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I. Introduction

WHEN using a high-performance costly system, it

is clearly worthwhile to develop software that in
some sense matches the inherent capabilities of the hardware.
Specifically, it is important to consider the development of
self-test procedures for the detection of shifts in system
parameters and behavior that can have significart effects on
system performance. Kalman filtering techniques are often
quite useful in monitoring the performance of a system;
however, in some cases such a filter is incapable of adjusting
to unmodeled phenomena. One reason for this inability is the
so-called “‘oblivious filter’’ problem, in which the filter gain
becomes so small that the filter cannot respond to incoming
information. One solution to this problem is to increase the
filter gain;® however, this in turn leads to an increased
estimation error covariance, which cannot be tolerated in cer-
tain high-precision systems. A number of alternative methods
for self-test system design that avoid this difficulty have been
proposed. 7 In this paper we consider two of these procedures
and adapt them to the problem of estimating the biases in ac-
celerometers and gyroscopes on an inertial platform.

II. An Inertial System Calibration
and Alignment Problem

We are given an inertial platform at a fixed, known location
on the earth, and we are to calibrate the biases of the ac-
celerometers and gyros mounted on the platform. Our sim-
plified system error model involves 9 state variables which are
all given in the coordinates of a reference frame fixed to the
platform (P-frame): the 3 platform misalignment errors (x,,
X, X3), representing discrepancies in the alignment of the
platform with respect to an inertially fixed reference frame,
the 3 accelerometer biases (x,, x;, x4), and the 3 gyro biases
(x5 x5 X,). Assuming that the platform is being rotated in a
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known manner with respect to inertial space, the dynamics of
our model take the form

X(O)=F()x(1) +Q()yw(1) )
Fo(ty 0 1
F(1) = 0 0 0
0 0 0
0 w; (1) —w,(f)
Fu (= —w;3 (1) 0 w;(f) 2
w, (1) —w, (1) 0
0 0 0
0= 0 g, 0 3)

0 0 q,!

Here w;, w,, w; are the P-frame components of the platform
angular velocity with respect to inertial space. We take the
initial state covariance P(0) to be a given diagonal matrix.

The available measurements consist of the differences bet-
ween the actual accelerometer outputs and the outputs that
should be produced by gravity at the known platform
location:

() =H(t ) x(t,) +v(ty) )]
0 —B3(1y) B2(2y)
H(lk)= 63(tk) 0 _61(tk)
—B,(ty) B,(t) 0

I 0 0 0 0 o0
0 1 0 0 0 0 3
0 0 I 0 0 0

Here (8,, 8, B;) are the P frame components of the one-g
vertical specific force vector, and the covariance of the white
noise sequence {v(#,)} is given by rI. These measurements
are taken at 6 minute intervals. Discretizing Eq. (1), we can
design a Kalman filter for the estimation of x (¢ «) given the
observations of Eq. (4). By processing the 3 components of
z(2,) sequentially, we avoid the necessity of inverting a 3 x 3
matrix.

In order to obtain accurate platform calibration and align-
ment, a 6-hr, 3- segment trajectory was devised, in which the
platform is rotated at p’=45°/hr with respect to the local
earth-fixed frame for 2 hr each about the east, north, and ver-
tical axes (in that order; see Ref. 8 for further discussion).
Initially the platform 1-, 2-, and 3-axes are north, west, and
up, respectively. This leads to the specification of parameters
in Egs. (1-5) given in Table 1. Here ¢ is measurement in hours,
Q¢ is earth rotation rate, L is latitude, and g =32.2 (ft/sec ?).

For high-precision inertial systems, we require extremely
accurate estimation of x; i.e., we want to make the estimation
error covariance as small as possible. As discussed in Sec. 1,
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Table 1 Parameter specification for the system of Egs. (1-5)

O0=<t<2 2=<t<4 4<t<6
w(®) Qpcos(L —pf) Qpsin L cos p(t—2) QpcosLsinp(t—4)
w; (1) p QpsinLsinp(£—-2)- p+QgsinL
w3 (1) Qpsin(L —p1) —p—Qgcos L —QgcosLcosp(t—4)
B (1) gsinpt gcosp(t—2) 0
B, (1) 0 gsinp(t—2) g
B3 (1) gcospt 0 0

this leads to an oblivious filter condition, in which the filter is !

insensitive to small shifts in the state variables. Since ex-
tremely small shifts in accelerometer and gyro biases can
cause poor overall system performance, we wish to design
methods for detecting and compensating for these state
jumps.

III. The WSSR Technique

The first of the two techniques to be discussed is based on a
method described in Refs. 1 and 8. Our dynamic model is

x(k+1)=®(k+ Lk)x(k) +T(kyw(k) )

z(k) =H(k)x (k) +v(K) )

where the independent, zero mean white noise sequences
{w(k)}, {v(k)} have covariances Q(k) and R (k), respec-
tively. We implement a Kalman filter for this system and refer
the reader to Refs. 8 and 9 for details. For our purposes, we
need only note that the filter generates a measurement
residual (innovations) y(k) whose covariance V' (k) can be
precomputed.

One of the simplest tests for the presence of unmodeled
phenomena in the model Eqgs. (6) and (7) is the Chi-squared or
weighted sum-squared residual (WSSR) test. Our detection
criterion is

k Hy
kY= Y YDV e ®)
j=k~N+1 Hy

where H, is the hypothesis that system behavior is normal,
and H, is the hypothesis that a jump has occurred in one of
the state variables. If the model in Egs. (6) and (7) is correct,
¢(k) is a Chi-squared random variable with Np degrees of
freedom (dimy=p). The size N of the residual *‘window”’
and the threshold ¢ are to be chosen to provide an acceptable
tradeoff between the probability p ; of a false alarm (declaring
H, when actually H,) and the probability p, of a missed
alarm (declaring H, when actually H ). The value of p; for
different values of N and e can be obtained from standard
Chi-squared tables. The values of p, must be computed for
specific times and magnitudes of jumps in state variables. In
this case, ¢(k) is a noncentral Chi-squared random variable,
and the value of p, for different N and e can again be ob-
tained from tables. 4

As described in Sec. 11, for the cal/align problem we have
implemented a filter that processes z,(k), z,(k), and z;(k)
sequentially. We can then modify the WSSR test by con-
sidering the 3 variables

k

= )

j=k=N+1I

YiW/Vi, . i=1,23 ®

In this way, we may obtain better jump detection and
isolation performance.

An extensive series of simulations has been carried out
using the 6-hr trajectory described previously. From the
Kalman filter calculations, we obtain the pre-computed bias
estimation error variances at the terminal time (6 hr). Jumps

of 10 and 100 times these terminal rms values were inserted
at several different times. Several values of N and e were tried,
and the values N=3, ¢=10.5 were found to yield a reasonable
tradeoff between false alarms, missed alarms, and delay in
detection. Ten trials were made for each combination of jump
value and time. The number of false alarms, missed alarms,
correct detections, and average delay in detection for the 10 ¢
jump cases are recorded in Tables 2 and 3. Essentially all of
the 100 ¢ jumps were correctly detected with very small
delay. 8

Out of the 480 trials run, only 8 false alarms were observed.
Also, we see that WSSR responds more quickly to ac-
celerometer bias shifts than to gyro bias shifts. This is due to
the nature of the dynamics—the accelerometer bias enters
directly into the outputs z,, z,, and z;[see Egs. (4) and (5)1,
while the gyro biases must first be integrated into misalign-
ments, which then enter the outputs in a time-varying manner.
In addition, many of the missed alarms for the jumps oc-
curring early in the 6-hr run should not truly be thought of as
false alarms, since early in the run, the Kalman filter is not
oblivious and thus it is capable of adjusting to the jumps by it-
self. Finally, we note that one major drawback of WSSR is its

Table2 Summary of WSSR detector results with
accelerometer jumps

Acc. Jump Avg.
with time Correct delay False Miss
jump (hr) detect. (hr.) alarms  alarms
Acc. #1 1 7 0.00 0 3
2 6 1.18 1 3
3 .8 0.00 0 2
5 10 0.00 0 0
Acc. #2 1 6 0.48 2 2
2 3 0.37 0 7
3 9. 0.00 0 1
5 10 0.00 0 0
Acc. #3 1 3 0.03 1 6
2 7 0.10 0 3
3 10 0.54 0 0
5 9 0.00 0 1

Table3 Summary of WSSR detector results with gyro jumps

Gyro Jump Avg.
with time Correct delay False Miss
jump (hr) detect. (hr) alarms  alarms
Gyro #1 1 5 3.74 0 5
2 10 2.93 0 0
3 8 1.74 0 2
5 10 0.29 0 0
Gyro #2 1 10 1.40 0 0
2 10 0.87 0 0
3 2 0.95 0 8
5 0 B 1 9
Gyro 43 1 2 3.90 0 8
2 10 0.37 0 0
3 10 0.28 0 0
5 10 0.30 0 0
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minimal amount of jump isolation capability. Although ac-
celerometer bias jumps are easily isolated, gyro bias jumps are

much more difficult. The WSSR as presented is not capable of -

accurate isolation, as it does not take full advantage of the
knowledge of system dynamics. An unsuccessful attempt to
utilize information about the observability of the various
states at different times in the 6-hr run is reported in Ref. 8.

IV. A Multiple Hypothesis Method

In this section we describe a method developed in Ref. 2
(also see Refs. 6 and 7), which we call the Buxbaum-Haddad
(BH) technique. We assume that the actual system model is

x(k+1)=®(k+1Lk)x(k) u(k) (10)

where the noise x has a probability p, of being the usual
process noise I'w [as in Eq. (6)] and a probability p; of in-
cluding additional noise with variance o7 in the jump direc-
tion f,(i=1,...,r). In other words, the { u(k)} form a white
noise sequence with the density of (k) given by

PoN(e:0, TQT") + Y pN(as0, TQL" +a2f.f') (1)
i=1

[here N(a;m,P) is the normal density, with mean m and
covariance P, evaluated at «]. It is shown? that the con-
ditional density p(x, k, k) for x(k) given z(1),...,z(k), where
z satisfies Eq. (7), and x(0) is taken to be normally distributed,
is of the form

r r

pxkky= 3 ... Y piN(xn, P) (12)

ip=0 ix_ ;=0

where i= (iy,...,i,_;) and p’ is the conditional probability
that u(0) jumps in the 7/, direction, u(1) in the /, direction,
etc., conditioned on z(1),...,z(k) (here we interpret / ;=0, as
no jump). The mean #; and covariance P; are computed by a
Kalman filter assuming that x(j), j=1,...,k—I has a normal
distribution including the term in the £, direction. Note that
the structure of the optimal filter takes the form of an ex-
‘ponentially growing bank of filters, ih which the i=0 filter
corresponds to the original normal operation filter.

Of course for any practical implementation we must con-
sider approximating the optimal filter. Several techniques are
described? and we have developed a method that has proven
to work quite well in cases in which jumps occur infrequently,
as in the cal/align problem. We assume that jumps can only
occur at a discrete number of points in time separated by N
time steps. At the start of each period of N steps, (r+1)
Kalman filters are initiated, one for each jump mode and one
for the normal operation hypothesis. Each is initiated with the
same mean and covariance; however, in the first step of the
period the filters are propagated using the covariance for U
consistent with the corresponding hypothesis. In the
remaining steps of the period no jumps are hypothesized in
any of the (r+1) filters. At the start of each period,
probabilities of each of the hypotheses are initialized with the
values p(i10) =p,, i=0,1, 1,...,r. The conditional probability
p(ilk) of a jump in the f; direction is updated according to the
formula .

) N(z(k);2(klk—1,i),V(klk—1,i))p(ilk—1)
plilk)y= —
E N(z(k);2(klk—1j),V(klk—=1,j))p(jlk—1)

i=0
13)

where z(k |K~1, i) is the one step predicted estimate of z( k)
and V(klk—1, i) is the residual covariance for the filter
associated with the ith jump hypothesis. At the end of the N
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interval, the various means and covariances are ““fused’’ to
form one mean-cova}riance pair

2(NIN) = E P(IIN)Z(NIN,i) (14)
i=0
P(NIN)= E PUIN)Y[P(NIN,i) +2(NIN,i)%' (NIN,i)]
i=0

—2(NIN)2' (NIN) 15)

and the probabilities are reset to their initial values. The (r+ 1)
filters are then reset with the data in Eqgs. (14) and (15) and the
next N step propagation is begun.

If during the period of N steps, one of the p(ilk) for i=0
becomes large, we declare that a jump has occurred. If N is
sufficiently long and if the jump is observable over the period,
the probability associated with the actual jump will approach
1. The choice of N is clearly of great importance in system
performance. If N is too short, the system does not have
enough time to look at the data to find the failure before the
fusing and resetting is performed. If N is too long, although
one will correctly detect a jump if it actually occurred at the
start of the NV interval, one might not be able to detect jumps
that occur in the middle of the interval, as all (r+ 1) filters
become oblivious.

Several runs have been made for the cal/align problem. The
6 failure directions f,...,f correspond to jumps in the biases
(states x,...,xg). The values of ¢,,...,0, were taken to be 100
times the terminal rms error variances in x,,...,x,, respec-
tively. The p,i=1,...,6 were taken to be 0.005, p,=0.97, and
N=35. Table 4 summarizes the performance of the BH system
on 2 runs. The table contains the probabilities p (i IN) of each
hypothesis at the end of the N intervals (just before reset).
Only the non-negligible probabilities are displayed.

The first set of data comes from a run in which a jump of 10
o occurs in x; just after 3 hr. Noting that p(2) corresponds to a
jump in x;, and that 3.5 hr is the first point in the table at
which we could possibly see the effect of the jump, we see that
the BH filter works remarkably well. The second set of data
comes from a run with a 10 ¢ jump in x, just after 3 hr. In this
case p(4) corresponds to a jump in x,, and p(5) to a jump in
Xg. Note that, as expected, there is some delay in the detection
of gyro jumps, and there is some ambiguity, as each gyro af-
fects several misalignments, which in turn affect several
measurements. The data in Table 4 points out the difficulty in
detecting gyro jumps and also indicates a “‘self-correcting’’
aspect of the BH system. At first, the system is unsure which
of the two gyros caused the observed output irregularity, and
by increasing both p(4) and p(5) the system effectively in-
creases the overall filter gain for both gyro estimates. The X,
estimate is then corrected, but, since x,; did not shift, its
estimate is degraded. During the following N interval, the BH
detects its own error in degrading the estimate of x §as ajump

Table4 Conditional probability time histories (BH system)

10 g jumpinx; at3 hr 10 g jumpinx, at3 hr

Time

(hr) p(0) Q) PO 4 p(s)
0.5 0.97 0.01 1.00 0.00 0.00
1.0 1.00 0.00 1.00 0.00 0.00
1.5 1.00 0.00 1.00 0.00 0.00
2.0 1.00 0.00 1.00 0.00 | 0.00
2.5 1.00 0.00 1.00 0.00 0.00
3.0 1.00 0.00 1.00 0.00 0.00
35 0.00 1.00 0.99 0.00 0.01
4.0 0.98 0.02 0.00 0.54 0.46
4.5 1.00 0.00 0.54 0.05 0.41
5.0 1.00 0.00 0.99 0.00 0.01
5.5 1.00 0.00 1.00 0.00 0.00

£ o
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in x4. In this manner the x, gain is kept large a while longer,
allowing the filter to correct its mistake.

Thus we see that the BH method performs exceptionally
well and is quite useful in pointing out important aspects of
the dynamics of jump detection. It has the advantage of direc-
tly providing jump isolation information [the p(})], but suf-
fers from computational problems. In general we must im-
plement (r+1) n-dimensional filters with covariances com-
.puted on-line. The BH method is still useful in providing a
benchmark to which one can compare other methods. In ad-
dition, the intial success we have had with this approach in-
dicates that serious consideration should be given to finding
computationally feasible adaptations of this sytem. One
possibility is to use the WSSR to detect state jumps and then
to switch to the BH system for jump isolation and estimate
compensation. In this manner, we do not increase the com-
putational load until after a jump is detected. This dual-mode
method will introduce delays in isolation and compensation,
but it is anticipated that for the cal/align problem this will not
be a significant problem. For other problems, one may have
to re-evaluate the tradeoff between system performance and
computational complexity.

References

I'Mehra, R.K. and Peschon, J., “An Innovations Approach to
Fault  Detection and Diagnosis in Dynamic Systems,”’
Automatica, Vol. 7, Sept. 1971, pp. 637-640.

2Buxbaum, P.J. and Haddad, R.A., ‘Recursive Optimal
Estimation for a Class of Nongaussian Processes,”” Proceedings of
Symposium on Computer Processing in Communications,
Polytechnical Institute of Brooklyn, 1969, pp. 375-399.

3 Jones, H.L., “Failure Detection in Linear Systems,”” Ph.D. thesis,
Dept. of Aeronautics and Astronautics, MIT, Cambridge, Mass.,
1973.

4wWillsky, A.S. and Jones, H.L., “A Generalized Likelihood Ratio
Approach to Estimation in Linear Systems Subject to Abrupt
Changes,’’ Proceedings of the 1974 IEEE Conference on Decision and
Control, Phoenix, 1974, pp. 846-853.

SSanyal, P. and Shen, C.N., “Bayes Decision Rule for Rapid

‘Detection and Adaptive Estimation Scheme with Space Ap-
piications,”” IEEE Transactions on Automatic Control, Vol. AC-19,
June 1974, pp. 228-237.

6 Athans, M. and Willner, D., ““A Practical Scheme for Adaptive
Aircraft Flight Control Systems,”” Symposium on Parameter
Estimation Techniques and Applications in Aircraft Flight Testing,
NASA TND-7647, April 1973, pp. 315-336.

"Lainiotis, D.G., ‘‘Partitioned Estimation Algorithms,I: Nonlinear
Estimation,’’ Information Sciences, Vol. 7, No. 3/4, Fall 1974, pp.
203-235.

Swillsky, A.S., Deyst, J.J., and Crawford, B.S., ‘‘Adaptive
Filtering and Self-Test Methods for Failure Detection and Com-
pensation,”’ Proceedings of the 1974 JACC, Austin, Texas, 1974, pp.
637-645.

9Sage, A.P. and Melsa, J.L., Estimation Theory with Applications
to Communications and Control, McGraw-Hill, New York, 1971.

Observer Algorithm Identification
of System Structure, Parameters,
and States

Daniel O. Molnar*
The Boeing Aerospace Company, Seattle, Wash.

I. Introduction

HE problem considered here is the estimation of

the structure, states, and parameters of a nth

order linear time-invariant plant where only the input and
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output can be observed. This development is an extension of
the results of Lion.!” Lion considered parameter iden-
tification without state estimation. Luders? related the ‘‘ob-
server’’? state estimations structure to Lion’s algorithm
resulting in a state and parameter estimation algorithm. The
observer formulation presented here has the advantage of
ability to identify the unknown system order. In addition this
formulation has greater design freedom in ‘‘state variable
filter” selection than that given in Ref. 3.

II. Brief Development

It is assumed that the completely observable system can be
described by an nth order time-invariant vector differential
equation. The order n of the unknown system may be deter-
mined by this algorithm. For the sake of simplicity, the new
canonical form is derived only for the single-input single-
output case. Nevertheless the extension of this canonical form
to the multi-input case is straightforward. 4

Given a stable stationary observable system transfer func-
tion with unknown parameters «, 8

n+1
L B! |
1
GO = O

E asi-!

1

Find a convergent parameter and state estimator. Solution:
restriction of Lion’s! “‘state variable filter” to a simple form
leads to a state estimate (observer) relationship. The transfer
function (one) can be expressed more conveniently in terms of
known parameters \;> 0 as follows

n+1
Y Mp,
1

n+1

EMiai
I

2
Gs) = 2

where

=

A 1
S+A;

a,=1, M,,,=1, M,

1

izn+1 j=1

In expression (2) the (a, b) are now the parameters to be iden-
tified. The transformation relating (@, b) to («, B8) involving
(M) can be derived easily by equating coefficients of like
powers of s. Note that if all A\,=0 then (¢, b)= («, 8). The
form of Eq. (2) is motivated by state estimate convergence
requirement.

The new canonic form is as follows

Ww=Aw+ hu 3)
v=Av+hy @)
1
y= [ ][b7w+b,,+1u—g7u] 5
an+l
where
bT=(by, ... ,b,), aT’=(, a,,...,a,)
hT=(0,...0, 1)
N, 1. 0
A= '
'-,.'..'-1
0 —\,

u=system input; y=system output
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