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Abstract— In this paper, we present efficient multiscale ap-
proaches to the segmentation of natural clutter, specifically grass
and forest, and to the enhancement of anomalies in synthetic
aperture radar (SAR) imagery. The methods we propose exploit
the coherent nature of SAR sensors. In particular, they take
advantage of the characteristic statistical differences in imagery
of different terrain types, as a function of scale, due to radar
speckle. We employ a recently introduced class of multiscale
stochastic processes that provide a powerful framework for de-
scribing random processes and fields that evolve in scale. We
build models representative of each category of terrain of interest
(i.e., grass and forest) and employ them in directing decisions
on pixel classification, segmentation, and anomalous behavior.
The scale-autoregressive nature of our models allows extremely
efficient calculation of likelihoods for different terrain classifi-
cations over windows of SAR imagery. We subsequently use
these likelihoods as the basis for both image pixel classifica-
tion and grass–forest boundary estimation. In addition, anomaly
enhancement is possible with minimal additional computation.
Specifically, the residuals produced by our models in predicting
SAR imagery from coarser scale images are theoretically un-
correlated. As a result, potentially anomalous pixels and regions
are enhanced and pinpointed by noting regions whose residuals
display a high level of correlation throughout scale. We evaluate
the performance of our techniques through testing on 0.3-m SAR
data gathered with Lincoln Laboratory’s millimeter-wave SAR.

I. INTRODUCTION

I N RECENT years, there has been a growing interest
in synthetic aperture radar (SAR) imaging for applica-

tions ranging from remote sensing to surface surveillance
and automatic target recognition (ATR). For applications such
as these, the classification of various categories of clutter
is quite important, and their delineation (i.e., segmentation)
can play a key role in the subsequent analysis for target
detection, recognition, and image compression. In light of
typical coverage rates (exceeding 1 ) of an airborne
SAR, it is of great importance to devise efficient (preferably
parallelizable) algorithms capable of meeting the daunting
computational demands of the resulting data collection.
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In this paper, we apply a multiscale approach to the SAR
image segmentation problem that exploits the coherent nature
of SAR image formation. In particular, we build on the idea
of characterizing and exploiting the scale-to-scale statistical
variations in SAR imagery due to radar speckle [6], [7], [10].
A SAR image measures the coherent sum of the returns from
all radar scatterers within each resolution cell (pixel). As the
resolution of the imagery changes, the set of complex scatterers
contributing to each resolution cell changes; equivalently,
the relative contribution of each scatterer to the resolution
cell changes. Since this is a coherent process, there can be
constructive and destructive interference among the scatterers.
Consequently, there is a statistical variation in the imagery
from resolution to resolution (i.e., from scale to scale). These
statistics depend on the distribution of the scattering elements
in the environment. More specifically, they depend on the type
of the clutter being imaged.

To fully exploit this phenomenon, we employ a recently
introduced class of multiscale stochastic models [1], [2].
These models provide a powerful framework for describing
random fields that evolve in scale. The framework uses a
pyramidal tree structure in which each node corresponds to
a pixel at a particular image location and resolution. The
offspring of the node correspond to the pixels, in the same
location, at the next finer scale. The statistical variability of
the multiscale imagery is subsequently captured by identifying
a scale-recursive stochastic model for each clutter type.

In this paper, we hypothesize that the scale-to-scale variation
of distinct clutter types will differ in a statistically significant
manner. If this is the case, very efficient algorithms associated
with the multiscale models can be applied to calculate likeli-
hoods for the classification of individual SAR image pixels and
the subsequent segmentation of SAR imagery. We demonstrate
the utility of the multiscale methodology for the segmentation
of regions of trees and forest from open fields and grass. Such
segmentation can be useful for ATR systems. For example, if
a densely forested region is identified, performing target detec-
tion in such a region is unnecessary because high-frequency
SAR is incapable of providing imagery of targets under the
forest canopy. Moreover, targets of interest often attempt to
conceal themselves near tree lines. Thus, accurate estimation
of tree lines can be used to focus attention of ATR algorithms
on areas of particular interest.

Finally, by segmenting regions of natural clutter, we gain the
ability to identify pixels that are anomalous with respect to the
clutter classification (i.e., segmentation). That is, we identify
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pixels whose prediction error residuals differ in a statistically
significant manner from those expected theoretically based
on the residual distribution of the corresponding multiscale
model. Such identification plays a key role in ATR where
the identification of man-made targets is critical. Furthermore,
since man-made objects typically exhibit very bright pixels,
one would expect to observe high scale-to-scale correlation in
regions where targets are present. Given that the prediction
error residuals are calculated at a number of scales, it is
possible to exploit the scale-to-scale correlation to further
enhance and detect targets.

In the next section, we describe the multiscale framework
and its application to SAR image segmentation. In Section III,
we describe the segmentation of SAR imagery into different
clutter classes. In Section IV we outline a multiscale approach
for anomalous pixel enhancement. In Section V, we evaluate
the performance of our approaches when applied to 0.3-m
resolution SAR imagery collected by the Lincoln Laboratory
millimeter-wave SAR [5].

II. M ULTISCALE MODELS OF SAR IMAGERY

This section describes a multiscale framework for analyzing
SAR imagery. Section II-A describes the mapping of multi-
scale imagery onto aquadtreestructure. Section II-B describes
a class of stochastic models for describing and analyzing
multiscale processes that are mapped onto quadtrees. Section
II-C specifies an autoregressive model for SAR imagery.
Section II-D describes the estimation of parameters within the
multiscale SAR models.

A. Quadtree Interpretation of SAR Imagery

The starting point for our model development is a multiscale
sequence of SAR images, where and

correspond to the coarsest and finest resolution images,
respectively. The resolution varies dyadically between images
at successive scales. More precisely, we assume that the finest-
scale image has a resolution of and consists of an

array of pixels (with for some ). Hence,
each coarser resolution image has pixels
and resolution . Each pixel is obtained by
taking the coherent sum of complex fine-scale imagery over

blocks, performing log-detection (computing 20 times
the log-magnitude), and correcting for zero frequency gain
variations by subtracting the mean value [3]. (Note that the
imagery is converted to log-magnitude because the multiscale
recursive models described below have empirically proven
most effective when using this representation. Direct use of
the complex imagery is impractical because of the variability
of the phase in the imagery. Also, the log-magnitude of the
imagery provides more well-behaved residuals, in a statistical
sense, than the magnitude imagery. Accordingly, each pixel in
image corresponds to four “child” pixels in image, .
This indicates that a fourth-order tree, orquadtree, is natural
for the mapping. Furthermore, each nodeon the quadtree can
be thought of as having associated with it a-tuple ,
where denotes scale and denotes two-dimensional
(2-D) image pixel location. That is, each nodeon the tree

Fig. 1. Sequence of three multiresolution SAR images mapped onto a
quadtree. The pixel value at scalem and position (k; l) is denoted by
I2�m(k; l).

Fig. 2. Sequence of steps involved in initial pixel classification. i) Creation
of multiscale sequence from the window region. ii) Evaluation of decision
statistic`. iii) Thresholding to determine center pixel classification.

is associated with one of the pixels corresponding
to pixel of SAR image . As an example, Fig. 1
illustrates a multiscale sequence of three SAR images, together
with the quadtree mapping. Here the finest-scale SAR imagery
is mapped to the finest level of the tree, and each coarse
scale representation is mapped to successively higher levels.
Furthermore, we use the notation to indicate the pixel
mapped to node .

B. Multiscale Stochastic Models

In this Section, we describe a general multiscale modeling
framework [1], [2] and its applicability to the SAR quadtree
representation. Under this framework, a multiscale process
is mapped onto nodes of ath-order tree, where depends
upon how the process progresses in scale. Ath-order tree
is a connected graph in which eachnode, starting at some
root node, branches off to child nodes. As described above,
the appropriate representation for a multiscale SAR image
sequence is , a quadtree. Each level of the tree (i.e.,
distance in nodes from the root node) can be viewed as a
distinct scale representation of a random process, with the
resolutions proceeding from coarse to fine as the tree is
traversed from top to bottom (root node to terminal nodes).
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(a) (b)

(c) (d)

Fig. 3. Boundary pixel refinement of typical SAR window region. (a)
Window region deferred due to boundary presence. (b) Region divided into
quadrants, with ternary classification results marked for each subregion. (c),
(d) Regions still classified as boundary further subdivided and reclassified.
Classifications G, F, and D refer to grass, forest, and defer, respectively.
Note that9=16 of the window region is classified as grass; thus, the pixel
is classified as grass.

A coarse-scale shift operator, is defined to reference the
parentof node , just as the shift operatorallows referencing
of previous states in discrete time-series. The state elements at
these nodes may be modeled by the coarse-to-fine recursion

(1)

In this recursion, and are matrices of appropriate
dimension and the term represents white driving noise.
The matrix captures the deterministic progression from
node to node , i.e., the part of predictable from

, while the term represents the unpredictable
component added in the progression. An attractive feature
of this framework is the efficiency it provides for signal
processing algorithms. This stems from the Markov property
of the multiscale model class, which states that, conditioned
on the value of the state at any node, the processes defined
on each of the distinct subtrees extending away from node
are mutually independent.

For the application of segmenting different types of clutter
in SAR imagery, a multiscale model can be constructed for
each clutter class. To specify each model, it is necessary to
determine the appropriate coefficients in the matrices
and , and the statistical properties of the driving noise

. Once the models have been specified, a likelihood ratio
test can be derived to segment the imagery into the clutter
classes.

Consider the problem of segmenting regions of forest and
grass in SAR imagery. For each pixel in the image, we choose

Fig. 4. Dyadic tree example illustrating the sets of nodes (Si) representing
each scale of the process and the independent set of nodes (dashed boxes)
representing subregions of the entire process.

between two hypotheses: The pixel is part of a grass () or
forest ( ) region. The log-likelihood ratio test for classifying
each pixel based on multiscale imagery is given by

(2)

By invoking the state space interpretation of multiscale im-
agery and exploiting the Markov property associated with the
multiscale models, the log-likelihood ratio test for the two
competing hypotheses can also be written as

(3)

Here, and are the conditional
distributions for given for the two hypothesized
models. In the next section, we will show that this likelihood
test can be efficiently computed in terms of the distributions
for under the two hypotheses.

C. Scale-Autoregressive SAR Model

In this paper, we focus on a specific class of multiscale
models, namely scale-autoregressive models [6], [7] of the
form

(4)

where is white driving noise. For homogeneous regions
of texture, the prediction coefficients (the in (4)) are
constant with respect to image location for any given scale.
That is, the coefficients, , depend only on the
scale of node (denoted by ), and thus will be denoted by

. Furthermore, the probability distribution
for depends only on . Thus, specifying both the
scale-regression coefficients and the probability distribution
for at each scale completely specify the model.

Following the procedure of state augmentation used in
converting autoregressive time series models to state space
models, we associate to each nodea -dimensional vector
of pixel values, where is the order of the regression in (4).
The components of this vector correspond to the SAR image
pixel associated with node and its first ancestors.
Specifically, we define

(5)
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The recursion in (1) takes on the form

...
...

...

...
(6)

Thus, for a model of the form (4) or equivalently (6),in
(3) can be calculated using

(7)

where

(8)

and is the probability density function for .
By substituting (7) into (3), the test statistic can be written

(9)

The likelihood test can thus be computed directly from the
prediction error residuals, .

D. Identification of Multiscale Models of SAR Imagery

In order to use the previously described multiscale method-
ology, we need to identify the model parameters for each
clutter class of interest, namely the model order, the model
coefficients for each scale, and the prob-
ability distribution for at each scale. To accomplish this,
we choose a homogeneous training region of SAR imagery
representative of each clutter class being modeled. This region
is subsequently processed to produce a sequence of images,

. The regression coefficients for each scale
are obtained by a standard least-squares minimization

(10)

where

The regression length , may be selected in a manner similar
to that by which standard autoregressive (AR) model orders are
chosen. For instance, one may also increaseuntil the statis-
tical assumption of decorrelation throughout scale of is
satisfied and/or until algorithmic performance is acceptable.
In [6] it was experimentally shown that for a regression
length of one for the grass model, the residuals are spatially

(a)

(b)

Fig. 5. Histograms of residuals in prediction of second-finest resolution for
(a) Grass model. (b) Forest model. Solid line represents (a) log-Rayleigh
distribution and (b) Gaussian distribution.

decorrelated. We found that by increasing the regression order
to for both grass and forest, we could achieve a
lower probability of misclassification in homogeneous regions
of terrain. Minimal performance gains were noted for larger
regression orders as the scale-coefficients become negligible.
Hence, the results presented in Section V were achieved using
a third order regression ( ) for both the grass and the
forest models.

To obtain a statistical characterization of the prediction error
residuals (the in (4)) of the model at scale , we evaluate
the residuals in predicting scale of the homogeneous test
region. In particular, we use the found in (10) to evaluate
all in (8). We then choose a theoretical dis-
tribution that provides a good fit to the normalized histogram
of these residuals. In Section V-A, we define the theoretical
distributions chosen for the models for grass and forest and
graphically illustrate their accuracy in statistically representing
the prediction error residuals.

III. N ATURAL CLUTTER SEGMENTATION

In this section, we describe a procedure for the segmentation
of SAR imagery consisting primarily of natural clutter. The
starting point for this development is the construction of multi-
scale SAR models for different clutter types as described in the
preceding section. We illustrate the approach by focusing on
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Statistical results used in determination of threshold values for each region size. (a) Histograms of values of` from 128 pixel square homogeneous
regions of forest (dark) and grass (light.) (d) Gaussian estimates of` for each terrain category (solid line for grass and dashed for forest). (b), (e) Similar
results for 64 pixel square regions. (c), (f) Similar results for 32 pixel square regions.

distinguishing forested regions from grass. This methodology,
however, may be extended to include delineation of additional
clutter types.

A. Basic Structure of the Segmentation Procedure

We employ the multiscale models constructed for forest
and grass in the preceding section to classify individual
pixels and subsequently segment regions of clutter. One could
also postulate a spatial random field model for each clutter
category, capturing, for example, the fact that the classification
of a given pixel is very likely to be the same as its neighbors
[4]. The use of such a model, however, would likely increase
the computational complexity of the classification algorithm
considerably. Consequently, we employ a simpler approach
that exploits the efficiency of multiscale likelihood calculation
for scale-autoregressive models. Specifically, we classify each
individual pixel based on a test window of pixels surrounding
it.

The size of the window used in the pixel-by-pixel classifi-
cation must be judiciously chosen. A larger window provides
a more accurate classification of homogeneous regions. Using
larger windows, however, increases the likelihood that the win-
dow contains a clutter boundary. Thus, keeping the window
size as small as possible is also desirable. As demonstrated in
the next section, by examining the empirical distribution ofin
(2) over windows of various sizes for homogeneous regions
of grass and forest, we can determine the trade-off between
classification accuracy and window size. This, in turn, allows
us to choose the smallest window size that yields adequate
performance in classifying homogeneous regions of clutter.

Whenever a clutter boundary is present within a test win-
dow, the validity of the center pixel classification is question-
able. This effect results in a classification bias near boundaries.
To address this problem, we devise a method to detect the
proximity of grass–forest boundaries as well as a procedure

to refine the subsequent classification. Terrain boundary prox-
imity is detected via a simple modification of the decision
made based on the test statistic. Specifically, rather than
comparing to a single threshold to decide on a grass-or-
forest classification, we compareto the two thresholds and

as follows:
Classify as grass
Defer decision (possible boundary presence)
Classify as forest

The resulting test structure is illustrated in Fig. 2, in which
the box designated “defer” corresponds to the test statistic
falling between the two thresholds. In such cases, a refinement
procedure, described below, is used to classify the pixel
(hence, the designationdefer). As we describe in Section V-A,
the choice of thresholds and are determined by examining
empirical distributions of for windows containing boundaries
with varying percentages of forest and grass.

B. Deferred Pixel Classification

For pixels where the classification decision has been de-
ferred, it is necessary to determine the appropriate classifi-
cation. The structure of the multiscale likelihood calculations
allows us to perform this additional task as a replication of
the classification procedure depicted in Fig. 2 at a hierarchy
of scales. Recall that the objective of this process is to
classify the center pixel of a window as either grass or
forest. Consequently, in a region that is likely to contain
a boundary, it is necessary to determine on which side of
the boundary the center pixel lies. Under the assumptions
that, at most, one terrain boundary resides within the window
and that this boundary is relatively smooth, the center pixel
may be classified with a high level of confidence by merely
determining which of the two hypothesized clutter types
occupies the majority of the window.
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The majority rule decision is accomplished in a recursive
manner by first independently considering the four quadrants
of the initial window region. A classification procedure similar
(the only difference being the thresholds and ) to the
one described in Section III-A is performed on each of
thesequadrants, with the classification assigned to the entire
corresponding region. This divide-and-conquer approach is
repeated recursively on each deferred subquadrant until one
of two criteria is met.

1) From the classification of the subregions of the initial
window, a majority rule decision for the windowed
region may be determined.

2) The subregional size becomes so small that a statistically
significant decision may not be made.

In the latter case, a majority rule decision is made based
solely upon the regions that have been classified up to that
point. In the event that a majority rule decision may not be
made at either of these points (e.g., half of the classified area
is grass, and the other half forest), we assign a center pixel
classification of grass (note that it should matter very little
which classification is assigned in this case since the center
pixel likely lies very near a terrain boundary). Clearly, the
assumptions made above will not always be met. We have
found experimentally however, that by restricting the size of
the initial window, we may not only reduce the likelihood that
the window contains a terrain boundary, but also increase the
likelihood that the boundary meets the above criteria.

This “progressive refinement” around boundary regions is
depicted in Fig. 3. In each frame, the pixel of interest is
exaggerated by the solid square box in the center of the image.
Fig. 3(a) represents the original windowed region about the
center pixel. Based on the test illustrated in Fig. 2, this window
has been identified as potentially containing a grass–forest
boundary. Note that the correct center pixel classification
for this region is grass, yet due to the boundary proximity,
the classification has been deferred. Figs. 3(b)–3(d) display
the successive subdivision and reclassification of the entire
windowed region ( , and represent classification as
forest, grass, and defer, respectively), where at each stage
only the regions deferred at the preceding stage are subject
to further examination. Note that in Fig. 3(d), we have met
at least one of the stopping criteria (i.e., all subregions have
been classified), and may classify the center pixel according
to the majority rule of the terrain classifications within the
window. We see that 916 of the region has been classified as
grass; hence, the center pixel is ultimately correctly classified
as grass.

We mentioned above that the structure of the multiscale
likelihood calculations allows us to perform the refinement
procedure with minimal further computational cost. We il-
lustrate this point for a process defined on the dyadic tree
displayed in Fig. 4. In this figure, the nodes at each scale
of the process are represented by the setsS .
As previously mentioned, may be calculated as in (9) by
summing the individual log-likelihood differences. Hence, for
the process in Fig. 4 and for the discrimination between terrain

(a)

(b)

(c)

Fig. 7. Mean value of the test statistic` versus percentage forest in window
region. Frame (a) displays plots of the test statistic mean (dashed line) as
well as plots of its plus and minus2� points (solid lines) for a 128-pixel
window. (b) and (c) display similar data for 64- and 32-pixel window sizes,
respectively.

models and may be calculated as

(11)

Since we do not have a full set of measurements (i.e., the
tree does not proceed up to the root node), the measurements
may be split into independent sets, as distinguished by the
dashed boxes in Fig. 4. Clearly, whereas the evaluation of
for the entire region involves the calculation of individual log-
likelihoods over the entirety of setsS andS , the evaluation
of over each subregion involves the summation oversubsets
of S andS . Hence, may be evaluated in a computationally
attractive manner by merely summing existing quantities. The
ideas presented in this example are easily extended to the
quadtrees used in SAR image representation.

IV. A NOMALY ENHANCEMENT

The methods described in the previous section address
two of the principal objectives of this paper, namely, terrain
classification and terrain boundary estimation. In this section,
we discuss a method aimed at the third objective discussed in
Section I, namely, the use of terrain classification to enhance
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 8. Segmentation results for three (top row to bottom row) 512 pixel square images of 0.3-m resolution stripmap SAR data. The black line in each
frame represents the eyed estimate of the grass–forest boundary. (a), (e), f) Original SAR image. (b), (f), (j) Segmentation results without deferral. (g),
(h), (l) Preliminary classifications using double threshold (dark green= forest, olive green= grass, light green= deferred decision). (d), (h), (l) Final
segmentation after refinement procedure.

anomalies (i.e., to make anomalies due to cultural clutter
and targets to stand out from their background). Enhance-
ment of cultural clutter image regions provides the potential
for improvement in the detection of potential target regions
(i.e., man-made objects) through simple thresholding. That
is, higher probabilities of target detection are possible by
thresholding the enhanced imagery.

A commonly accepted method to enhance anomalous pixel
regions is the constant false alarm rate (CFAR) procedure [8],
[9]. In this procedure, a local sample mean and standard devi-
ation are estimated from an annular region around each pixel
to characterize the second-order statistics of the background.
In particular, the CFAR statistic for pixel in the
finest-scale log-detected (decibel) image is defined as

(12)

where and represent the background sample
mean and standard deviation, respectively. Anomalous pix-
els are identified as outliers with respect to this estimated
background distribution.

A. Multiscale CFAR Statistic

The ideas above suggest a method for identifying poten-
tially anomalous pixels using what can be thought of as a
multiresolution CFAR statistic. This statistic may be viewed
as a synthesis of our multiscale modeling approach with the
method described in [10]. Specifically, suppose a region has
been identified as consisting of grasslike terrain either by
the segmentation method described in the preceding section
or by some other means (such as from prior maps of the
region of surveillance). Now, consider a particular pixel in
the finest-scale SAR imagery of that region. As described in
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Section III, we can associate with that pixel a set of multiscale
SAR imagery over a window centered at that pixel. If we let

denote the node associated with the central pixel under
investigation, then using the parameters associated with the
grass model, the residual in (8) represents the error
in predicting the central pixel at the finest resolution based
on the SAR imagery at coarser resolutions. From our
multiscale model we have a theoretical meanand variance

associated with this residual, and can thus compute a
statistic, , that is analogous to the CFAR statistic

(13)

As with the CFAR statistic, this statistic exploits the char-
acteristics of the background imagery. In particular, when
the pixel classification is that obtained using the segmen-
tation procedure in Section III, we note that it is based
on a window of imagery surrounding the pixel of interest.
As a result, the classification characterizes the background.
Accordingly, we subtract the background mean associated with
the corresponding terrain model from the statistical value (each
model assumes zero-mean residuals), and normalize by the
corresponding terrain model standard deviation.

The multiscale segmentation algorithm computes the pre-
diction error residuals required to determine the statistic (13).
The variance may be found from the theoretical distribu-
tion specified by the multiscale terrain models. Furthermore,
because the residuals are computed at a set of scales, the scale-
to-scale behavior of the CFAR statistic can be characterized
and used to improve detection performance. Specifically, for a
node that is tree levels up from the finest resolution of the
process, we can also compute as in (8) and compare it
to the corresponding theoretical variance from scale of
the multiscale model. Specifically, generalizing (13), we can
compute

(14)

for th on the level from the bottom of the tree. Note that in
(14) we disregard the mean since for all scales of each model
we assume zero-mean residuals.

B. Combined Multiscale CFAR Statistic

By considering the set of random variables acquired by eval-
uating (14) at multiple scales, ,
we allow for several methods of obtaining statistics to enhance
the identification of anomalies. For example, one possible
statistic is the sum of squared values of these random variables

(15)

where represents the number of scales in the state-
augmented multiscale model.

As with the standard CFAR statistic, will enhance
any behavior that deviates significantly from that expected for
nonanomalous pixels. However, in contrast to the standard
CFAR statistic, we can consider alternatives since we have a

setof statistics rather than one. In particular, we can consider
looking for specific scale-to-scale signatures in the residuals

. Indeed, as the results in [6] and [10] indicate, the
presence of a few dominant scatterers in man-made objects
will result in scale-to-scale variations in SAR imagery with
a more deterministic behavior across scale and thus do not
obey a simple white noise driven autoregressive model. If we
can predict this scale-to-scale behavior, we can seek telltale
signatures in the resulting residuals. A simple example of this
is the statistic

(16)

Comparing (15) and (16), the difference is that in (16)
we sum before squaring. This corresponds to looking for a
consistent over- or underprediction of pixels at successive
resolutions, as one might expect for a single strong scatterer. In
such a case the statistic would give a significantly larger
value than . In addition, would attenuate the
effects of other types of scale-to-scale behavior. For example,
if the signs of the successive values ofchange throughout
scale, then will be much smaller than . Thus the
statistic in (16) is far more selective in what it enhances, which
will be of value if we have accurate models for the type of
scatterer distributions we expect in objects of interest.

The two statistics and both provide means
of identifying and enhancing pixels that exhibit anomalous
behavior. They both involve a squaring, in some sense, of the
scale-to-scale statistics nevertheless. This will enhance pixels
that are outliers in the positive and negative tails of the model
distribution. Due to the nature of pixels corresponding to man-
made imagery, we are only concerned with the positive tail. In
other words, we are only interested in those values of ,
for example, that display a consistent overprediction. Hence,
we consider the third statistic

(17)
This statistic will enhance only those pixels that display a
consistent overprediction and not those displaying a consistent
underprediction. As a result, we may simply threshold this
statistic, as with the standard CFAR statistic, to identify
potential targets of interest.

V. EXPERIMENTAL RESULTS

In order to evaluate the performance of our approaches
to SAR image segmentation and anomaly enhancement, we
have applied them to 0.3-m resolution horizontal-horizontal
(HH) polarization SAR data gathered over Stockbridge, New
York, with Lincoln Laboratory’s millimeter-wave SAR [5].
We independently evaluate the segmentation and anomaly
enhancement performance in Sections V-A and V-B, respec-
tively.

A. Segmentation Performance

We begin by describing the construction of the models on
which the subsequent experiments are based in Section V-
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A1. In Section V-A2, we discuss the details of the algorithm
design, namely the setting of window sizes and decision
thresholds. In Section V-A3 we then illustrate the performance
of our algorithm for the main objectives of the paper, namely
classification and segmentation.

1) Model Construction:The first step in applying our meth-
ods is the construction of multiscale models for SAR imagery
of grass and forest from homogeneous regions of terrain. We
have chosen to use a third-order regression for each model
and to build models for the prediction of each of the three
finest resolution images ( , and , with

). As described in Section III-B, this implies a third-
order model with a four-level tree, and for the prediction
of each of the three finest resolution images there are three
coefficients, , to be specified. Using the method
described in Section II-D, we determined the coefficient values
given in Table I(a) and (b). Note that the coefficients for the
forest model are consistently larger, indicating higher scale-
to-scale correlation. This is consistent with what one would
expect based on the interpretation of scale-to-scale correlation
as capturing information about the distribution of scatterers
in the image: Grassy regions tend to have larger numbers
of equivalued scatterers and, thus, since greater numbers of
scatterers migrate out of each resolution cell as we move from
scale to scale, we would expect that SAR imagery of grass to
have less scale-to-scale correlation.

To complete the models, we specify the distributions for
in (4) for each scale and each terrain type. For imagery

of grass, a log-Rayleigh distribution

(Euler’s constant)

provides a good fit at each scale, while Gaussian distributions
are a better choice at each scale of the forest model. In partic-
ular, the standard deviations chosen for the Gaussian densities
representing for each of the three scales predicted are
as follows:

Rather than following statistical goodness-of-fit tests to
determine the theoretical distributions for our residuals, we
relied on the results of Irvinget al. [6]. In their work, it
was shown that the log-Rayleigh distribution provides an
acceptable fit for regions of grass. We found, however, that
the log-Rayleigh distribution didnot provide as good a fit
for regions of forest as did a Gaussian distribution. Examples
showing histograms and the resulting fits are provided in
Fig. 5.

2) Algorithm Specification:In order to specify our classifi-
cation and segmentation algorithm, we need to set

1) the window size around each pixel used to perform each
classification;

2) the thresholds at each stage in the hierarchical procedure.

(a)

(b)

Fig. 9. (a) Illustration of swath (hashed) of widthd ignored in misclassifica-
tion probability calculations. (b) Probability of misclassification versus swath
width on either side of boundary for grass–forest boundaries with average
illumination (solid) and all levels of illumination (dashed).

On row (i) of Fig. 6, we display histograms of the value
of the statistic computed over homogeneous regions of
both terrain categories using windows of varying size. In
addition we have also displayed, on row (ii), the corresponding
Gaussian fits to the histograms. For computational conve-
nience, we limited our interest to window sizes that were
powers of 2 (128, 64, and 32 pixels square). By noting the
statistical properties of for these window sizes, we gain
the ability to choose both the largest and smallest window
sizes for our subdividing refinement procedure simultaneously.
As mentioned in Section III-A, our choice of initial window
size involves a trade-off between misclassification probability
in homogeneous terrain regions and the likelihood of the
window containing a terrain boundary. From the histograms
and associated Gaussian fits in Fig. 6(a) and (d) it is apparent
that a 128 pixel square window size yields a sufficiently small
probability of misclassification1 in homogeneous regions of
terrain (approximately ). Furthermore, for the 32
pixel square window size (Fig. 6(c) and (f)), there is certainly
still distinguishing information between the two classes yet a

1Although the Gaussian distributions on row 2 do not seem to provide
adequate fits for the histograms in row 1, theydoprovide the ability to estimate
the probability of misclassification (at each hierarchical level of the refinement
procedure) for larger sample spaces. Otherwise, from the information given,
we would empirically estimate the probability of misclassification for frames
(a) and (b) to be zero.



16 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 1, JANUARY 1997

reduction in statistical significance, as is seen by the increased
overlap in the histograms. Further subdivision in window
size (i.e., 16 pixel-square) provided minimal distinguishing
information between the two classes. Accordingly, for the
results presented in this paper we have chosen an original
window size of 128 128 and considered subdivisions down
to a size of 32 32 for subsequent reclassification of deferred
pixels.

If we were only considering classification of homogeneous
regions and thus only needed to set a single threshold level
for each size window, then Fig. 6 would provide all of the
information required to accomplish this. However, as we have
indicated, we also wish to ensure good performance in classi-
fying pixels near tree lines and, consequently, have improved
boundary estimation. In order to see how the presence of a
boundary within a window changes the distribution of the
resulting test statistic, in Fig. 7 we display plots of the mean
of plus and minus calculated for windows containing
varying percentages of forest2. An immediate point to note is
that the presence of even a modest amount of “contamination”
by forest pixels can change the behavior of the test statistic
significantly. As a result, an effective bias is introduced in
the resulting segmentation when no deferred classifications
are allowed. As a consequence, it is essential that grass–forest
decisions at the level of the full 128 128 pixel region be
made only if there is overriding evidence for one of these two
hypotheses. Similarly, the decisions at the subsequent 6464
and 32 32 pixel regions must exhibit similar characteristics.

The thresholds were first approximated using Fig. 7, then
refined after experimentation to maximize performance. For
example, as mentioned above, we necessitate overriding evi-
dence of homogeneity to classify definitively as either grass or
forest. As a result, we started with grass and forest thresholds
for the largest 128 128 pixel region size ( and ) of 1800
and 2000, respectively. These thresholds are approximately
the highest and lowest points in Fig. 7(a). We found
experimentally, however, that by relaxing these thresholds we
were able to obtain a gain in performance. Hence, we obtained
the pairs of thresholds in Table II. As before, a value above the
grassthreshold leads to classification as grass, whereas a value
below theforest threshold leads to classification as forest. A
value in between the two thresholds again results in a deferred
classification. If a deferred decision is made at the 128128
or 64 64 pixel levels, we continue down to the next level of
classification. If it is made at the 32 32 region, we classify
that region as defer and stop. However, as we have described
in the preceding section, these classifications are used solely
to determine the classification of the center pixel under test.
3) Classification and Segmentation Performance:We apply
our segmentation technique to SAR imagery to investigate
its performance in terms of accuracy of classification and
segmentation. The accuracy of classification of forest and grass
pixels embedded in homogeneous regions of the same terrain

2The upswing in the mean value of` in each case at approximately 90%
forest may be attributed to the large number of bright scatterers generally
found along terrain boundaries. The correlation structure of these scatterers
tends to drastically alter the statistical value of`. As the window passes
this highly illuminated region (i.e., becomes 100% forest), these scatterers no
longer affect the value of̀.

type is completely characterized by two numbers, namely, the
probabilities of each type of classification error. Note that if
we knewa priori that a region is homogeneous, then, based
on Fig. 6(a) we would already know that the probability of
misclassification of either type is extremely small. In fact,
for the Gaussian probability distributions shown in Fig. 6(d),
with a single threshold set at a value of 910, the probabilities
of misclassifying forest as grass and grass as forest are both
approximately equal to . However, since we wish
to use our algorithm in contexts in which there may be
boundaries, a fairer test involves using the complete hierar-
chical decision procedure. To calculate the misclassification
probabilities for this algorithm, we have performed tests on 20
512–pixel square segments of SAR imagery, ten consisting of
homogeneous imagery of forest and ten of grass. We note that
this set of imagery used in performance testing is completely
independent of the training set used in model creation. The
resulting misclassification probabilities were approximately
0.005 for misclassifying grass as trees and 0.011 for mis-
classifying trees as grass. The correspondingconfidence
intervals for these probabilities are approximately 0.01 for
misclassifying grass as trees and 0.02 for misclassifying trees
as grass.

The next set of experiments focuses on evaluating the
performance of our algorithm in terms of segmentation (i.e.,
in terms of the accuracy in estimating the boundary between
forest and grass). Fig. 8 displays the results of applying our
algorithm to three images, top row, middle row, and bottom
row. The black line in each frame represents a hand-picked
estimate of the boundary, and dark and light regions represent
terrain classification as forest and grass, respectively. Each row
displays the segmentation results for the SAR image pictured
in the left-most frame of each row. The other three frames of
each row display the classification results using (in order) a
single threshold for the full 128 128 window, two thresholds
( and ) at the full window size, and the full hierarchical
approach described in Section III. Comparing the second and
fourth frames for each image, we first note that restriction to a
single threshold in the 128128 window likelihood test leads
to a bias in the estimated boundary; the tree line is pushed
into the grassy region. However, when the full hierarchical
system is implemented, the final classification presents a more
accurate identification of the boundary.

In addition, we have computed a quantitative measure of
boundary estimation accuracy by defining a parameterand
computing the empirical probability of misclassification of
pixels that are more thanpixels away from the true boundary.
Thus for we consider the misclassification probability
for all pixels in the image. As increases we ignore a
swath of the image, of width , around the boundary (see
Fig. 9(a)). We would thus expect that the misclassification
probability would decrease with increasing, approaching the
homogeneous misclassification probability. The faster the drop
in misclassification probability with, the smaller the effective
error in estimating the boundary. If this algorithm were to be
followed by a target detection step aimed at looking for targets
that are partially obscured by a tree-line, producing an accurate
determination of the boundary would enhance the performance
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10. Anomaly enhancement results for three (top row to bottom row) 512-pixel square images of 0.3-m resolution stripmap SAR data. (a) Original
SAR image. (b) CFAR Enhanced image. (c) Multiscale enhanced image.

of that subsequent detection step. In Fig. 9(b) we display the
results for our algorithm based on regions of Lincoln SAR
imagery containing grass–forest boundaries with average tree
line illumination (solid line) and regions containing boundaries
with all levels of illumination. From these tests, we see that for
boundaries with average illumination we are able to determine
the boundary within approximately 7 pixels ( ) with a proba-
bility of misclassification of 0.02. However, if all illuminations
are considered, we can isolate the boundary to within 27 pixels
( ) with the same probability of misclassification.

B. Anomaly Enhancement

We describe here the methods we have chosen to measure
the performance of the multiscale anomaly enhancement tech-
nique described in Section IV. We will focus on performance

in the ATR environment, and accordingly, compare it to the
standard CFAR enhancement algorithm used in practice. As
test data, we use three HH polarized 0.3-m foot resolution SAR
images, each containing a different type of cultural clutter. We
illustrate the potential of our approach by presenting side-by-
side comparisons with CFAR-enhanced imagery. We further
demonstrate the potential by providing a qualitative measure
of pixel enhancement over target regions. While neither of
these methods yields the definitive performance measure of
a receiver operating characteristic (ROC) curve, theydo,
however, demonstrate the promise that a multiscale-based
anomaly enhancement technique affords.

1) Statistic Specification:The three 512–pixel/square SAR
images used as test data are displayed in Fig. 10, left column.
Each image contains at least one man-made object. The highly
reflective portion of each object is outlined by the black boxes
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(a) (b)

(c)

Fig. 11. Anomaly enhancement performance plots for the three images in Fig. 9(a)–(c). Number of pixels exceeding a threshold value is plotted
versus threshold.

TABLE I
MODEL COEFFICIENTS FORTHIRD-ORDER REGRESSION INSCALE. (a)

GRASS MODEL COEFFICIENTS. (b)FOREST MODEL COEFFICIENTS.

(a)

(b)

in each frame. Since these highly reflective regions typically
set man-made objects apart from natural clutter, we focus
on the performance of each algorithm exclusively over these
outlined image regions.

TABLE II
THRESHOLD VALUES FOR VARIOUS WINDOW SIZES. THESE VALUES SERVE AS

THRESHOLDS IN THETERNARY HYPOTHESISTEST FORCLASSIFICATION AS

GRASS, FOREST, ORDEFER AT EACH HIERARCHICAL LEVEL OF THE ALGORITHM.

For each image displayed, we evaluate both the CFAR
statistic and the multiscale statistic, . The prediction
error residuals were calculated using a third-order scale-
autoregressive grass model spanning four scales ( ). In
each row, the second and third frames display the enhanced
images using the CFAR enhancement method and the multi-
scale enhancement method, respectively. In each of the three
rows, it appears that the multiscale enhancement technique
increases the visibility of cultural clutter regions over the
CFAR enhancement method. We see below that for these
examples this is in fact the case.

The blocky appearance in each of the multiscale enhanced
images in Fig. 10 is an artifact of the multiscale structure of
the calculation of . This is apparent by considering, for
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TABLE III
PEAK AND AVERAGE VALUES OF EACH NORMALIZED STATISTIC OVER TARGET

REGIONS (OUTLINED IN BLACK) FOR IMAGERY IN FIG. 10(a), (d), AND (g).

example, two adjacent pixels at nodesand in the finest-
scale image for which . Clearly, and
share the same ancestry and will, as a result, display a higher
level of correlation than finest-scale pixels, and , for
example, for which . Although the blocky nature
of this statisticdoesdegrade visual quality, we find it to be of
minimal consequence in the identification (not localization) of
regions containing objects of interest.

2) Normalization: To perform a qualitative comparison of
the two statistics, we must account for enhancement of nat-
ural clutter by each statistic due to differences in variance.
For image regions that are statistically consistent with their
background, the CFAR statistic will have zero-mean and unit
variance. The statistic, , on the other hand, will have
zero mean but a variance of (provided that the residuals
are decorrelated throughout scale). We could normalize this
statistic by to ensure a fair comparison, yet if the residuals
are not truly white throughout scale, we will not accomplish
our goal. Hence, we estimate the variance. We characterize the
performance over grass regions since most forested regions
will be rejected by the segmentation algorithm. Thus, we
estimate the mean and standard deviation of each statistic
for SAR imagery of grass. We then normalize each enhanced
image such that each statistic will have zero-mean and unit
variance over regions of natural clutter (grass). As a result,
we may directly compare each normalized image to determine
which provides better enhancement of anomalous regions.

3) Performance Measures:As an initial measure, we com-
pare the peak and average enhanced pixel values over the areas
of interest (outlined in black) for each of the SAR images in
Fig. 10, from top to bottom of the left-most row. The peak
value provides a measure of probability of detection, since
each image will ultimately be thresholded to detect anomalous
regions. The average value, on the other hand, yields a measure
of overall target enhancement. We evaluate three statistics:
CFAR, and for multiscale models spanning four and
six scales. The results listed in Table III indicate the potential
of a multiscale enhancement technique in increasing visibility
of anomalous (i.e., man-made) regions. We see that for each
SAR image, the peak value over the target is greater in
each multiscale enhanced image than in the CFAR enhanced
image. Furthermore, an increase in the number of model scales
(4 versus 6) provides better anomalous pixel visibility.

We evaluate a second performance measure that further
supports our claim that a multiscale anomaly enhancement
technique increases the visibility of cultural clutter. This
measure evaluates the number of target pixels exceeding

a given threshold, versus threshold. Clearly, this measure
will provide a performance curve that begins at some value
(corresponding to the total number of target pixels) and
monotonically decreases to zero. The rate at which the curve
decreases provides a measure of performance (i.e., a “higher”
curve is indicative of increased ability for detection).

We evaluate this measure for the three normalized statistics
listed in Table III over each of the test images in Fig. 10.
The results for the three images Fig.10(a), (d), and (g) are,
respectively, displayed in Fig. 11(a)–(c). It is apparent that the
multiscale technique provides better enhancement of the target
regions than the CFAR algorithm. For example, for the L-
shaped structure in Fig. 10(g) the plotted results in Fig. 11(c)
show that using the multiscale enhancement technique with a
four-scale model, we may set a threshold value of 8 and still
detect the target. With the threshold set at this value, the CFAR
algorithm will not detect this target. By allowing for higher
threshold values, the multiscale enhancement technique will
subsequently reduce the clutter false alarm rate and improve
detection performance. Furthermore, it is clear from Fig. 11
that the performance of the multiscale enhancement technique
improves when using the larger model size (six scales).

VI. CONCLUSIONS AND EXTENSIONS

In this paper, we have described a methodology for the
classification of background clutter using multiscale models
of SAR imagery that exploit the differences in interscale
variability and predictability of images of different types of
terrain. In addition, we have outlined a method by which
we employ the prediction error residuals that are essentially
a byproduct of this segmentation, and use them to enhance
anomalous pixel regions for man-made object detection.

A. Segmentation

We believe that the segmentation results that we have pre-
sented, as well as those described in [6] and [10], demonstrate
the promise of a multiresolution approach to SAR image
segmentation. Much remains to be done in order to fully
exploit the advantages of multiscale modeling and analysis.
In particular, to develop a fully automatic system, one must
develop a method to adapt to the nature of the SAR im-
agery (e.g., to different squint or depression angles, types
of vegetation, or the presence of bright tree lines). Possible
directions for future work are i) use of more complex models
for forest residuals (e.g., product model); ii) adaptation of a full
system to combine our approach to segmentation and anomaly
enhancement with the discrimination method described in [6];
and iii) applying the methods presented in this paper toward
SAR image compression.

B. Anomaly Enhancement

For each SAR image tested, we observed consistently higher
peak and average enhanced image values over the target area
for the multiscale enhancement technique. In addition, we
measured the number of pixel values over the target regions
that exceeded a threshold value for various thresholds. In order
to ensure a similar probability of false alarm for grass regions,
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we normalized each enhanced image such that for grasslike
terrain, each statistic would have zero-mean and unit variance.
We noted that for each man-made object tested, more pixels
exceeded the threshold over the target region in the multiscale
enhancement technique than in the CFAR technique, for all
thresholds.
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