring of the node correspond to the pixels, in the same
location, at the next finer scale. The statistical variability of

I N RECENT years, there has been a growing interégfe myltiscale imagery is subsequently captured by identifying
1 in synthetic aperture radar (SAR) imaging for applicas scale-recursive stochastic model for each clutter type.

tions ranging from remote sensing to surface surveillance, this paper, we hypothesize that the scale-to-scale variation
and automatic target recognition (ATR). For applications sugj gistinct clutter types will differ in a statistically significant

as these, the classification of various categories of clutignnher | this is the case, very efficient algorithms associated
is quite important, and their delineation (i.e., segmentatiofi the multiscale models can be applied to calculate likeli-
can play a key role in the subsequent analysis for targel,qs for the classification of individual SAR image pixels and
detection, recognition, and image compression. In light @fe subsequent segmentation of SAR imagery. We demonstrate
typical coverage rates (exceedingkn®/s) of an airborne o ility of the multiscale methodology for the segmentation
SAR, It is of great Importance to devise effl_C|ent (preferat_)lgf regions of trees and forest from open fields and grass. Such
parallellzz_;lble) algorithms  capable O_f meeting the _daunt”ﬁ%gmentation can be useful for ATR systems. For example, if
computational demands of the resulting data collection. densely forested region is identified, performing target detec-

) ) . _tion in such a region is unnecessary because high-frequency
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pixels whose prediction error residuals differ in a statistically
significant manner from those expected theoretically based

on the residual distribution of the corresponding multiscale 1,(0,0)

model. Such identification plays a key role in ATR where

the identification of man-made targets is critical. Furthermore, ——

since man-made objects typically exhibit very bright pixels, / / oD

one would expect to observe high scale-to-scale correlation in ‘ ' A

regions where targets are present. Given that the prediction 1,(1,0) T éll%ﬁ\

error residuals are calculated at a number of scales, it is b L \"i\\

possible to exploit the scale-to-scale correlation to further \%Q{O-MWQWMOJ o

enhance and detect targets. 1N T 0] A1)
In the next section, we describe the multiscale framework 100, T fdeal g2y

and its application to SAR image segmentation. In Section IIl, P00 Ao 62 163

we describe the segmentation of SAR imagery into different
clutter classes. In Section IV we outline a multiscale approa€i§- 1- Sequence of three multiresolution SAR images mapped onto a
for anomalous pixel enhancement. In Section V, we evalu Léadtzie‘,)The pixel value at scafe and position(k. 1) is denoted by
' ’_ 2—miN; ).
the performance of our approaches when applied to 0.3-m
resolution SAR imagery collected by the Lincoln Laboratorv

millimeter-wave SAR [5].
kg | PrilL, A IH, 1)

e r —_

Teran Madeli
kg |PAE, 1 LIl j

[I. MULTISCALE MODELS OF SAR IMAGERY ¥ |

This section describes a multiscale framework for analyzii
SAR imagery. Section II-A describes the mapping of mult
scale imagery onto quadtreestructure. Section 11-B describes
a class of stochastic models for describing and analyzi
multiscale processes that are mapped onto quadtrees. Se«
II-C specifies an autoregressive model for SAR imager
Section 1I-D describes the estimation of parameters within t
multiscale SAR models.

S beonad Hag

Threshaliding

A. Quadtree Interpretation of SAR Imagery Fig. 2. Sequence of steps involved in initial pixel classification. i) Creation
of multiscale sequence from the window region. ii) Evaluation of decision

The starting point for our model development is a multiscakeatistic/. iii) Thresholding to determine center pixel classification.
sequencely,,I;_1,---,1y of SAR images, wherel; and
Iy correspond to the coarsest and finest resolution imag%s

; . . ) . associated with one of the pixels,(k,1) corresponding
respectively. The resolution varies dyadically between imagps pixel (k,1) of SAR image .. As an example, Fig. 1

at successive scales. More precisely, we assume that the f'nl‘ﬁlsjts'trates a multiscale sequence of three SAR images, together

itr:alivlmagelo fha_s all res%wj\'foi gffxf‘s and ci\r}ssﬁ of an with the quadtree mapping. Here the finest-scale SAR imagery
x IV array of pixels (wi . or some ). Hence, is mapped to the finest level of the tree, and each coarse

1 1 —m —m 1
each coarser resolution imagg, has2=mJN X 27N pixels scale representation is mapped to successively higher levels.

anq resolutiore™é x 2™¢. Each p|erIm(k,l) 'S Ob.tamed by Furthermore, we use the notatidiis) to indicate the pixel
taking the coherent sum of complex fine-scale imagery ov

2™x2™ blocks, performing log-detection (computing 20 timesl%rammd to node:
the log-magnitude), and correcting for zero frequency gain . ,

variations by subtracting the mean value [3]. (Note that ttfe Multiscale Stochastic Models

imagery is converted to log-magnitude because the multiscaldn this Section, we describe a general multiscale modeling
recursive models described below have empirically provéramework [1], [2] and its applicability to the SAR quadtree
most effective when using this representation. Direct use i@presentation. Under this framework, a multiscale process
the complex imagery is impractical because of the variabilitg mapped onto nodes of @h-ordertree where ¢ depends

of the phase in the imagery. Also, the log-magnitude of thgpon how the process progresses in scalegtiiorder tree
imagery provides more well-behaved residuals, in a statistiégala connected graph in which eadode starting at some
sense, than the magnitude imagery. Accordingly, each pixelrimot node, branches off tg child nodes. As described above,
image I,,, corresponds to four “child” pixels in imagé€,,_;. the appropriate representation for a multiscale SAR image
This indicates that a fourth-order tree, quadtree is natural sequence is; = 4, a quadtree. Each level of the tree (i.e.,
for the mapping. Furthermore, each noden the quadtree can distance in nodes from the root node) can be viewed as a
be thought of as having associated with i8-tuple (m, k,1), distinct scale representation of a random process, with the
where m denotes scale an¢l,!) denotes two-dimensional resolutions proceeding from coarse to fine as the tree is
(2-D) image pixel location. That is, each noden the tree traversed from top to bottom (root node to terminal nodes).
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Fig. 4. Dyadic tree example illustrating the sets of nod&$ (epresenting
each scale of the process and the independent set of nodes (dashed boxes)
representing subregions of the entire process.

(a) (b) between two hypotheses: The pixel is part of a grdsg) ©r
forest () region. The log-likelihood ratio test for classifying
each pixel based on multiscale imagery is given by

¢ =10g [pr, 1y ytoir, IL, Io—1, ., Do | Hy)]
—1og [pr,, 1y _y,tolit, Lo Io—1,- - Do | Hp)]. (2)

By invoking the state space interpretation of multiscale im-
agery and exploiting the Markov property associated with the
multiscale models, the log-likelihood ratio test for the two
competing hypotheses can also be written as

0= 1og [p(oypecom) 1, (X(5) | X(57), Hy)]

(d)

Fig. 3. Boundary pixel refinement of typical SAR window region. (a) _ § _ =
Window region deferred due to boundary presence. (b) Region divided into Z log [px(s)lx(s“/)sz (X(s) [ X(s7), Hf)] (3)
guadrants, with ternary classification results marked for each subregion. (c), s

Classifications G, F, and D refer to grass, forest, and defer, respectivelye€: Px(s)|x(s¥),H, an_d Px(s)|x(s7),4, are the Condlthnal
Note that9/16 of the window region is classified as grass; thus, the pixalistributions forx(s) given x(s¥) for the two hypothesized

is classified as grass. models. In the next section, we will show that this likelihood
test can be efficiently computed in terms of the distributions

A coarse-scale shift operato¥, is defined to reference thefor w(s) under the two hypotheses.

parentof nodes, just as the shift operatarallows referencing

of previous states in discrete time-series. The state elementg akcale-Autoregressive SAR Model

these nodes may be modeled by the coarse-to-fine recursion

(d) Regions still classified as boundary further subdivided and reclassifi§/.e

In this paper, we focus on a specific class of multiscale
x(s) = A(s)x(s7) + B(s)w(s). (1) models, namely scale-autoregressive models [6], [7] of the

In this recursion,A(s) and B(s) are matrices of appropriate '™

dimension and the termw(s) represents white driving noise. I(s) = ai(s)I(s7) + az(s)(s7)
The matrix A(s) captures the deterministic progression from IR ‘ R 4
node sy to nodes, i.e., the part ofx(s) predictable from +oar()I(T) + wls), ails) € (4)

x(s7), while the termB(s)w(s) represents the unpredictableyhere.,(s) is white driving noise. For homogeneous regions
component added in the progression. An attractive featg texiure, the prediction coefficients (the(s) in (4)) are

of this framework is the efficiency it provides for signalonstant with respect to image location for any given scale.
processing algorithms. This stems from the Markov properfy, is, the coefficientsy; (s), - - -, ar(s), depend only on the

of the multiscale model class, which states that, conditiongdye of node (denoted byn(s)), and thus will be denoted by
on the value of the_state at any nosiethg processes defineda1 m(s)s s @R.m(s)- FUthermore, the probability distribution
on each of the distinct subtrees extending away from nodg, w(s) depends only omn(s). Thus, specifying both the
are mutually independent. o scale-regression coefficients and the probability distribution
_ For th_e application of segmenting different types of cluttgp, w(s) at each scale completely specify the model.

in SAR imagery, a multiscale model can be constructed for po|iowing the procedure of state augmentation used in
each clutter class. To specify each model, it is necessarycighyerting autoregressive time series models to state space
determine the appropriate coefficients in the matriés) mogels, we associate to each noda R-dimensional vector
and B(s), and the statistical properties of the driving noisgt pixe| values, whereR is the order of the regression in (4).
w(s). Once the models have been specified, a likelihood ratige components of this vector correspond to the SAR image
test can be derived to segment the imagery into the cluifke| associated with node and its first X — 1 ancestors.

classes. . _ Sdpecifically, we define
Consider the problem of segmenting regions of forest an

grass in SAR imagery. For each pixel in the image, we choose x(s) = [I(s) I(sy) --- I(s7%H]%. (5)
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The recursion in (1) takes on the form o1
A1,m(s) A2,m(s) " QAR—-1,m(s) GR,m(s) 008y

1 0 . 0.08F

x(s)=| 0 Lo 0 |x(s7)
. " . 008

0 x 0 1 0 008

1 0.04

0 ooal

—+ 0 w(s) (6) 0.02F

0.0t

0 Q

Thus, for a model of the form (4) or equivalently (&)jn
(3) can be calculated using

px(s)|x(57)(X(3) | X(SW)) = pw(S)(W(S)) (7) 009

where oo8r

W(S) = I(S) - [al,nl(s)l(si) + 1+ aR,rn(S)I(SWR):I (8) o:os—

andp,,(s)(W(s)) is the probability density function fow(s). oosr

By substituting (7) into (3), the test statistic can be written aoaf

/= Z log [pw(s)mg (w(s) | Hg)] 0202:

= 10g [pu(sa, (wis) | Hp)]. 9)

The likelihood test can thus be computed directly from the (b)

prediction error residualgp(s). Fig. 5. Histograms of residuals in prediction of second-finest resolution for

(a) Grass model. (b) Forest model. Solid line represents (a) log-Rayleigh

e . distributi d (b) Gaussian distribution.
D. Identification of Multiscale Models of SAR Imagery istribution and (b) Gaussian distribution

In order to use the previously described multiscale method-

ology, we need to identify the model parameters for eagfycorrelated. We found that by increasing the regression order
clutter class of interest, namely the model ord&rthe model R = 3 for both grass and forest, we could achieve a
coefficientsa; s), - -, ar,m(s) for €ach scale, and the prob-j5\yer probability of misclassification in homogeneous regions
ability distribution forw(s) at each scale. To accomplish thisyf terrain. Minimal performance gains were noted for larger
we choose a homogeneous training region of SAR imagefygression orders as the scale-coefficients become negligible.
representative of each clutter class being modeled. This regjqance, the results presented in Section V were achieved using

is subsequently processed to produce a sequence of imagegird order regressioni = 3) for both the grass and the
Ir,Ir—1,---,lo. The regression coefficients for each scale t5rest models.

are obtained by a standard least-squares minimization To obtain a statistical characterization of the prediction error

residuals (theuv(s) in (4)) of the model at scate:, we evaluate
a,, = arg min { Z [I(s) — a1 I(s7) the residuals in predicting scate of the homogeneous test
am €IRY {s|m(s)=m} region. In particular, we use the,, found in (10) to evaluate
) all {w(s)|m(s)=m} in (8). We then choose a theoretical dis-
- = aleI(sﬁR)] } (10) tribution that provides a good fit to the normalized histogram
of these residuals. In Section V-A, we define the theoretical
where distributions chosen for the models for grass and forest and
graphically illustrate their accuracy in statistically representing
&y =[a1,m G2m - aR,m]T- the prediction error residuals.
The regression lengtR, may be selected in a manner similar
to that by which standard autoregressive (AR) model orders are IIl. NATURAL CLUTTER SEGMENTATION
chosen. For instance, one may also increfdsetil the statis- In this section, we describe a procedure for the segmentation

tical assumption of decorrelation throughout scalexg§) is of SAR imagery consisting primarily of natural clutter. The
satisfied and/or until algorithmic performance is acceptablgarting point for this development is the construction of multi-
In [6] it was experimentally shown that for a regressioscale SAR models for different clutter types as described in the
length of one for the grass model, the residuals are spatighiseceding section. We illustrate the approach by focusing on
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Fig. 6. Statistical results used in determination of threshold values for each region size. (a) Histograms of valves df28 pixel square homogeneous
regions of forest (dark) and grass (light.) (d) Gaussian estimatésfaf each terrain category (solid line for grass and dashed for forest). (b), (e) Similar
results for 64 pixel square regions. (c), (f) Similar results for 32 pixel square regions.

distinguishing forested regions from grass. This methodology, refine the subsequent classification. Terrain boundary prox-
however, may be extended to include delineation of additionatity is detected via a simple modification of the decision

clutter types. made based on the test statisfic Specifically, rather than
comparing/ to a single threshold to decide on a grass-or-
A. Basic Structure of the Segmentation Procedure forest classification, we compafeo the two thresholda and
b as follows:

We employ the multiscale models constructed for forest ¢ > Classify as grass
and grass in the preceding section to classify individualg > ¢ > b Defer decision (possible boundary presence)
pixels and subsequently segment regions of clutter. One could ¢ <« § Classify as forest
also postulate a spatial random field model for each clutter
category, capturing, for example, the fact that the classificationThe resulting test structure is illustrated in Fig. 2, in which
of a given pixel is very likely to be the same as its neighboibe box designated “defer” corresponds to the test statistic
[4]. The use of such a model, however, would likely increadalling between the two thresholds. In such cases, a refinement
the computational complexity of the classification algorithrarocedure, described below, is used to classify the pixel
considerably. Consequently, we employ a simpler approagdtence, the designatiatefe)). As we describe in Section V-A,
that exploits the efficiency of multiscale likelihood calculatiofhe choice of thresholds andb are determined by examining
for scale-autoregressive models. Specifically, we classify ea@mpirical distributions of for windows containing boundaries
individual pixel based on a test window of pixels surroundingith varying percentages of forest and grass.
it.

The size of the window used in the pixel-by-pixel classifi- ) o
cation must be judiciously chosen. A larger window provided: Deferred Pixel Classification
a more accurate classification of homogeneous regions. Usindgror pixels where the classification decision has been de-
larger windows, however, increases the likelihood that the wiferred, it is necessary to determine the appropriate classifi-
dow contains a clutter boundary. Thus, keeping the windosation. The structure of the multiscale likelihood calculations
size as small as possible is also desirable. As demonstratedllows us to perform this additional task as a replication of
the next section, by examining the empirical distributiod of the classification procedure depicted in Fig. 2 at a hierarchy
(2) over windows of various sizes for homogeneous region$ scales. Recall that the objective of this process is to
of grass and forest, we can determine the trade-off betwegassify the center pixel of a window as either grass or
classification accuracy and window size. This, in turn, allowfsrest. Consequently, in a region that is likely to contain
us to choose the smallest window size that yields adequatéboundary, it is necessary to determine on which side of
performance in classifying homogeneous regions of clutterthe boundary the center pixel lies. Under the assumptions

Whenever a clutter boundary is present within a test withat, at most, one terrain boundary resides within the window
dow, the validity of the center pixel classification is questiorand that this boundary is relatively smooth, the center pixel
able. This effect results in a classification bias near boundariesay be classified with a high level of confidence by merely
To address this problem, we devise a method to detect thetermining which of the two hypothesized clutter types
proximity of grass—forest boundaries as well as a procedwecupies the majority of the window.
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The majority rule decision is accomplished in a recursive
manner by first independently considering the four quadrants
of the initial window region. A classification procedure similar
(the only difference being the thresholdsand b) to the 0
one described in Section IlI-A is performed on each of -woof
thesequadrants with the classification assigned to the entire  _, 0|
corresponding region. This divide-and-conquer approach is
repeated recursively on each deferred subquadrant until one
of two criteria is met. (@)

1) From the classification of the subregions of the initial
window, a majority rule decision for the windowed 500
region may be determined.

2) The subregional size becomes so small that a statistically  °
significant decision may not be made.

In the latter case, a majority rule decision is made based
solely upon the regions that have been classified up to that : : v ;
point. In the event that a majority rule decision may not be ®% 10 = @ 40 s e 7 s s 1o
made at either of these points (e.g., half of the classified area
is grass, and the other half forest), we assign a center pixel
classification of grass (note that it should matter very little .,
which classification is assigned in this case since the center
pixel likely lies very near a terrain boundary). Clearly, the
assumptions made above will not always be met. We have |
found experimentally however, that by restricting the size of
the initial window, we may not only reduce the likelihood that |
the window contains a terrain boundary, but also increase the N SR S S S S S S
likelihood that the boundary meets the above criteria. °

This “progressive refinement” around boundary regions is (c)
depicted in Fig. 3. In each frame, the pixel of interest isig. 7. Mean value of the test statisfizersus percentage forest in window

exaggerated by the solid square box in the center of the imag@i_on. Frame (a) displays plots of the test statistic mean (dashed line) as
ell as plots of its plus and minuds points (solid lines) for a 128-pixel

Fig. 3(a) represents the original windowed region about thgqow. (b) and (c) display similar data for 64- and 32-pixel window sizes,
center pixel. Based on the test illustrated in Fig. 2, this windosspectively.

has been identified as potentially containing a grass—forest
boundary. Note that the correct center pixel classificatianodelsi; and A, ¢ may be calculated as
for this region is grass, yet due to the boundary proximity,

2000

1000

_3000 L 1 " 1 L L s L "
0 10 20 30 40 50 60 70 80 90 100

—500|

the classification has been deferred. Figs. 3(b)-3(d) display t= Z 10g [pu(s)ian (w(s)|M1)]
the successive subdivision and reclassification of the entire #6825
windowed region F, G, and D represent classification as — 108 [Pus) s, (w(s)[M2)]. (11)

forest, grass, and defer, respectively), where at each staigce we do not have a full set of measurements (i.e., the
only the regions deferred at the preceding stage are subjgek does not proceed up to the root node), the measurements
to further examination. Note that in Fig. 3(d), we have mehay be split into independent sets, as distinguished by the
at least one of the stopping criteria (i.e., all subregions hadashed boxes in Fig. 4. Clearly, whereas the evaluatiof of
been classified), and may classify the center pixel accordiftg the entire region involves the calculation of individual log-
to the majority rule of the terrain classifications within théikelihoods over the entirety of se® and Sz, the evaluation
window. We see that /A6 of the region has been classified aef £ over each subregion involves the summation mudsets
grass; hence, the center pixel is ultimately correctly classifiefl S, andS;. Hence may be evaluated in a computationally
as grass. attractive manner by merely summing existing quantities. The
We mentioned above that the structure of the multiscaiéeas presented in this example are easily extended to the
likelihood calculations allows us to perform the refinemerftuadtrees used in SAR image representation.
procedure with minimal further computational cost. We il-
lustrate this point for a process defined on the dyadic tree IV. ANOMALY ENHANCEMENT
displayed in Fig. 4. In this figure, the nodes at each scaleThe methods described in the previous section address
of the process are represented by the $ts i =1,2,3. two of the principal objectives of this paper, namely, terrain
As previously mentioned/ may be calculated as in (9) byclassification and terrain boundary estimation. In this section,
summing the individual log-likelihood differences. Hence, fowe discuss a method aimed at the third objective discussed in
the process in Fig. 4 and for the discrimination between terrafection I, namely, the use of terrain classification to enhance
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() (d)

() (h)

@ @ (k) V)

Fig. 8. Segmentation results for three (top row to bottom row) 512 pixel square images of 0.3-m resolution stripmap SAR data. The black line in each
frame represents the eyed estimate of the grass—forest boundary. (a), (e), f) Original SAR image. (b), (f), (j) Segmentation results witHo(g)deferra

(h), () Preliminary classifications using double threshold (dark greeforest, olive green= grass, light greern= deferred decision). (d), (h), (I) Final
segmentation after refinement procedure.

anomalies (i.e., to make anomalies due to cultural cluttethere ji(k,l) and 6(k,l) represent the background sample

and targets to stand out from their background). Enhanaeean and standard deviation, respectively. Anomalous pix-

ment of cultural clutter image regions provides the potentials are identified as outliers with respect to this estimated

for improvement in the detection of potential target regionsackground distribution.

(i.e., man-made objects) through simple thresholding. That

is, higher probabilities of target detection are possible by

thresholding the enhanced imagery. A. Multiscale CFAR Statistic

A commonly accepted method to enhance anomalous pixelrhe ideas above suggest a method for identifying poten-

regions is the constant false alarm rate (CFAR) procedure [ghily anomalous pixels using what can be thought of as a

[9]. In this procedure, a local sample mean and standard dey{gltiresolution CFAR statistic. This statistic may be viewed

ation are estimated from an annular region around each pixgl a synthesis of our multiscale modeling approach with the

to characterize the second-order statistics of the backgroupgbthod described in [10]. Specifically, suppose a region has

In particular, the CFAR statistig(k,!) for pixel I(k,) in the peen identified as consisting of grasslike terrain either by

finest-scale log-detected (decibel) image is defined as  the segmentation method described in the preceding section
or by some other means (such as from prior maps of the

(12) region of surveillance). Now, consider a particular pixel in
the finest-scale SAR imagery of that region. As described in

o1y = 1D = D)

Q>
~—~
o
e
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Section Ill, we can associate with that pixel a set of multiscagetof statistics rather than one. In particular, we can consider
SAR imagery over a window centered at that pixel. If we ldboking for specific scale-to-scale signatures in the residuals
s. denote the node associated with the central pixel unde(s.). Indeed, as the results in [6] and [10] indicate, the

investigation, then using the parameters associated with giresence of a few dominant scatterers in man-made objects
grass model, the residuad(s.) in (8) represents the errorwill result in scale-to-scale variations in SAR imagery with

in predicting the central pixel at the finest resolution based more deterministic behavior across scale and thus do not
on the SAR imagery atR coarser resolutions. From ourobey a simple white noise driven autoregressive model. If we
multiscale model we have a theoretical mganand variance can predict this scale-to-scale behavior, we can seek telltale
p. associated with this residual, and can thus computesi@natures in the resulting residuals. A simple example of this

statistic,{(s.), that is analogous to the CFAR statistic is the statistic
_ wlse) = e 13)  calse) = [Clse) o) + L) o+ s ™)
((se) Vo (13) 16)

As with the CFAR statistic, this statistic exploits the char- Comparing (15) and (16), the difference is that in (16)

acteristics of the background imagery. In particular, Wh%e sum before squaring. This corresponds to looking for a

the pixel classification is that obtained using the SEIMEQs sistent over- or underprediction of pixels at successive

tation procedure in Section Ill, we note that it is base%solutions, as one might expect for a single strong scatterer. In

on a window of Imagery s_urroundmg the pixel of mterests ch a case the statistig(s.) would give a significantly larger
As a result, the classification characterizes the backgrou@ lue thanci(s.). In addition, c2(s.) would attenuate the
1\2¢c/- s C249¢

Accordingly, we subtract the background mean associated WEects of other types of scale-to-scale behavior. For example

the corresponding terrain model from the statistical value (e e signs of the successive values (GEhange throughout

model assumes zero-mean residuals), and normalize by y&gle, theres(s,) will be much smaller tham (s.). Thus the

co_rrr;,\ spon(ltlt{ng tlerraln modtelfstancliard_tgewanon. tes th statistic in (16) is far more selective in what it enhances, which
€ mulliscale segmentation algonthm computes the b o ¢ yaiue if we have accurate models for the type of

_?_Et'ovn reirrrc])r reS|duaIsbrequ|r%d fto dettﬁ rrrzlhne thff' stlag_st'l[c.él catterer distributions we expect in objects of interest.
€ variancép. may be found from the theoretical distnbu- - o 4 statisticse; (s.) and ¢x(s.) both provide means

tion specified by the multiscale terrain models. Furthermorgf identifying and enhancing pixels that exhibit anomalous
because the residuals are computed at a set of scales, the S Iﬁ:

) L . avior. They both involve a squaring, in some sense, of the
to-scale behavior of the CFAR statistic can be charactenzg L y 9 g

d dtoi detecti ¢ Specifically. f le-to-scale statistics nevertheless. This will enhance pixels
and used fo improve detection performance. Speciically, 10y 5.6 oytliers in the positive and negative tails of the model
nodes that ism tree levels up from the finest resolution of th

| in (8) and .t%istribution. Due to the nature of pixels corresponding to man-
process, we can aiso °°mp“.'m3> as n (8) and compare i made imagery, we are only concerned with the positive tail. In
to the corresponding theoretical variangg from scalem of

h ltiscal del. Specificall lizing (13 other words, we are only interested in those values,($.),
Coiqr;lljt;scae model. Specifically, generalizing (13), we ©a8r example, that display a consistent overprediction. Hence,

we consider the third statistic

wis
)= 1(9 ) (14)  ealse)=[C(5e) + ClseW) + CsA%) + - + (77 72).
m a7
for sth on them level from the bottom of the tree. Note that inThis statistic will enhance only those pixels that display a
(14) we disregard the mean since for all scales of each modehsistent overprediction and not those displaying a consistent

we assume zero-mean residuals. underprediction. As a result, we may simply threshold this
statistic, as with the standard CFAR statistic, to identify
B. Combined Multiscale CFAR Statistic potential targets of interest.
By considering the set of random variables acquired by eval-
uating (14) at multiple SC&|€$§(S),C(SW), .. .7C(37P—2)}’ V. EXPERIMENTAL RESULTS

we allow for several methods of obtaining statistics to enhanceln order to evaluate the performance of our approaches
the identification of anomalies. For example, one possible SAR image segmentation and anomaly enhancement, we
statistic is the sum of squared values of these random variatfese applied them to 0.3-m resolution horizontal-horizontal
_ _ HH) polarization SAR data gathered over Stockbridge, New
cuse) = CQ(SC) +C2(3‘ﬁ) +C2(3‘272) E(ork), F\)/vith Lincoln Laboratorgy’s millimeter-wave SAgR [5]
o+ G (15) We independently evaluate the segmentation and anomaly
ancement performance in Sections V-A and V-B, respec-

where P represents the number of scales in the stattgl\?:ly

augmented multiscale model.

As with the standard CFAR statistie; (s.) will enhance .
any behavior that deviates significantly from that expected f6r S€gmentation Performance
nonanomalous pixels. However, in contrast to the standardWe begin by describing the construction of the models on
CFAR statistic, we can consider alternatives since we havevaich the subsequent experiments are based in Section V-
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Al. In Section V-A2, we discuss the details of the algorithm
design, namely the setting of window sizes and decision
thresholds. In Section V-A3 we then illustrate the performance
of our algorithm for the main objectives of the paper, namely
classification and segmentation.

1) Model Construction:The first step in applying our meth-
ods is the construction of multiscale models for SAR imagery
of grass and forest from homogeneous regions of terrain. We
have chosen to use a third-order regression for each model
and to build models for the prediction of each of the three
finest resolution images (x 6, 26 x 26, and4é x 46, with
6=0.3m). As described in Section IlI-B, this implies a third-
order model with a four-level tree, and for the prediction
of each of the three finest resolution images there are three @
coefficients, a;, a2, az, t0 be specified. Using the method
described in Section II-D, we determined the coefficient values
given in Table I(a) and (b). Note that the coefficients for the 008
forest model are consistently larger, indicating higher scale-
to-scale correlation. This is consistent with what one would 008
expect based on the interpretation of scale-to-scale correlation
as capturing information about the distribution of scatterers
in the image: Grassy regions tend to have larger numbers  oes
of equivalued scatterers and, thus, since greater numbers of
scatterers migrate out of each resolution cell as we move from
scale to scale, we would expect that SAR imagery of grass to0  oa
have less scale-to-scale correlation.

To complete the models, we specify the distributions for °
w(s) in (4) for each scale and each terrain type. For imagery (b)
of grass, a log-Rayleigh distribution

0.07 T T T T T T T T T

0.04

0.02

Fig. 9. () lllustration of swath (hashed) of widfignored in misclassifica-
tion probability calculations. (b) Probability of misclassification versus swath
Pu(s)(W(s)) = kexplk W(s) — v — ecxp(k W(s) — )] width on either side of boundary for grass—forest boundaries with average
illumination (solid) and all levels of illumination (dashed).

b lni(l)O)
v 2 0.577215 66 (Euler's constant) On row (i) of Fig. 6, we display histograms of the value

of the statistic/ computed over homogeneous regions of

provides a good fit at each scale, while Gaussian distributiop@th terrain categories using windows of varying size. In
are a better choice at each scale of the forest model. In parfigldition we have also displayed, on row (i), the corresponding
ular, the standard deviations chosen for the Gaussian densiti/ssian fits to the histograms. For computational conve-

as follows: powers of 2 (128, 64, and 32 pixels square). By noting the

statistical properties of for these window sizes, we gain
§x6: 53724, 26x26: 6.1811, 46 x 46 : 6.6056. the ability to cho_o§e_ both_the largest and sm_allest window
sizes for our subdividing refinement procedure simultaneously.

. . ' As mentioned in Section IlI-A, our choice of initial window
Rather than following statistical goodness-of-fit tests ta_ . . e .
) : S . Size involves a trade-off between misclassification probability
determine the theoretical distributions for our residuals, we : . N
; . . ' 1IN homogeneous terrain regions and the likelihood of the
relied on the results of Irvinget al. [6]. In their work, it

was shown that the log-Rayleigh distribution provides avr\]/indow containing a terrain boundary. From the histograms
acceptable fit for regions of grass. We found, however, tha?d associated Gaussian fits in Fig. 6(a) and (d) it is apparent

the log-Rayleigh distribution dichot provide as good a fi fHat a 128 pixel square window size yields a sufficiently small

4 : : L robability of misclassificationin homogeneous regions of
for regions of forest as did a Gaussian distribution. Examples_ . . . _5
> . : . ) errain (approximatelyi.5 x 10~°). Furthermore, for the 32
showing histograms and the resulting fits are provided |n . . . : .
pixel square window size (Fig. 6(c) and (f)), there is certainly

Fig. 5. e :

: I . ... still distinguishing information between the two classes yet a
2) Algorithm Specification:In order to specify our classifi- 9 9 y
cation and segmentation algorithm, we need to set 1Although the Gaussian distributions on row 2 do not seem to provide

. . . adequate fits for the histograms in row 1, tli®provide the ability to estimate
1) the window size around each pixel used to perform eagfa probability of misclassification (at each hierarchical level of the refinement
classification; procedure) for larger sample spaces. Otherwise, from the information given,

2) the thresholds at each stage in the hierarchical proced%%;vr(])éjl(db)egpgrécggoestlmate the probability of misclassification for frames
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reduction in statistical significance, as is seen by the increasgpe is completely characterized by two numbers, namely, the
overlap in the histograms. Further subdivision in windoyrobabilities of each type of classification error. Note that if
size (i.e., 16 pixel-square) provided minimal distinguishingie knewa priori that a region is homogeneous, then, based
information between the two classes. Accordingly, for then Fig. 6(a) we would already know that the probability of
results presented in this paper we have chosen an origindkclassification of either type is extremely small. In fact,
window size of 128x 128 and considered subdivisions dowtior the Gaussian probability distributions shown in Fig. 6(d),
to a size of 32x 32 for subsequent reclassification of deferredith a single threshold set at a value of 910, the probabilities
pixels. of misclassifying forest as grass and grass as forest are both
If we were only considering classification of homogeneouwspproximately equal td.5 x 10~°. However, since we wish
regions and thus only needed to set a single threshold leteluse our algorithm in contexts in which there may be
for each size window, then Fig. 6 would provide all of théoundaries, a fairer test involves using the complete hierar-
information required to accomplish this. However, as we hawhical decision procedure. To calculate the misclassification
indicated, we also wish to ensure good performance in classiobabilities for this algorithm, we have performed tests on 20
fying pixels near tree lines and, consequently, have improved2—pixel square segments of SAR imagery, ten consisting of
boundary estimation. In order to see how the presence ohemogeneous imagery of forest and ten of grass. We note that
boundary within a window changes the distribution of ththis set of imagery used in performance testing is completely
resulting test statistic, in Fig. 7 we display plots of the me&andependent of the training set used in model creation. The
of £ plus and minus2o calculated for windows containing resulting misclassification probabilities were approximately
varying percentages of foréstAn immediate point to note is 0.005 for misclassifying grass as trees and 0.011 for mis-
that the presence of even a modest amount of “contaminatiaiéssifying trees as grass. The correspondingconfidence
by forest pixels can change the behavior of the test statisititervals for these probabilities are approximately 0.01 for
significantly. As a result, an effective bias is introduced imisclassifying grass as trees and 0.02 for misclassifying trees
the resulting segmentation when no deferred classificaticas grass.
are allowed. As a consequence, it is essential that grass—foregthe next set of experiments focuses on evaluating the
decisions at the level of the full 128128 pixel region be performance of our algorithm in terms of segmentation (i.e.,
made only if there is overriding evidence for one of these twin terms of the accuracy in estimating the boundary between
hypotheses. Similarly, the decisions at the subsequent 64 forest and grass). Fig. 8 displays the results of applying our
and 32x32 pixel regions must exhibit similar characteristicsalgorithm to three images, top row, middle row, and bottom
The thresholds were first approximated using Fig. 7, theow. The black line in each frame represents a hand-picked
refined after experimentation to maximize performance. Festimate of the boundary, and dark and light regions represent
example, as mentioned above, we necessitate overriding egirain classification as forest and grass, respectively. Each row
dence of homogeneity to classify definitively as either grass @#splays the segmentation results for the SAR image pictured
forest. As a result, we started with grass and forest threshojdshe left-most frame of each row. The other three frames of
for the largest 128« 128 pixel region sizeq andb) of 1800 each row display the classification results using (in order) a
and —2000, respectively. These thresholds are approximatgiyigle threshold for the full 12& 128 window, two thresholds
the highest and lowesko points in Fig. 7(a). We found (4 and ) at the full window size, and the full hierarchical
experimentally, however, that by relaxing these thresholds w@proach described in Section Ill. Comparing the second and
were able to obtain a gain in performance. Hence, we obtaine@irth frames for each image, we first note that restriction to a
the pairs of thresholds in Table II. As before, a value above tBihgle threshold in the 128128 window likelihood test leads
grassthreshold leads to classification as grass, whereas a vaiyéa bias in the estimated boundary; the tree line is pushed
below theforestthreshold leads to classification as forest. Anto the grassy region. However, when the full hierarchical
value in between the two thresholds again results in a deferiggtem is implemented, the final classification presents a more
classification. If a deferred decision is made at the 2828 accurate identification of the boundary.
or 64 x 64 pixel levels, we continue down to the next level of |n addition, we have computed a quantitative measure of
classification. If it is made at the 32 32 region, we classify boundary estimation accuracy by defining a paramétand
that region as defer and stop. However, as we have descrilegéhputing the empirical probability of misclassification of
in the preceding section, these classifications are used solgilels that are more thahpixels away from the true boundary.
to determine the classification of the center pixel under testrhus ford = 0 we consider the misclassification probability
3) Classification and Segmentation Performand®e apply for all pixels in the image. Asd increases we ignore a
our segmentation technique to SAR imagery to investigaéath of the image, of widthl, around the boundary (see
its performance in terms of accuracy of classification arglg. 9(a)). We would thus expect that the misclassification
segmentation. The accuracy of classification of forest and graggbability would decrease with increasidgapproaching the
pixels embedded in homogeneous regions of the same tergginogeneous misclassification probability. The faster the drop
2The upswing in the mean value 6fin each case at approximately 009N Misclassification probability witd, the smaller the effective
forest may be attributed to the large number of bright scatterers generagtor in estimating the boundary. If this algorithm were to be
found along terrain boundaries. The correlation structure of these scattefgyRowed by a target detection step aimed at looking for targets
tends to drastically alter the statistical value ofAs the window passes tﬁ@t are partially obscured by a tree-line, producing an accurate

this highly illuminated region (i.e., becomes 100% forest), these scatterers ’ .
longer affect the value of. determination of the boundary would enhance the performance



FOSGATE et al. ENHANCEMENT OF SAR IMAGERY 17

@) (b) (©

(d)

() (h) @

Fig. 10. Anomaly enhancement results for three (top row to bottom row) 512-pixel square images of 0.3-m resolution stripmap SAR data. (a) Original
SAR image. (b) CFAR Enhanced image. (c) Multiscale enhanced image.

of that subsequent detection step. In Fig. 9(b) we display thethe ATR environment, and accordingly, compare it to the
results for our algorithm based on regions of Lincoln SARtandard CFAR enhancement algorithm used in practice. As
imagery containing grass—forest boundaries with average ttest data, we use three HH polarized 0.3-m foot resolution SAR
line illumination (solid line) and regions containing boundarieknages, each containing a different type of cultural clutter. We
with all levels of illumination. From these tests, we see that fdfustrate the potential of our approach by presenting side-by-
boundaries with average illumination we are able to determifiél® comparisons with CFAR-enhanced imagery. We further
the boundary within approximately 7 pixel) with a proba- dem_onstrate the potential by prowdlng_ a quahta_ttlve measure
bility of misclassification of 0.02. However, if all iIIuminationsOf pixel enhancement over t"".rg?t regions. While neither of

. . o ._these methods yields the definitive performance measure of
are considered, we can isolate the boundary to within 27 pixels

. o . P a receiver operating characteristic (ROC) curve, tly
(8m) with the same probability of misclassification. however, demonstrate the promise that a multiscale-based

B. Anomaly Enhancement anomaly enhancement technique affords.
1) Statistic SpecificationThe three 512—pixel/square SAR
We describe here the methods we have chosen to measiigges used as test data are displayed in Fig. 10, left column.
the performance of the multiscale anomaly enhancement tegfach image contains at least one man-made object. The highly
nigue described in Section IV. We will focus on performanceeflective portion of each object is outlined by the black boxes
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Fig. 11. Anomaly enhancement performance plots for the three images in Fig. 9(a)-(c). Number of pixels exceeding a threshold value is plotted
versus threshold.

TABLE | TABLE 1
MOoDEL COEFFICIENTS FORTHIRD-ORDER REGRESSION INSCALE. (a) THRESHOLD VALUES FOR VARIOUS WINDOW SIZES. THESE VALUES SERVE AS
GRASS MODEL COEFFICIENTS. (b)FOREST MODEL COEFFICIENTS. THRESHOLDS IN THE TERNARY HYPOTHESIS TEST FOR CLASSIFICATION AS

GRASS, FOREST, ORDEFER AT EACH HIERARCHICAL LEVEL OF THE ALGORITHM.

Grass model coefficients
Resolution ” a [ as l as | Region Size ” Grass Threshold | Forest Threshold |
x4 0.5263 [ 0.0720 | —0.0029 128 1000 ~_-1600
26 x 26 || 0.3135 | 0.0313 | —0.0064 64 500 -800
45 x 45 || 0.2278 | 0.0169 | —0.0006 32 50 0
@
For each image displayed, we evaluate both the CFAR
Forest model coefficients statistic and the multiscale statisticz(s.). The prediction
Resolution ” a l a3 [ a3 error residuals were calculated using a third-order scale-
autoregressive grass model spanning four scates ¢). In
o x4 0.5842 | 0.1257 | 0.0669 each row, the second and third frames display the enhanced
26 x 26 0.5005 | 0.1222 | 0.0683 images using the CFAR enhancement method and the multi-
46 x 46 0.4584a | 0.1292 | 0.0250 scale enhancement method, respectively. In each of the three
rows, it appears that the multiscale enhancement technique
(0) increases the visibility of cultural clutter regions over the

CFAR enhancement method. We see below that for these
in each frame. Since these highly reflective regions typical@xamples this is in fact the case.
set man-made objects apart from natural clutter, we focusThe blocky appearance in each of the multiscale enhanced
on the performance of each algorithm exclusively over thegsages in Fig. 10 is an artifact of the multiscale structure of
outlined image regions. the calculation of:3(s.). This is apparent by considering, for
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TABLE Il a given threshold, versus threshold. Clearly, this measure
PEAK AND AVERAGE VALUES OF EACH NORMALIZED STATISTIC OVER TARGET il provide a performance curve that begins at some value
REGIONS (OUTLINED IN BLACK) FOR IMAGERY IN FiG. 10(@), (d), AND (g). (corresponding to the total number of target pixels) and
Normalized Statistic monotonically decreases to zero. The rate at which the curve
CFAR c3(se), (P=4) | c3(se), (P=6) decreases provides a measure of performance (i.e., a “higher”
Image | Doak Amfgc Deak | Averago Poak ] Average | cyrve s indicative of increased ability for detection).
Eiiﬁf ﬁ;g 7{,4;2 321) 2% ééz 191;72 ié‘; ~ We evaluate this measure for the three normalized statistics
Figure 10-a] 6.62| 105 | 810] 132 | 0.82 To7 listed in Table Il over ea_ch of the. test images in Fig. 10.
The results for the three images Fig.10(a), (d), and (g) are,
respectively, displayed in Fig. 11(a)—(c). It is apparent that the
. . ) i multiscale technique provides better enhancement of the target
example, two adjacent pixels at nodgsands; in the finest- oqions than the CFAR algorithm. For example, for the L-
scale image for whicls,y = s»7. Clearly, cs(s1) andcs(s2)  shaped structure in Fig. 10(g) the plotted results in Fig. 11(c)
share the same ancestry and will, as a result, display a highg,, that using the multiscale enhancement technique with a
level of correlation th;'m f|ne25t-scale pixele; and sq, for 4,1 scale model, we may set a threshold value of 8 and stil
example, for whichs3y” = 547", Although the blocky nature etect the target. With the threshold set at this value, the CFAR
of this statisticdoesdegrade visual quality, we find it to be Ofalgorithm will not detect this target. By allowing for higher
minimal consequence in the identification (not localization) ¢fyreshold values, the multiscale enhancement technique will
regions containing objects of interest. _ subsequently reduce the clutter false alarm rate and improve
2) Normalization: To perform a qualitative comparison ofgetection performance. Furthermore, it is clear from Fig. 11
the two statistics, we must account for enhancement of ng{x the performance of the multiscale enhancement technique

ural clutter by each statistic due to differences in variancgﬂproves when using the larger model size (six scales).
For image regions that are statistically consistent with their

background, the CFAR statistic will have zero-mean and unit VI
variance. The statisticgs(s.), on the other hand, will have
zero mean but a variance &f—1 (provided that the residuals oo : X
are decorrelated throughout scale). We could normalize tﬁﬂgssmcatlon of background clutter using multiscale models

statistic byP—1 to ensure a fair comparison, yet if the residual® SAR Imagery that g>§pI0|t t_he dlﬁerenges In_interscale
are not truly white throughout scale, we will not accomplisP{""rlablllty and predictability of images of different types of

our goal. Hence, we estimate the variance. We characterize fga!"- In addition, we have outllr_1ed a method by Wh'.Ch
employ the prediction error residuals that are essentially

performance over grass regions since most forested regi . )
will be rejected by the segmentation algorithm. Thus yproduct of this segmentation, and use them to enhance
' omalous pixel regions for man-made object detection.

estimate the mean and standard deviation of each stati§it
for SAR imagery of grass. We then normalize each enhanced
image such that each statistic will have zero-mean and unit
variance over regions of natural clutter (grass). As a result,We believe that the segmentation results that we have pre-
we may directly compare each normalized image to determig@nted, as well as those described in [6] and [10], demonstrate
which provides better enhancement of anomalous regions.the promise of a multiresolution approach to SAR image
3) Performance MeasuresAs an initial measure, we com- Segmentation. Much remains to be done in order to fully
pare the peak and average enhanced pixel values over the a@&a¥it the advantages of multiscale modeling and analysis.
of interest (outlined in black) for each of the SAR images i particular, to develop a fully automatic system, one must
Fig. 10, from top to bottom of the left-most row. The peaklévelop a method to adapt to the nature of the SAR im-
value provides a measure of probability of detection, sin@dery (e.g., to different squint or depression angles, types
each image will ultimately be thresholded to detect anomalofk vegetation, or the presence of bright tree lines). Possible
regions. The average value, on the other hand, yields a meadlifgctions for future work are i) use of more complex models
of overall target enhancement. We evaluate three statistit@: forest residuals (e.g., product model); ii) adaptation of a full
CFAR, andcs(s.) for multiscale models spanning four andSySteém to combine our approach to segmentation and anomaly
six scales. The results listed in Table 11l indicate the potenti§nhancement with the discrimination method described in [6];
of a multiscale enhancement technique in increasing visibili§d i) applying the methods presented in this paper toward
of anomalous (i.e., man-made) regions. We see that for eathR Image compression.
SAR image, the peak value over the target is greater in
each multiscale enhanced image than in the CFAR enhan&d®nomaly Enhancement
image. Furthermore, an increase in the number of model scalefor each SAR image tested, we observed consistently higher
(4 versus 6) provides better anomalous pixel visibility. peak and average enhanced image values over the target area
We evaluate a second performance measure that furth@ar the multiscale enhancement technique. In addition, we
supports our claim that a multiscale anomaly enhancemenéasured the number of pixel values over the target regions
technique increases the visibility of cultural clutter. Thishat exceeded a threshold value for various thresholds. In order
measure evaluates the number of target pixels exceedingensure a similar probability of false alarm for grass regions,

. CONCLUSIONS AND EXTENSIONS
In this paper, we have described a methodology for the

Segmentation
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we

terrain, each statistic would have zero-mean and unit varian
We noted that for each man-made object tested, more pi
exceeded the threshold over the target region in the multisc
enhancement technique than in the CFAR technique, for
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