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A Moment-B ased Variational Approach 
to Tomographic Reconstruction 

Peyman Milanfar, Member, IEEE, William C.  Karl, Member, IEEE, and Alan S. Willsky, Fellow, IEEE 

Abstract- In this paper, we describe a variational frame- 
work for the tomographic reconstruction of an image from the 
maximum likelihood (ML) estimates of its orthogonal moments. 
We show how these estimated moments and their (correlated) 
error statistics can be computed directly, and in a linear fashion 
from given noisy and possibly sparse projection data. Moreover, 
thanks to the consistency properties of the Radon transform, 
this two-step approach (moment estimation followed by image 
reconstruction) can be viewed as a statistically optimal procedure. 

Furthermore, by focusing on the important role played by 
the moments of projection data, we immediately see the close 
connection between tomographic reconstruction of nonnegative- 
valued images and the problem of nonparametric estimation of 
probability densities given estimates of their moments. Taking 
advantage of this connection, our proposed variational algorithm 
is based on the minimization of a cost functional composed of a 
term measuring the divergence between a given prior estimate of 
the image and the current estimate of the image and a second 
quadratic term based on the error incurred in the estimation of 
the moments of the underlying image from the noisy projection 
data. We show that an iterative refinement of this algorithm leads 
to a practical algorithm for the solution of the highly complex 
equality constrained divergence minimization problem. We show 
that this iterative refinement results in superior reconstructions 
of images from very noisy data as compared with the classical 
filtered back-projection (FBP) algorithm. 

I. INTRODUCTION 
N THIS PAPER, we discuss the tomographic reconstruction I of a function f(z,y) from noisy measured values of its 

projections via the maximum likelihood (ML) estimation of 
the orthogonal moments of f .  In particular, the fundamental 
result on which the algorithms in this paper rely is that the 
statistically optimal estimate of an image based on noisy 
samples of its Radon transform can be obtained in two distinct 
steps: the first step being the ML (or MAP) estimation of the 
moments of the underlying image from the noisy data and 
a second step focusing on the reconstruction of the image 
from its estimated moments. In this way, we demonstrate and 
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take advantage of the natural utility of moments in solving 
tomographic reconstruction problems. 

The first step in this two-tier algorithm is a simple lin- 
ear estimation problem (allowing us also to determine error 
statistics with relative ease), whereas the second is a highly 
ill-posed inverse problem. In particular, by adapting this 
approach, we have transformed the problem of inverting the 
Radon transform into one of reconstructing a function from 
estimates of its moments. While the problem of reconstruct- 
ing a function from a finite number of estimated moments 
is known to be highly ill-posed [40], by making contact 
with the field of statistics, and in particular the problem of 
nonparametric probability density estimation from estimated 
moments, we can take advantage of the many concepts that 
have been devised to deal with this ill-posedness in other 
contexts. Specifically, by using this connection, we adapt ideas 
from nonparametric probability density estimation resulting 
in efficient algorithms for reconstructing an image using a 
divergence-based variational criterion. This criterion allows us 
to use prior knowledge (obtained, for example using standard 
tomographic methods) to regularize the problem and defaults 
to a maximum entropy solution if no prior information is 
available. 

We show that there are several advantages to our two-step 
approach. One is that the use of moments provides an explicit 
mechanism for controlling the degrees of freedom in the 
reconstructions, which is an issue of considerable importance 
in problems with very noisy or sparse projection data. Such 
situations arise, for instance, in nondestructive evaluation and 
ocean acoustic tomography, where due to various physical 
constraints, the gathered data can often be sparse and very 
noisy. In such circumstances, the reconstruction process must 
be regularized in order to yield an acceptable result. As we 
demonstrate in this paper, controlling the degrees of freedom 
of the reconstruction is an effective, robust, and efficient way 
to accomplish this. 

Another advantage is the computational savings inherent to 
our approach, as compared to standard variational algorithms 
that involve the numerical solution of complex partial differ- 
ential equations. A third is that by using these formulations, 
we can introduce prior information, in terms of prior estimates 
of reconstructions, or geometric information, in a very simple 
way with only minimal increase in computation. Finally, these 
features yield an overall efficient and versatile set of algorithms 
that yield reconstructions of excellent quality when compared 
to filtered back-projection (FPB) operating on data limited in 
quality and quantity. 
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The reconstruction of images from their moments has not 
been a central topic in image processing theory since the use 
of moments in this setting has primarily focused on their 
extraction from images (for use as distinguishing features) 
rather than on their use in reconstruction [27]. Furthermore, 
there has been relatively little work in this area within the 
tomography community [341, [29], [191, [281, [lo], [31. On 
the other hand, the moment problem has been the subject 
of much work in the mathematics and statistics communities 
for many years [l], [35], [6]-[8]. However, while variants of 
variational/regularization methods developed here have been 
studied elsewhere in the literature [41], 1401, [16], [26], 121, 
[8], [7], [14], [33], the precise combination of techniques 
we propose here has not been developed or investigated in 
the particular context of tomographic reconstruction from 
moments. We also propose novel and efficient numerical 
techniques for solving this variational problem and study some 
of their properties and extensions. 

In Section 11, we present an optimal (ML) algorithm for 
the estimation of the moments of an image from noisy mea- 
surements of its projections. In Section 111, we describe how 
the underlying image may be reconstructed from these esti- 
mated moments via regularization. Section IV contains the 
explicit solution to this variational problem, and here, we 
also discuss those properties of this solution that make it 
attractive. In Section V, we discuss an iterative refinement of 
the divergence-based regularization approach and demonstrate 
how this refinement leads to efficient solution of a highly com- 
plex equality-constrained divergence minimization problem. 
Section VI contains our numerical simulation results including 
illustration of how prior information-in this case, that pro- 
vided by the standard FBP solution+an be incorporated into 
our approach. Finally, in Section VII, we state our conclusions. 

11. ESTIMATING MOMENTS FROM PROJECTIONS 

Let f ( z ,  y) E L 2 ( D )  denote a square-integrable function 
with support inside the unit disk D in the plane and further 
denote by g ( t ,  8) = R f the Radon transform of f defined as 
follows: 

where w = [cos(8), siri(B)] and h ( . )  denotes the Dirac delta 
function; see Fig. 1 .  

The function g ( l , H )  E L2([-1, 11 x [ 0 , 2 ~ ] )  [I21 is defined 
for each pair ( t ,  0) as the integral o f f  over a line at angle 8-t 5 
with the .c-axis and at radial distance t away from the origin. 
An elementary result [ 121, which follows from the definition of 
the Radon transform, states that if F ( t )  is any square integrable 
function on [ - 1,1], then the following relation holds true: 

y ( t ,  B)F( t )d t  = f ( 5 ,  y ) F ( w  . [x, y ] T ) d z d y .  (2) 
, 1.L 

By considering F ( t )  = Cult, the celebrated Projection Slice 
Theorem [13] is obtained. What we wish to consider is the 
case where F ( t )  is taken to range over a set of orthonormal 
basis functions over [-1,1]. In particular, we will consider 

Fig. 1. Radon transform. 

the case when F ( t )  = Pk(t), where Pk(t) is the kth-order 
normalized Legendre polynomial over [ - 1 , 13 defined by 

In this basis, ( 2 )  relates the moments of the function f linearly 
to those of its Radon transform y, as we describe next. 

Let G("(0) denote the kth-order Legendre moment of 
for each fixed 0. That is 

G('"'(0) = J: g ( t ,  6r)Pk(t)dt. (4) 

In addition, denote by A,, the orthogonal moments of f 
defined as 

By appealing to (2), it is easily shown that the kth orthogonal 
moment G("(B) of y ( t , 0 )  is a linear combination of the 
orthogonal moments A,, of f ( x ,  y) of order' p + q  5 k ,  which 
is a direct consequence of the consistency conditions for Radon 
transforms discussed in [I21 and [29]. Defining s ~ ( f ? )  = 

LN = [A(O) , . . , , A ( ~ )  I T ,  we can write 
[G(0)(8),...,G(N)(B)]T, A(k) =[Ak,0,Xk-l,l,...,AO,klT and 

T T 

G"(Q) = AN(S)LN (6) 

where A N ( 0 )  is lower block triangular. When considering the 
complete (infinite) set of moments of f and g, we can write 

G(0) = A(B)L (7) 

where G(8) and L contain all the moments of g and f, 
respectively, and A(0) is a lower triangular linear operator. 
Note that since the infinite set of moments L and G(0)  provide 
complete orthogonal decompositions of f(z,  y) and of g ( t ,  B ) ,  
(7) provides us with a factorization of the Radon transform. 
Specifically, let A denote the operator taking C to the family 

' In fact, for k, even, G ( k )  ( e )  is a linear combination of A,, for p + q = 
odd, i t  is a linear combination of A,, k ,  k - 2 ,  . . . , 2. 0, whereas for 

f o r p + y = k ,  k - 2 ,  . . . %  3.  1. 
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of functions G(')(O) of O according to (7), and define the 
moment operators Rf = C and Mg = B (where M maps 
the function g ( t ,  O) to the family of functions G('l((8)). Then, 
since g = Rf and since M and R are unitary, we see that 

!R = M*AR. (8) 

In [22], we have used this decomposition of the Radon trans- 
form to derive new interpretations of classical reconstruction 
algorithms such as FBP. 

Suppose now that we are given noisy measurements of g at 
m distinct angles 6'1, 6'2, . . . , Om in [0, T )  as 

(9) 

where e ( t ,  0j) are independent white noise processes in t with 
intensity U', and where we assume that for each Oj, y ( t ,  0j) 
is available for all2 -1 5 t 5 1. If for each t9j we represent 
our data in terms of its orthogonal moments, we have 

v(t, 6'j) = g(4 6'j) + 44 6 ' j )  

Y ( ' ) ( O j )  = G("(t9j) + e( ' ) (B j ) ,  ik = 0,1 , .  . . (IO) 

where Y(') (Oj) and e ( k )  (0,) denote the L2 inner products of 
y ( t ,  ( 8 j )  and e( t ,  t 9 j )  with the kth-order Legendre polynomial 
Ph (t) .  Due to the orthonormality of the family { 4 ( t )  , k 2 0} 
and the assumption of white noise, the error terms3 e(') (0,) N 

N(0, g2) are independent across both k and j. Thus, if we let 
Y(0j) denote the set of all Y(')(Bj) for k = 0, 1, ..., and use 
analogous notation for .(e,), we see that thanks to (7) 

Y(Oj) = A(Oj )C+e(Oj ) ,  j = 1 , 2 , . . . , m .  (11) 

Since the full set of moments L provides a complete charac- 
terization of f ( z , y ) ,  we can see that a sufficient statistic for 
the estimation of f ( x , y )  is the ML estimate of C, given the 
data in (1 1). However, given the fact that we only have a finite 
number of viewing angles, it is not surprising that (1 1) does 
not provide an invertible relation between the data Y(0j) and 
the full set of moments L. In fact, we have the following. 

Proposition 1: Given line integral projections of f ( z ,  y) at 
m different angles % j  in [ O , T ) ,  one can uniquely determine 
the first m moment vectors A(j),  0 5 j < m of f ( z , y ) .  
This can be done using only the first m orthogonal moments 
G(')(Oj), 0 _< k < m of the projections. Furthermore, 
moments of f ( z , y )  of higher order cannot be uniquely de- 
termined from m projections. 

What this result, which is proved in Appendix A and in 
[23], says is the following. Let Y ~ ( 0 j )  denote the vector of 
the Legendre moments of y ( t ,  6 ' j )  of order k = 0,1 , .  . . , N so 
that Y ~ ( 6 ' j )  = A N ( ~ ~ ) C N  + e N ( 0 j )  (where e N ( 6 ' j )  is defined 
analogously). Collecting all of the Y~(t9j)  into a large column 
vector 

Y N  = [YN(Ol)', YN(o2)', " ' 1  YN(Om)']' (12) 

we have 

Y N  = ANCN + e N  (13) 
2Clearly, in practice, as in our numerical experiments, y ( t ,  0) will be 

3N(0,  U ' )  denotes a zero-mean Gaussian random variable with variance 
sampled in t as well as in 8. 

U 2 .  

where AN and e N  N N(0, 021) are defined in a correspond- 
ing fashion. Then, from Proposition 1, we have that AN has 
full column rank so that a unique ML estimate of C N  exists, 
if and only if N 5 m - 1, and this estimate is given by 

A 

L N  = ( A ~ A ~ ) - ~ A ~ Y ~  (14) 

with the corresponding error covariance matrix given by 
Q N  = U~(A;A.N).-' .  Moreover, thanks to the lower tri- 
angular relationship inherited from (6), we also have that the 
ML estimate of CN in (14), based on the Legendre moments 
of the data of order 5 N ,  is identical to the ML estimate 
of C N  based on the complete data, i.e., on all the Legendre 
moments as in (12). 

Note further that for N 2 m, AN will not have full 
column rank, implying that only some linear combination of 
the A,, for p + q > m have well-defined ML estimates. In 
principle, optimal processing requires that all of these ML 
estimates be calculated. However, in practice, only a finite 
number of moments can be calculated. Furthermore, as one 
might expect, the estimates of the higher order moments are 
increasingly uncertain for a fixed amount of data. In fact, 
useful information is only provided for moments of order 
considerably less than m. As an example, Fig. 2 displays 
plots of the trace of the cov+ance matrices of the estimated 
orthogonal moment vectors4 A('") up to order k = 10 versus 
k and for different SNR values. For the curves in this plot, 
m = 60 equally spaced projections in [0,7r) were considered. 
Consequently, for practical purposes, there is no significant 
information loss in using (14) for a value of N < m as a 
sufficient statistic in place of the ML estimate of all moments. 
Thus, in the remainder of this paper, we consider the pr2blem 
of reconstructing f ( z , y )  given noisy measurements C N  of 
LN with error covariance Q N .  Finally, note that because of 
the lower triangular structure of A ~ ( 0 j ) ,  QN is not block 
diagonal, i.e., the estimated moments of f(z,y) of different 
order have correlated errors. The algorithm described in the 
sequel takes this into account in a statistically optimal fashion. 

111. THE INVERSE PROBLEM AND ITS REGULARIZATION 

In this section, we propose a variational approach for the 
reconstruction of an image from noisy estimates of (a finite 
number of) its moments that regularizes the moment problem 
and at the same time takes into account the explicit structure of 
the corrupting noise. Our approach is founded on the principle 
of Minimum I-Divergence (MID) [6], [38], [39]. The principle 
states that of all the functions that satisfy E given set of 
moment constraints, one should pick the one f with the least 
I-Divergence D ( f ,  f o ) ,  relative to a given prior estimate f o  of 
f ,  where this is defined as 

4Note that for a given k ,  the covariance matrix of % e )  is simply the 
l)th,  (IC + 1) x ( k  + I) diagonal block of the covariance matrix QN (IC 

of CN 
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Fig. 2. Trace of covariance matrix versus moment order up to order 10. 

The basic idea dates back to Kullback [17] and was later 
generalized by Csisz5r [6] and includes the principle of maxi- 
mum entropy [15] as a special case when f o  is assumed to be 
a constant function. Entropy and, more recently, I-Divergence 
have a rich history of applications in pattem classification 
[37], spectral analysis [36], image processing [42], [ll] and, 
recently, tomography [34], [31], [9], [25], [3], [4]. In most of 
these applications, the general problem has often been posed 
as the following type of equality constrained optimization 
problem: 

min Kf ,  f o )  subject to f ( z ,  Y) 4z,J(z, Y) dz du=%. 
(16) 

In particular, in the context of tomography, the weight 
functions (z, y) have frequently been chosen as appropriate 
delta functions so that the constraints Zz,, are the noisy 
measured values of the Radon transform g(t,,8,) [34], 1311, 
[9], 1251. That is to say, the constraints have the form 

f 1.i 

where w3 is the unit direction vector making an angle 8, 
with the z-axis. In fact, most of the tomography literature 
on the subject has been concerned with a very special case 
of maximum entropy reconstruction. Other variants of these 
algorithms allow for the equality constraints to be inequality 
constraints so that some notion of uncertainty in the measured 
values of Zz,, can be taken into account [16]. 

Four important features distinguish our approach from other 
available algorithms mentioned above. The first concems the 
incorporation of a prior estimate f o .  In particular, in most (but 
not all) other work using divergence-like criteria as in (16), the 
focus has been on maximum entropy methods corresponding 
to the trivial choice f o  = 1. Not only do we allow for 
the possibility of an arbitrary (but positive) f o ,  but we also 
demonstrate the use of particular methods for choosing f o  
that can enhance performance considerably by allowing for 
the incorporation of prior geometric and image information. 
The second is that we use the estimated Legendre moments 

instead of the actual measured values of the projections. This 
is to say that, in our case, the basis functions are q5z,J (z, y) = 
P, (x)PJ (y), where Pz(.) denotes the tth-order normalized 
Legendre polynomial over the interval [-1,1]. Third, we 
do not use the estimated moments to form hard equality or 
inequality constraints but rather use these estimates, along with 
their computed covariance structure, to form a composite cost 
function that consists of the I-Divergence term plus a quadratic 
form in terms of the estimated moments. Finally, and perhaps 
most importantly, in addition to using the estimated moments, 
we also directly incorporate their estimated covariances, thus 
ensuring that these data are used in a statistically optimal way. 
That is, as we discussed in the preceding section, by using 
moments, we are able to focus the information in the raw 
projection data, via a simple linear processing step, identifying 
a much more compact set of statistically significant quantities 
capturing most information of use in reconstr~ction.~ 

Formally, we define the I-Divergence regularization (IDR) 
cost functional as 

where y E (0, a) is the regularization parameter, and C N  = 
QN1 is the inverse of the error covariance matrix for the 
estimate ,?N. To derive a probabilistic interpretation of the 
IDR cost functional, consider the MAP estimate of f based on 
noisy measurement of its moments up to order N .  Assuming 
that P ( f )  is some prior probability density function on the 
space of functions f ,  the MAP cost to be minimized is given 
by 

where c is a normalizing constant depending only on N and 
EN. Comparing (19) to J l n ~ ( f ) ,  we conclude that if 

then J I D R ( ~ ,  f o )  = Jmap ( f ) .  For positive-valued functions 
f and f o  (as in images), the functional D ( f , f o )  is, in fact, 
known as a directed distance6 [16]. From this point of view, the 
probability density function given by (20) is quite analogous 
to the standard Gaussian density, the difference being that in 
the Gaussian case, the exponent is basically the L2 norm of 
the difference f - f o .  

5As the error variances in the higher order moments become increasingly 
large, the information contained in moments beyond some order is quite 
small. Consequently, using a finite number of moments captures "most" of 
the information. 

6Note that D ( . ,  ,) is not a true metric since D ( f ,  f a )  # D ( f o ,  f) 
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Iv. SOLUTION OF THE VARIATIONAL 
PROBLEM AND ITS PROPERTIES 

To make the presentation simpler, we define the vectors 
&(Z,Y) for IC = O , l , . . . , N  as 

&(Z, Y) = [Pk(Z)PO(Y), P k - l ( Z ) f 3 ( Y ) > .  . ' , PO(.)Pk(Y)l' 
(21) 

where PI, (.) is the kth-order normalized Legendre polynomial 
over the interval [-1,1]. In addition, define 

(22) @N(Z,Y) = [ d b , Y ) ,  4T(.,Y>, . . .  > 4Z(X,Y)IT. 
With this notation, and absorbing the factor of 1/2into 7, the 
cost functional J I D R ( ~ )  can be written as 

+ Y W ,  f o ) .  (23) 

The cost functional J I D R ( ~ )  has a unique minimum due to 
its convex nature [ 171, 1161. Furthermore, a straightforward 
variational calculation analogous to ones in other I-Divergence 
minimization problems [16], [38] (adapted here to deal with 
the explicit use of estimated moments and the uncertainties in 
them rather than hard equality or inequality constraints) yields 
the following implicit specification of f :  

h 

f(x,Y) = f o ( 2 , Y ) e x p ( - l @ T , ( ~ , y ) C N ( L N ( f )  - LN)). 
Y 

(24) 
The above is now a nonlinear functional equation in f ,  which 
must be solved. (Note that f appears on the right-hand side in 
the form of the moment functional LN ( f )  .) The prior estimate 
f o  enters the solution multiplicatively. We shall have more to 
say later about the choice of this prior. 

Due to the form of the solution (24), we may convert (24) 
into a nonlinear algebraic equation in terms of the coefficient 
vector CN defined as follows: 

-1 h 

Y C N  - E i v ( L N ( f )  - LN). (25) 

Substituting the expression for L c , ( ~ )  using (24), we obtain 
an equation in terms of CN as follows: 

-1 

Y CN = - X N H ( C N )  (26) 

H ( C N )  

= (/l fo(Z,  Y) exP(@.TN(~>Y)CN)@N(Z, Y)dZdY - 

(27) 

What we now have is a set of nonlinear, algebraic equations 
which may be solved by any one of many techniques such 
as Newton's method or the conjugate-gradient method [5] to 
yield the unique solution 

A D R ( Z ,  Y) = f o ( 2 ,  U )  exp(QT,(z, 9)" (28)  

In the experiments reported in this paper, we used a fixed point 
iteration described in [5] to arrive at the solution of (26). 

Despite the seemingly complex nature of the c o s  functional 
J I D R ,  the computation of the coefficient vector CN involves 
solving a set of nonlinear algebraic equations. When compared 
with most variational algorithms that involve the numerical 
solution of complex partial differential equations, iteratively 
solving a (relatively small) set of nonlinear algebraic equations 
makes the IDR approach a relatively computationally attractive 
one. In addition, note that if f j  is a positive function of z 
and y, then the reconstruction f IDR is necessarily a positive 
function as well. This is clearly desirable since we are dealing 
with images. 

V. ITERATIVE REGULARIZATION (It-IDR) 

In this section, we present an iterative refinement of the 
IDR algorithm that is based on redefining the prior. In this 
formulation, an initial prior is chosen, and using this prior, a 
solution to the IDR minimization problem is computed. This 
solution is then used as the prior for a new IDR cost functional 
and the minimization is carried out again. Therefore, the It- 
IDR algorithm involves two levels of iteration since at each 
iteration of this algorithm, a distinct IDR problem is solved 
iteratively as described in SFtion IV. 

Formally, beginning with f o  = f o ,  we can iteratively define 
h h 

fk+1 = arg min J k ( f ,  f k )  (29) 
f 

%here the cost function JI, is as in (18) with f o  replaced by 
f k  and replaced by YI,. 

By appealing to (28), the solution at each tk may be written 
as 

- (k+ l )  
&+1(5, Y) = a x ,  Y) exp(@G(z, Y)CN (30) 

where 

In terms of C$), we may rewrite this as 

Therefore, at each iteration, as before, an IDR solution is 
computed by solving an algebraic set of equations for (%Ef1). 
There are several appealing features about this iterative ap- 
proach. The first is that it allows us to control how strictly 
the estimated moment information is enforced in the final 
solution both through the sizes of the regularization parameter 
yk (which, as we discuss, may vary with iteration) and through 
the number of iterations performed. Second, a,s shown in 
Appendix B, if (29) is carried to convergence, f k  converges 
to the solution of the following equality constrained problem 

$ n D ( f , f o ) ,  subject to L,(f) = E$) (33) 
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where z$) denotes the projection, defined with respect to the 
inner product < 11,12 >zN= l T C ~ 1 2 ,  of CN onto the range 
of the operator Q N .  Here, f l ~  denotes the operator mapping 
a square-integrable function f E L 2 ( D )  with support in the 
unit disk to its Legendre moments up to order N .  Note that 
if 2~ happens to be in the range R ~ ( Q N )  of the operator 
C ~ N ,  the constraint simply becomes C N V )  = L ~ J .  If the 
estimated moments are not consistent, i.e., CN Ru(RN) ,  the 
proposed iterative algorithm implicitly computes and enforces 
the projection of LN onto the set of consistent moments 
as hard constraints. Hence, iterative regularization proxides 
a method of converting the sofi-constrained solutions f IDR 

to hard-constrained solutions. The fact that this is done 
automatically and implicitly is particularly appealing since no 
explicit description of the set Ru(QN) is known to exist [35].  

The idea of using iterative methods to solve divergence- 
based minimization problems has been considered in other 
contexts [6]-[8], [39], [3] ,  [32], [14], [33]. Distinct features 
of our approach are the applications to tomography7 using 
estimated moments and the explicit use of the error covariance 
matrix for these estimates in forming the penalty function to be 
minimized. Furthermore, to our knowledge, the specific nature 
of our iteration (using the finite-dimensional coefficients e:)) 
is also new. In addition, by explicitly taking into account noise, 
we have a rational mechanism for stopping the iteration based 
on the fidelity of the moment estimates. 

Several results on convergence of iterative algorithms can 
be found in [6], [39], [3], and [8]. In Appendix C ,  we provide 
a convergence result for our specific context that, in particular, 
provides us with guidance on how the regularization parameter 
yk should be chosen at each iteration. In practice, however, 
finding the yk’s according to this result is, in any particular 
case, a nontrivial task and, in fact, is computationally quite 
involved. Hence, in the experiments reported here, we have 
used heuristics based on the result of Appendix C to come 
up with the regularization parameters. A simple heuristic we 
found useful, and practical, was to start with a fairly large value 
for the regularization parameter (200 to 500) and to reduce this 
value to a relatively small value (5  to 30) after two or three 
iterations. After this, further reduction of the regularization 
parameter typically resulted in nonlinear instabilities. To avoid 
these, the rest of the iterations (to convergence) were canied 
out with a fixed regularization parameter in the typical range 
of 5 to 30. 

Finally, note that, assuming that yk is chosen to ensure 
convergence, our result states that even if our estimated 
moments are inconsistent (i.e., they fall outside Ra(Clp~) ) ,  
our iterative algorithm produces an estimate with consistent 
moments satisfying the equality constraints in (33). 

A 

h 

VI. NUMERICAL EXAMPLES 

To demonstrate the potential of the algorithms presented 
in this paper for improving tomographic reconstruction, we 

The problem of (emission) tomographic reconstruction is considered in 
[3j, but with a different setup in which the effects of measurement noise 
are captured via a divergence term, in contrast to our use of it as a direct 
means of capturing prior information. In addition, no use is made of moment 
information in [3j. 

Fig. 3. Counterclockwise from upper left: Phantom, f o  based on FBP (% 
MSE=69.1), It-LDR solution after 3 iter. (W MSE=38.1), It-IDR solution 
after 10 iter. (% MSE=11.1). Data: 64 proj. with 64 samples per proj. S N R  
= 4.35 dB; moments up to order 8 used. 

provide simulated reconstructions of sample phantoms. In 
particular, in this section, we study the performance of the pro- 
posed IDR and It-IDR algorithms by applying these techniques 
in the tomographic reconstruction of two distinct phantoms. 
In the experiments to follow, we assume that samples of the 
projections g ( t ,  0) of these phantoms are given from m distinct 
directions in the interval [0, T )  and that in each direction Qj, n 
samples of g( t ,B j )  are given and that these are corrupted by 
Gaussian white noise. We denote the data as follows: 

 ti, Qj) = s(&, Qj) + e ( t i ,  Qj) (34) 

where e ( t ; , 0 j )  is a Gaussian white noise sequence with 
variance g2. To quantify the level of noise in relative terms, we 
define the following signal-to-noise ratio (SNR) per sample. 

In addition, to quantify the quality of the reconsts-uctions, we 
define the percent mean-squared-error (% MSE) as follows:8 

In the experiments that follow, we define convergence as the 
point at which the MSE did not improve by more than 1% 
in three iterations. 

Example I: The first phantom to be reconstructed is a 64 by 
64 gray-scale image shown in the upper left comer of Fig. 3. 
Projections were generated from 64 equally spaced angles 
in [O,n), and 64 equally spaced samples were collected in 
each projection. The projection data were then corrupted by 

*Since there is no universally accepted measure of image quality, and since 
MSE is often used, we have used this performance measure here to make 
quantitative comparisons. 
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Fig. 3: Moments up to order 8 used. 

MSE versus SNR (in decibels) in reconstructing the phantom of 
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Gaussian white noise to produce an overall SNR of 4.35 dB per 
sample. In the lower left side of Fig. 3, the FBP reconstruction 
is shown where a Butterworth filter of order 3 with cut-off 
frequency of 0.25 (normalized) was used. This choice of filter 
and cut-off frequency was arrived at to produce the best FBP 
reconstruction possible, at least from a visual standpoint. 

One of the significant features that we wish to demonstrate 
is that the algorithms we have developed here can significantly 
enhance noise rejection and feature delineation given an initial 
estimate fo of the underlying image. One obvious choice for 
that initial estimate is the FBP reconstruction, or rather a 
slight modification of the FBP solution. In particular, FBP 
is not guaranteed to produce a positive-valued reconstruction; 
hence, in order to use the FBP reconstruction as an initial 
estimate, we add a number to each pixel value in the FBP 
image in order to maintain positivity. Furthermore, to speed 
up the convergence of the It-IDR algorithm, we scaled the 
result to produce an initial estimate with integral equal to the 
estimated zeroth-order moment. 

Using estimated moments up to order 8, the result of the It- 
IDR algorithm after only three iterations is shown in the lower 
right-hand side of Fig. 3, whereas the final It-IDR solution 
(reached after only 10 iterations) is shown in the upper right- 
hand side of the same figure. A drastic visual improvement 
in the reconstruction quality is seen both in terms of reduced 
noise and enhanced feature delineation. In fact, in terms of 
the % MSE, the improvement is equally striking. The %MSE 
for the (unnormalized) FBP is roughly 70%, whereas after 
only three iterations of the It-IDR, this number is reduced to 
38.1%, and the final It-IDR reconstruction incurs only 11.1% 
error. Similar experiments were performed at various SNR’ s 
to demonstrate the robustness of and MSE reduction provided 
by the It-IDR solution to noise. A plot of % MSE versus SNR 
for the FBP and It-IDR solutions is shown in Fig. 4. 

A second issue concerns the order of moments incorporated 
into the procedure, i.e., the value of N .  As we have discussed, 
the quality of higher order moment estimates decreases rapidly, 
and thus, we would expect diminishing returns from the 

2 4 6 8 10 12 
Highest order moment used 

Fig. 5. 
the phantom of Fig. 3 with SNR=4.35 dB. 

MSE versus number of moments used in It-IDR reconstruction of 

Fig. 6. Counterclockwise from upper left: Reconstrnctions using moments 
up to order 2, 5 , 8 ,  and 11. Data: 64 projections with 64 samples per projection 
at s N R ~ 4 . 3 5  dB. Initial guess was based on FBP in every case. 

inclusion of additional moments. This is illustrated in Fig. 5 ,  
which shows the MSE versus the order of the highest order 
moment used in the reconstructions. Fig. 6 shows the It-IDR 
reconstructions obtained using moments up to order 2, 5 ,  8, 
and 11, respectively, at SNR = 4.35 dB. Note that increasing 
the order of moments from 8 to 11 reduced the % MSE by 
only roughly 1%, and additional experiments showed even 
less improvement if even higher order moments are included. 
These small gains, however, are only achieved at a significant 
computational cost. Indeed, note that the number of moments 
of order IC is IC + 1, and thus, the dimension of LN and 
thus CN increases considerably as N increases (e.g., from 
dimension 45 for N = 8 to 78 for N = ll), increasing 
the complexity in solving the nonlinear equation (26). To 
choose the number of moments to be incorporated into the 
reconstruction process automatically, the minimum description 
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Fig. 7. Counterclockwise from upper left: phantom, uniform initial Fig. 9. Counterclockwise from top left: Phantom, Initial Estimate from FBP, 
estimate (”/. MSE=fj5.7), IDR solution (% MSE=55.9), It-IDR solution IDR reconstruction, Final It-IDR reconstruction (64 views, 64 samples per 
(% MSE=15.8). Data: 64 projections with 64 samples per projection at view, S N R  =4.35 dB, moments up to order 10 used). 
SNR=4.35 dB; moments up to order 8 were used. 

maximum entropy-type criterion. In particular, in this case, 
the It-IDR solution to (33) is precisely the classical maximum 
entropy solution. Estimated moments up to order 8 were used 
in the reconstructions. As can be seen, the It-IDR reconstruc- 
tion produces a rough estimate of the underlying image with 
smooth or “flattened” edge regions. This is essentially due 
to the fact that the maximum entropy prior seeks the “flattest” 
reconstruction that matches the data best. Fig. 8 shows the IDR 
and It-IDR reconstructions when the minimum Burg entropy 
solution is used as the prior and using estimated moments 
up to order 8. This prior is given ky the solution of 10 = 
argminfyo SJDf - log(f)dxdy + (LN - Liv(f))TCN(LN - 
L,(f)). As is apparent, in contrast to the maximum (Shannon) 
entropy solution in Fig. 7, the Burg entropy solution is known 
to give “peaked” or “spikey” results [16]. It is interesting to 
contrast the It-IDR solutions in the upper right-hand comers of 
Figs. 3, 7, and 8 corresponding to our three different choices 
of f o .  First of all, since the uniform and Burg entropy priors 
(in the lower left corners of Figs. 7 and 8) do not have high- 
frequency noise, the It-IDR reconstructions in these cases also 

Fig. 8. Counterclockwise from upper left: Phantom, Initialization computed 
using Burg entropy (96 MSE=39.8), IDR solution (% MSE=31), It-LDR 
solution (’70 MSE= 10.3). Data: 64 projections, 64 samples per projection with 
SNR=4.35 dB; moments up to order 8 used. 

length (MDL) criterion can be considered. The application 
of MDL would involve the inclusion of a term, involving 
the number of moments used, to the IDR or It-IDR cost 
functionals. The analysis of convergence of such an algorithm 
would, however, be significantly more complicated. We leave 
this for future research. 

To show how the reconstructions change as a function of 
the choice of prior fo, we next show the IDR and It-IDR 
reconstructions when two different priors are used. In Fig. 7, 
we show the reconstructions when a uniform prior is used. 
As we have pointed out previously, this corresponds to a 

~- 
do not exhibit such noise. This is in contrast to the FBP prior 
(in the lower left oE Fig. 3). On the other hand, because it is far 
less constrained than the other two priors, the FBP not only 
exhibits noise but also far more accurate delineation of the 
features in the image. As a result, the It-IDR reconstruction 
using the FBP prior has far less distortion in the reconstruction 
of these figures. On a MSE basis for this example, the It-IDR 
solution for the Burg prior is slightly superior to that using 
FBP. However, which of these choices is preferable depends 
on the application. 

Example 11: The second phantom to be reconstructed is a 
64 by 64 gray-scale image’ shown in the upper left corner of 

9The use of only 64-by-64 images here is appropriate for proof of principle. 
More analysis and experimentation on larger images (512-by-512) will be 
required to ascertain the performance of the proposed algorithms in many 
practical situations. 
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Fig. 10. MSE versus number of views for "adjusted" FBP prior, IDR 
solution and It-IDR solution, SNR=4.35 dB, moments up to order 10 used. 

Fig. 9, which has been chosen to illustrate the capability of 
the FBP-initialized algorithm to delineate features of differing 
size and contrast. Projections were generated from 64 equally 
spaced angles in [ O , T ) ,  and 64 equally spaced samples were 
collected in each projection. The projection data were then 
corrupted by Gaussian white noise to produce an overall 
SNR of 4.35 dB per sample. In the lower left side, the FBP 
reconstruction is shown where a Butterworth filter of order 
2 with cut-off frequency of 0.3 (normalized) was used. After 
proper normalization, the FBP reconstruction was then used 
as the initial prior f o  in the It-IDR reconstruction algorithm. 
Using estimated moments up to order 10, the result of the It- 
IDR algorithm after only one iteration (i.e., the IDR solution) is 
shown in the lower right-hand side of Fig. 9, whereas the final 
It-IDR solution (reached after only 11 iterations) is shown in 
the upper right-hand side of the same figure. The drastic visual 
improvement in the reconstruction quality is again seen. lo 

The It-IDR algorithm performs well even when a much 
smaller number of projections is available. As shown in 
Fig. 10, the MSE in the reconstruction using 32 equally spaced 
views in [ O , T )  at SNR = 4.35 dB is still significantly better 
than the corresponding MSE value for the normalized FBP 
reconstruction. 

VII. CONCLUSIONS 
In this paper, we have shown how the tomographic re- 

construction problem can be naturally decomposed into a 
two-step process whereby we first compute ML estimates 
of the orthogonal moments of the underlying image directly 
from the projections and then use these estimated moments 
to obtain a reconstruction of the image. In particular, mak- 
ing a connection to the field of nonparametric probability 

lo We note that the number of iterations to convergence depends on at least 
four (related) factors: 1) the noise level, 2) the number of moments used, 3) the 
choices of regularization parameters, and 4) the choice of prior. In particular, 
without significantly alterating the regularization regime, and assuming that 
convergence is not lost, we observed that increasing the noise level tends to 
increase the number of iterations to convergence. The same is observed when 
increasing the total number of moments used. 
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density estimation, we took advantage of the I-Divergence 
criterion and its desirable properties to produce regularized 
reconstructions of images from noisy projection data that far 
exceed, in quality, those reconstructions produced by classical 
tomographic reconstruction techniques. 

It should be pointed out that the domain of applicability 
of our proposed algorithms extends to emission tomography 
as well, where the assumption of Poisson noise statistics 
in the projections is more appropriate. In fact, the major 
variation needed here would be to develop statistically robust 
methods for estimating moments from projections, as well 
as estimating the uncertainty in those moments. In fact, 
we can, in general, use the least squares (LS) optimality 
criterion to estimate the moments whenever the Gaussian 
noise assumption is inappropriate. When the LS criterion is 
used, the error covariance for the estimated moments simply 
coincides with the expression given in the paper. Having 
these modifications, the rest of our algorithms would remain 
unchanged. 

We demonstrated how our proposed algorithm provides an 
explicit mechanism for controlling the degrees of freedom 
in the reconstructions, hence resulting in better results. In 
addition, in contrast with other divergence- (or entropy-) based 
algorithms that use the directly measured projection data to 
form constraints, the use of moments results in a more efficient 
algorithm since typically, the number of moments needed 
(and used) is far less than the total number of projection 
measurements (in our examples, this resulted in a reduction 
in dimensionality by a factor of roughly 90). Moreover, in our 
approach, we calculate the error variances in estimating the 
moments and then make explicit use of this information in 
our reconstruction algorithm. Furthermore, and perhaps most 
importantly, we showed how our formulations allow for the 
explicit incorporation of prior information, in terms of prior 
estimates of reconstructions, in a very simple way and with 
minimal increase in computation. In particular, it is worth 
noting that other geometric information, beyond that used 
in our examples, can be directly incorporated. For instance, 
assume that after performing some geometric preprocessing on 
the data, such as extraction of support information [30], [ 181 or 
a preliminary parameterized reconstruction such as polygonal 
reconstructions [24], an estimate is obtained of the region of 
the plane where the object of interest may lie (i.e., the spatial 
support of the object). Then, according to this information, 
the prior fo can be chosen as essentially an indicator function 
over this estisated region. Due to the multiplicative nature of 
the solution f l ~ ~ ,  the prior f o  in effect nulls out the part of 
the reconstruction that the geometric preprocessor eliminated 
as not being part of the spatial support of the object. This 
feature of the IDR (and, hence, It-IDR) algorithm is uniquely 
well suited to situations where it is important to concentrate 
the reconstruction on a particular region of interest. 

Since our proposed algorithms make explicit use of the 
covariance matrix of the estimated moments, higher order mo- 
ments, the estimates of which are more inaccurate, are weighed 
less than lower order ones. Hence, our proposed algorithms 
essentially make use of a finite and modestly small number 
of moments to efficiently produce superior reconstructions. 
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This feature, along with the the overall robustness of the It- 
IDR algorithm to noise and the number of available views, 
make it particularly useful for relatively efficient tomographic 
reconstruction for low signal-to-noise ratio scenarios and when 
the number of available projections may be small. More 
extensive testing would be needed in the future to ascertain the 
performance of the proposed algorithms in practical situations. 

APPENDIX A 
PROOF OF PROPOSITION 1 

This result is most easily proved using the nonorthogonal 
geometric moments 

H ( k ) ( Q )  = [I g ( t ,  8)t '"dt  (37) 

F p , q  = f ( x ,  ! /bP! /*dzd ! / .  (38) 

Define 
XN(B) =[H(O)(B), H(1)(0), . . . , H(N)(B)]T 

/ J k )  = h , o ,  Pk-1,1, . ' .  I P0,kI' 

and 

M N  = j p ( O I T ,  p ( l ) T ,  . . . , p ( N ) T ] T  

. Then, there is a (lower-triangular) invertible relationship 
between the geometric moments 7 t ~ ( 8 )  and the Legendre 
moments 6 ~ ( 8 )  and an analogous one between M N  and 
CN. Thus, what we need to show is that given X N ( B ~ )  for 
j = 1, 2, . . . , m, we can uniquely determine M N  if and 
only if N 5 m - 1. 

To begin, note that, thanks to (2), there is a block-diagonal 
relationship between the geometric moments of g ( t , 8 )  and 
f ( z ,  Y)> namely 

H ( k ) ( Q )  z= D("(Q)p(k)  (39) 
D ( ~ ) ( B )  = [pk ,o  COS'(B) ,  pk, l  COS"'(B)  sin(^), . . . 

p k , k - 1  cos(0) sin"'(B), p k , k  sink(6')] 

3'(k--3) '  

(40) 

where p ~ , ~  = are the binomial coefficients. Because 
the kth-order geometric moment of g ( t ,  e )  is only a function 
of the vector of kth-order geometric moments of f ( z , g ) ,  
we need only show that p(N) is uniquely determined by 

= [H(N)(81), H(N) (8 , ) ,  ' " ,  H(N)(Om)]r  if and only 
if N 5 m -  1. 

= D N ~ ( ~ ) ,  where the m x ( N  + 1) matrix 
DN has rows D(N)(O1), D(N)(82) ,  . . ., D(N)(B,). Note first 
that for DN to have full column rank (equal to N+1), we must 
have N 5 m- 1. Thus, we must only show that if N 5 m- 1, 
then the columns of DN are linearly independent. From (40), 
we find that this will be the case if and only if there is no set 
of a? (not all zero) such that for B = 81, . . . , 8,: 
p,(e) =a0 cosN(,) + a1 cosN-l(0) sin(0) 

Note that 

+ . . . + a N - 1  COS(B)  sinNp1(B) + Q N  sinN(B) = 0. 

(41) 

To see that this cannot happen for any such p ~ ( 8 )  for any 
N and m, satisfvinn N < m - 1. we vroceed bv induction on 

N .  Specifically, note first that for N = 0, p o ( 8 )  = ao, which 
is nonzero for any nonzero choice of QO. That is, the result is 
verified for N = 0. Thus, suppose by induction that the result 
is true for all N 5 k - 1, where k 5 m - 1. What we need 
to show is that it is also true for N = k .  Therefore, take any 
nonzero pt , (Q) .  Note first that if pk(n/2) = 0, then from (41) 
(with N = k ) ,  we see that 

(42) pk(7r /2)  = c!!k sink(n/2) = a k  = 0. 

p t , ( ~ )  = c o s ( ~ ) ( a o  COS"-'(O) + . . . + a k - 1  sin"'(0)) 

Therefore, we have that 

= cOs(8)pk- 1 ( e ) .  (43) 

If one of the 0,, say 0, = 7r/2, then what we want is that 
pk-1(83) cannot vanish for all j = 1, . . .  ,m  - 1, but this is 
exactly verified by part of the induction hypothesis. If none of 
the 8, = 7r/2, then we need to ensure that p,+1(B3) cannot 
vanish for j = 1, . . . , m, which is also part of the induction 
hypothesis. 

Finally, if pk(7r/2) # 0, we can write pk(8) as 

P k ( 8 )  = cos"%(fl) (44) 

where 

q k ( 0 )  = aO+cq t a n ( B ) + . . . + a k - l  tan"'(B)+cuk tank(@). 
(45) 

Letting U = tan(@), we observe that the right-hand side of (45) 
is simply a polynomial of order k in U .  By the Fundamental 
Theorem of Algebra [21], this polynomial has at most IC real 
roots. Since tan(8) is one-to-one over the interval [0, T ) ,  we 
have that pk(8,) can vanish for at most k of the m values of 
e,, proving the result. 

APPENDIX B 
HOW It-IDR SOLVES (33) 

In this Appendix, we show that if the It-IDR converg_es, it 
indeed solves (33). We first consider the case when CN E 
R a ( ! 2 ~ ) .  It is well known [17], [38], [6] that the unique 
solution to (33) has the form" 

f(3, 3)  = f o ( 5 ,  Y) e x P ( m x ,  Y ) K N )  (46) 

where the vector of constants KN is chosen such that 

&(f) = EN. (47) 

In fact, if a function of the form (46) exists and satisfies the 
constraints given by (47), then it is ne_cessarily the unique 
solution of (33). Hence, to show that f l t - I D R  solves (33), 
it suffices to show that it has the form given by (46) and 
moments given by (47). From (30), we see that 

k+l 

&+I = f o  e x p ( G ( z ,  Y) E!)). (48) 
2=1 

Recall that we have assumed that the It-IDR algorithm con- 
verges to a finite limit point. Now, through (32), this implies 

"Note that the existence of the solution IS guaranteed by the assumption 
, U  - , I  that E R a ( R N )  
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that the sum e:) also converges as k -+ 00. Hence, as 
k -+ 00, in the limit, the It-IDR solution has the same form 
as (46), with KN = c E l  e$). At the fixed point of (30), the 
solution f i t--IDR satisfies 

A 

f i t - - I D R ( Z ,  y) = f^ l t - - IDR(x,  9) e x p ( G ( ~ ,  YI~?))  (49) 

which, since the elements of the vector @ ~ ( x ,  9) are linearly 
independent, implies that Ehm) = 0. This, in turn, through 
(31), implies that 

h h 

L ( f I t - - I D R )  = L N .  (50) 

Therefore, &t-IDR(x, y) is the unique solution of (33) in the 
case E N  E R ~ ( R N ) .  

If EN is not in the range of O N ,  we simply write LN 
in terms of its orthogonal decomposition with respect to the 
inner product < ., . >E, 

h 

where E$) E R ~ ( O N ) ,  and 5;) is orthogonal to R a ( 0 ~ ) .  
Then, we may write 

Tk+l = ”‘f;mfinykD(f,Tk) f I l L N ( f )  - Eg)llgN f I1.c~ Yi) 2 

(52) 
NOW, clearly, c,(&) E ~ a ( n N )  at every iteration k .  

Hence, the estimates T k  do not depend on the inconsistent part 
of the estimated moments zi), and we may drop the last term 
on the right-hand side of (52) without changing the solution 
of the optimization problem (52). This implies that the It-IDR 
algorithm converges to the solution of (33). 

APPENDIX C 
A CONVERGENCE RESULT FOR It-IDR 

We find a sufficient condition for the local asymptotic 
5onvergence of the It-IDR algorithm by first assuming-that 
f k  and yk-1 are given for some k 2 1. To solve for fk+l,  

we compute e$+1) by finding the solution of (26). Solving 
(26) iteratively, we have 

Linearizing H(Cg+”( j ) )  about CN = 0, we have 

e:+’)(j + 1) x - - - x N ( l N ( & )  -1 + DkCN “ ( k + l )  ( j )  - E N )  
(54) 

where Dk = Jo &(xi y ) @ ~ ( x ,  y)@z(x, y) d s  dy. Hence, 
for the iteration (53) to be locally asymptotically stable about 
CN = 0, it suffices that the eigenvalues of  END^ have 
magnitude strictly less than one [20]. That is 

yk 

(55 )  

If Condition 1 is satisfied, then from (54), we have a linear 
approximation to C:+l) given by 

From h the definition of C$’ from (31), we have that 
yk-1Cg) = C N ( ~ N  - L,(f?,)), which after substitution 
in (56) yields 

A sufficient condition [20] for the asymptotic convergence of 
(57) is that for all k 2 1, some c 2 0, and some 0 5 6 < 1 

k 

Condition 2: 1) n Tj1I2 5 cSk. (58)  
j=1 

Therefore, by carefully choosing yk to satisfy conditions 1 and 
2 simultaneously at each iteration, the overall It-IDR algorithm 

be made locally asymptotically convergent. 

REFERENCES 

N. I. Akhiezer, The Classical Moment Problem and Some Related 
Questions in Analysis. 
U. Amato and W. Hughes, “Maximum entropy regularization of Fred- 
holm integral equations of the first kind,” Inverse Problems, vol. 7, pp. 
793-808, 1991. 
C. L. Byme, “Iterative image reconstruction algorithms based on cross- 
entropy minimization,” IEEE Trans. Image Processing, vol. 2, no. 1, 
pp. 96-103, Jan. 1993. 
A. T. Chinwalla and J. A. O’Sullivan, “Image regularization using a 
divergence penalty method,” in Proc. Johns Hopkins Con$ Inform. Sei. 
Syst., Baltimore, MD, Mar. 1993, pp. 30-33. 
S. Conte, Elementary Numerical Analysis. New York McGraw-Hill, 
1965. 
I. Csisztir, “I-Divergence geometry of probability distributions and 
minimization problems,” Ann. Probab., vol. 3, pp. 146-158, 1975. 
-, “A geometric interpretation of Darroch and Ratcliff‘s gener- 
alized iterative scaling,” Ann. Stat., vol. 17, no. 3, pp. 1409-1413, 
1989. 
J. N. Darroch and D. Ratcliff, “Generalized iterative scaling for log- 
linear models,” Ann. Math. Stat., vol. 43, no. 5 ,  pp. 1470-1480, 1972. 
N. J. Dusaussoy and I. E. Ahdou, “The extended MENT algorithm: A 
maximum entropy type algorithm using prior knowledge for computer- 
ized tomography,” IEEE Trans. Signal Processing, vol. 39, no. 5, pp. 
1164-1180, May 1991. 
M. Ein-Gal, “The shadow transformation: an approach to cross-sectional 
imaging,” Ph.D. dissertation, Dept. of Elect. Eng., Stanford Univ., 
Stanford, CA, 1974. 
S. F. Gull and G. J. Daniell, “Image reconstruction from incomplete and 
noisy data,” Nature, vol. 272, pp. 686-690, Apr. 1978. 
S. Helgason, Radon Transform. 
G. T. Herman, Image Reconstruction from Projections. New York: 
Academic, 1980. 
S. Holte, P. Schmidlin, A Linden, G. Rosenqvist, and L. Eriksson, 
“Iterative image reconstruction for positron emission tomography: A 
study of convergence and quantitation problems,” IEEE Trans. Nucl. 
Sci., vol. 37, no. 2, pp. 629-635, Apr. 1990. 
E. T. Jaynes, “On the rationale of maximum entropy methods,” Proc. 
IEEE, vol. 70, no. 9, pp. 939-952, Sept 1982. 
L. K. Jones and C. L. Byrne, “General entropy criteria for inverse 
problems, with applications to data compression, pattern classification, 
and cluster analysis,” IEEE Trans. Inform. Theory, vol. 36, no. 1, pp. 
23-30, 1990. 
S. Kullback, Information Theory and Statistics. New York Wiley, 
1959. 
A. Lek, “Convex set estimation from support line measurements,” 
Master’s thesis, Dep. Elect. Eng., Mass. Inst. of Technol., Cambridge, 
1990. 
A. K. Louis, “Picture restoration from projections in restricted range,” 
Math. Meth. Appl. Sci., vol. 2, pp. 209-220, 1980. 
D. G. Luenberger, Introduction to Dynamic Systems. New York Wiley, 
1979. 
S. MacLane and G. Birkhoff, Algebra. 
P. Milanfar, “Geometric estimation and reconstruction from tomographic 
data,” Ph.D. dissertation, Dept. of Elect. Eng., Mass. Inst. Technol., 
Cambridge, June 1993. 

New York Hafner, 1965. 

Boston, MA: Birkhauser, 1980. 

New York Chelsea, 1988. 



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 5 ,  NO. 3, MARCH 1996 

P. Milanfar, W. C. Karl, and A. S. Willsky, “Recovering the moments 
of a function from its Radon-transform projections: Necessary and suffi- 
cient conditions,” LIDS Tech. Rep. LIDS-P-2113, Mass. Inst. Technol., 
Lab. for Inform. Decision Syst., June 1992. 
~, “Reconstructing finitely parameterized objects from projections: 
A statistical view,” CVGIP: Graphical Models and Image Processing, 
vol. 56, no. 5, pp. 371-391, Sept. 1994. 
G. Minerbo, “MENT: A maximum entropy algorithm for reconstructing 
a source from oroiection data.” Comaut. Graahics Imaae Processina. 

I ”  Y 

vol. 10, pp. 48-68, 1979. 
F. Natterer, “Regularization techniques in medical imaging,” in Math- 
ematics and Computer Science in Medical Imaging, vol. F39 of NATO 
AS1 Series. 
M. Pawlak, “On the reconstruction aspects of moments descriptors,” 
IEEE Trans. Inform. Theory, vol. 38, no. 6, pp. 1698-1708, Nov. 1992. 
A. Peres, “Tomographic reconstruction from limited angular data,” J. 
Comput. Assisted Tomography, vol. 3, no. 6, pp. 800-803, 1979. 
J. L. Prince and A. S. Willsky, “Constrained sinogram restoration for 
limited-angle tomography,” Opt. Eng., vol. 29, no. 5, pp. 535-544, May 
1990. 
- , “Reconstructing convex sets from support line measurements,” 
IEEE Trans. Patt. Anal. Machine Intell., vol. 12, no. 4, pp. 377-389, 
1990. 
M. L. Reis and N. C. Roberty, “Maximum entropy algorithms for image 
reconstruction from projections,” Inverse Problems, vol. 8, pp. 623-644, 
1992. 
W. H. Richardson, “Bayesian-based iterative method of image restora- 
tion,” J. Opt. Soc. Amer., vol. 62, pp. 55-59, Jan. 1972. 
P. Schmidlin, “Iterative separation of sections in tomographic scinti- 
grams,” Nuclear Med., vol. 15, no. 1, pp. 1-16, 1972. 
M. I. Sezan and H. Stark, “Incorporation of a priori moment information 
into signal recovery and synthesis problems,” J.  Math. Anal. Appl., vol. 

New York: Springer-Verlag, 1988, pp. 127-141. 

_ _  
122, G. 172-186,- 1987. 
J. A. Shohal and J. D. Tamarkin, The Problem ofMuments. New York: 
Amer. Math. Soc., 1943. 
J. E. Shore, “Minimum cross-entropy spectral analysis,” IEEE Trans. 
Acoust. Speech, Signal Processing, &1. ASSP-29, no. 2, pp. 230-237, 
Apr. 1981. 
J. E. Shore and R. M. Gray, “Minimum cross-entropy pattem classifi- 
cation,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-4, no. 1, 
pp. 11-17, Jan. 1982. 
J. E. Shore and R. W. Johnson, “Properties of cross-entropy minimiza- 
tion,” IEEE Trans. Inform. Theory, vol. IT-27, no. 4, pp. 472482,  July 
1981. 
D. L. Snyder, T. J. Shulz, and J. A. O’Sullivan, “Deblumng subject to 
nonnegativity constraints,” IEEE Trans. Signal Processing, vol. 40, no. 
5, pp. 1143-1150, May 1992. 
G. Talenti, “Recovering a function from a finite number of moments,” 
Inverse Problems, vol. 3, pp. 501-517, 1987. 
A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems. 
Washington, DC: WinstonWiley, 1977. 
S. J. Wernecke and L. D’Addario, “Maximum entropy image recon- 
struction,” IEEE Trans. Comput., vol. C-26, no. 4, pp. 351-364, Apr. 
1977. 

Peyman Milanfar (S’90-M’93) received the B.S. degree in engineering 
mathematics from the University of California at Berkeley, in 1988, and the 
S.M., E.E., and Ph.D. degrees in electrical engineering from the Massachusetts 
Institute of Technology, Cambridge, in 1990, 1992, and 1993, respectively. 

In 1993, be joined Alphatech, Inc. as a member of the technical staff, where 
he conducted research in multiresolution image processing and compression 
and over-the-horizon radar signal processing. Since July 1994, he has been 
with SRI International’s Applied Electromagnetics and Optics Laboratory, 
Menlo Park, CA, where his current research interests are in statistical signal 
and image processing and optimal estimation. 

Dr. Milanfar is a member of Sigma Xi and the Mathematical Association 
of America. 

William C. Karl (M’91) received the Ph.D. degree in electrical engineering 
and computer science in 1991 from the Massachusetts Institute of 
Technology, Cambridge, where he also received the S.M., E.E., and S.B. 
degrees. 

He has held the position of Staff Research Scientist with the 
Brown-Harvard-M.I.T. Center for Intelligent Control Systems and the 
M.I.T. Laboratory for Information and Decision Systems from 1992 to 1994. 
He joined the faculty of Boston University where he is currently Assistant 
professor of Electrical, Computer, and Systems Engineering. Since January 
1996 he also held a joint appointment in the Department of Biomedical 
Engineering. In 1993 he was the organizer and chair of the “Geometry and 
Estimation” session of the Conference on Information Sciences and Systems 
at Johns Hopkins University. In 1994 he was on the the technical committee 
for the Workshop on Wavelets in Medicine and Biology, part of Internation 
Conference of the IEEE Engineering in Medicine and Biology Society. 
He is special guest editor of the 1977 special issue of the International J. 
Pattern Recognition, and Artificial Intelligence on “Processing, Analysis, and 
Understanding of MR Images of the Human Brain.” he is also associate editor 
of the IEEE TRANSACTIONS ON IMAGE PROCESSING in the areas of tomography 
and MRI. His research interests are in the areas of multidimensional 
and multiscale signal and image processing and estimation, geometrical 
estimation, and medical signal and image processing. 

Alan S. WilIsky (S’70-M’73-SM’82-F’86) received both the S.B. and Ph.D. 
degrees from the Massachusetts Institute of Technology (MIT), Cambridge, 
USA, in 1969 and 1973, respectively. 

He joined the MIT faculty in 1973, and his present position is Professor of 
Electrical Engineering. From 1974 to 1981, he served as Assistant Director 
of the MIT Laboratory for Information and Decision Systems. He is also a 
founder and member of the Board of Directors of Alphatech, Inc. His present 
research interests are in problems involving multidimensional and multires- 
olution estimation and imaging, discrete-event systems, and the asymptotic 
analysis of control and estimation systems. 

In 1975, Dr. Willsky received the Donald P. Eckman Award from the 
American Automatic Control Council. He has held visiting positions at 
Imperial College, London, L‘UniversitB de Paris-Sud, and the Institut de 
Recherche en hformatique et Systbmes Aleatoires in Rennes, France. He was 
program chairman for the 17th IEEE Conference on Decision and Control, has 
been an associate editor of several journals including the IEEE TRANSACTIONS 
ON AUTOMATIC CONTROL, has served as a member of the Board of Governors 
and Vice President for Technical Affairs of the IEEE Control Systems Society, 
was program chairman for the 1981 Bilateral Seminar on Control Systems held 
in the People’s Republic of China, and was special guest editor of the 1992 
special issue of the IEEE TRANSACTIONS ON INFORMATION THEORY on wavelet 
transforms and multiresolution signal analysis. In addition, in 1988, he was 
made a Distinguished Member of the IEEE Control Systems Society. He has 
also given several plenary lectures at major scientific meetings including the 
20th IEEE Conference on Decision and Control, the 1991 lEEE lnternational 
Conference on Systems Engineering, the SlAM Conference on Applied Linear 
Algebra in 1991, and the 1992 lnaugural Workshop for  the National Centre 
for  Robust and Adaptive Systems, Canberra, Australia. He is the author of the 
research monograph “Digital Signal Processing and Control and Estimation 
Theory” and is coauthor of the undergraduate text Signals and Systems. He 
was awarded the 1979 Alfred Noble Prize by the ASCE and the 1980 Browder 
J. Thompson Memorial Prize Award by the IEEE for a paper excerpted from 
his monograph. 


