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velet-I3 ased ethod for Multiscale 
Tomographic Reconstruction 

M. Bhatia, W. C. Karl,” Member, IEEE, and A. S.  Willsky, Fellow, IEEE 

Abstract- We represent the standard ramp filter operator 
of the filtered-back-projection (FBP) reconstruction in different 
bases composed of Haar and Daubechies compactly supported 
wavelets. The resulting multiscale representation of the ramp- 
filter matrix operator is approximately diagonal. The accuracy 
of this diagonal approximation becomes better as wavelets with 
larger numbers of vanishing moments are used. This wavelet- 
based representation enables us to formulate a multiscale tomo- 
graphic reconstruction technique in which the object is recon- 
structed at multiple scales or resolutions. A complete reconstruc- 
tion is obtained by combining the reconstructions at different 
scales. Qur multiscale reconstruction technique has the same 
computational complexity as the FBP reconstruction method. It 
differs from other multiscale reconstruction techniques in that 
1) the object is defined through a one-dimensional multiscale 
transformation of the projection domain, and 2) we explicitly 
account for noise in the projection data by calculating maxi- 
mum a posteriori probability (MAP) multiscale reconstruction 
estimates based on a chosen fractal prior on the multiscale object 
coefficients. The computational complexity of this maximum a 
posteriori probability (MAP) solution is also the same as that 
of the FBP reconstruction. This result is in contrast to com- 
monly used methods of statistical regularization, which result in 
computationally intensive optimization algorithms. 

I. INTRODUCTION 

N this work we present a multiresolution approach to 
the problem of reconstructing an image from a complete 

set’ of tomographic projections. The conventional, and most 
commonly used, method for reconstruction from noiseless 
tomographic projections is the filtered-back-projection (FBP) 
reconstruction technique [2], wherein the projection data at 
each angle are first filtered by a high-pass, ‘‘ramp’’ filter and 
then back-projected. In this paper we work in a multiscale 
transform space, where the matrix representation of the cor- 
responding multiscale filtering operator is nearly diagonal, 
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LAccording to Llacer [l], “a complete data set could be described as 

sufficient number of line projections at a sufficient number of angular 
increments such that enough independent measurements are made to allow 
the image reconstruction of a complete bounded region.” 

leading to an efficient multiscale tomographic reconstruction 
technique. Perhaps more significantly, however, the different 
scale components of our proposed multiscale method induce 
a corresponding multiscale representation of the underlying 
object and, in particular, provide estimates of (and thus infor- 
mation about) the field or object at a variety of resolutions at 
no additional cost. 

Noisy imaging problems arise in a variety of contexts 
(e.g., low-dose medical imaging, oceanography, and in several 
applications of nondestructive testing of materials) and in such 
cases techniques such as FBP often yield unacceptable results. 
Conventionally, reconstruction from noisy projection data is 
regularized by one of the following two techniques. First, 
the FBP ramp filter may be rolled off at high frequencies, 
thus attenuating high-frequency noise at the expense of not 
reconstructing the fine-scale features in the object [3], [4]. 
This roll-off results in a fast, though ad hoc, regularization 
method. The other common regularization method is to solve 
for a maximum a posteriori probability (MAP) object estimate 
based on a two-dimensional (spatial) Markov random field 
(MRF) prior model [5] ,  [6] .  This MAP estimate results in 
a statistically regularized reconstruction that allows the in- 
clusion of prior knowledge in a systematic way, but leads 
to optimization problems that are extremely computationally 
intensive. As a result, these methods have not found wide 
favor in practical applications. In contrast to these methods, 
we extend our multiscale reconstruction technique to obtain 
a multiscale MAP object estimate which, while retaining the 
advantages of statistically-based approaches, is obtained with 
similar computational complexity to the FBP reconstruction. 
We accomplish this by constructing prior statistical models 
directly in scale space. 

Wavelets have recently been applied to tomography by other 
researchers as well. Peyrin et al. [7] have shown how to relate 
certain 2-D wavelet transforms of fields to a corresponding 
set of angularly varying 1-D wavelet transforms of projections 
of the field. Sahiner and Yagle use the wavelet transform to 
perform spatially varying filtering by reducing the noise energy 
in the reconstructed image over regions where high-resolution 
features are not present [8]. They also apply wavelet based 
reconstruction to the limited angle tomography problem by 
assuming approximate a priori knowledge about the edges in 
the object that lie parallel to the missing views [9]. Wu [lo] has 
recently proposed an image reconstruction technique in which 
prior information is introduced through the 2-D wavelet trans- 
form of the image field. The reconstruction is then obtained by 
iteratively solving for the corresponding MAP solution and has 
the advantage that sharp object edges as well as smoothness 
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within regions in the object are preserved in the reconstructed 
image. DeStefano and Olson [ 1 I] and Berenstein and Walnut 
[ 121 have also used wavelets for tomographic reconstruction 
problems, in particular to localize the radon transform in 
even dimensions and reduce the radiation exposure required 
to image a local region of the object. 

11. PRELIMINARIES 

A. The Tomographic Reconstruction Problem 

In tomography, the goal is to reconstruct an object or a 
field, f, from line-integral projection data [2]. For a parallel- 
beam imaging geometry, the projection data consist of parallel, 
nonoverlapping strip integrals through the object at various an- 
gles. Suppose we have NO uniformly-spaced angular positions 
between 0" and 180" and N ,  parallel strip integrals at each 
angular position. A discrete version of this situation at angle 
k can be represented as 

Y k  = T k f  (1) 

where Tk is an N, x N," matrix representing the projection 
operation at angle k ,  f is an N," x 1 vector representing 
f ( u , u )  on an N ,  x N,  square-pixel lattice, and Y k  is the 
corresponding vector of measurements at that angle. Thus 
row of T k  is the (discrete) representation of the lth strip 
function at angle k and the inner product of f with this strip 
yields the data contained in the corresponding entry of yk. The 
tomographic reconstruction problem then reduces to finding an 
estimate f^of the discretized object f given the projection data 
contained in the {yk; k = l,...,No}. 

B. The Filtered-Back-Projection Reconstruction Technique 

The FBP reconstruction technique is based directly on the 
radon inversion formula, which is valid (i.e., yields exact 
reconstructions) only when a continuum of noise-free line- 
integral projections from all angles are used [ 2 ] .  In practice, 
we only have access to sampled projection data which are 
collected using strips of finite width. In this work, we assume 
that we sample finely enough to produce good reconstructions 
in the noiseless case [13], [14]. In the FBP reconstruction, the 
estimated object is represented as a linear combination of the 
same functions along which the projection data are collected 

k=l 

where the N ,  vector xk contains the object coefficient set at 
angle k .  Note that (2) can be interpreted as the back-projection 
operation [2]. 

To complete the reconstruction the coefficients xk must now 
be determined. The standard FBP method calculates them for 
each angle k by filtering the projection data yk at that particular 
angle with a ramp filter R [2] 

X k  = R Y k .  ( 3 )  

Thus (2) and (3) together represent the two operations used in 
the standard FBP reconstruction. 

C. 1 -D Wavelet Transfonn Based Multiscale Decomposition 

Here we present a brief summary of the wavelet-based 
multiscale decomposition of I-D functions and intentionally 
suppress many details. The interested reader is referred to any 
of the many papers devoted to this topic, e.g., [15]. Given a 
length 2" 1-D signal represented in the vector x ,  let x ( ~ )  
be the vector containing the wavelet-based approximation to 
the signal at scale m (i.e., the scaling coefficients) and let 
@m) be the corresponding vector of added detail necessary to 
proceed to the next finer-scale approximation (i.e., the wavelet 
coefficients at that scale). Further, let E be the vector containing 
the wavelet coefficients at all scales { E ' " ) }  together with the 
coarsest-level approximation x(O) of the signal x.  Then, we 
will capture the overall operation which takes a discrete signal 
vector z to its corresponding wavelet transform E by the matrix 
W as follows: 

I : I  
(4) 

I- I 

Since the 1-D transform is invertible and the wavelet basis 
functions are orthonormal, it follows that W-' exists and 
further that W-' = W T .  The matrix W depends on the 
underlying chosen wavelet. In our work in this paper, in 
addition to the Haar wavelet, we will u s e  wavelets from an 
especially popular family of these functions due to Daubechies 
[16], the separate elements of which are denoted D,. To deal 
with edge effects we cyclically wrap the interval [17], [15]. 
The methods we describe can be readily adapted to other 
approaches for dealing with edge effects as in [18] and the 
references contained therein. 

Intermediate approximations x ( ~ )  of z and their finest- 
scale representation may be obtained by using only part of 
the full wavelet-coefficient set during synthesis, effectively 
assuming the finer-scale detail components are zero. For 
convenience, in the discussion to follow we capture this partial 
zeroing operation in the matrix operator A(m), that nulls the 
upper N - m subvectors of the overall wavelet vector 5 and 
thus retains only the information necessary to construct the 
approximation x ( ~ )  at scale m 

(5) A(m) = block diag[O(zN-zm), I ( zm)]  

where 0, is a p x p matrix of zeros and I ,  is a q x q 
identity matrix. Also it will prove convenient to define a 
similar matrix operator D(m) ,  that retains only the information 
in pertaining to the detail component at scale m by zeroing 
all but the sub-vector corresponding to ( ( m )  

A 

A D ( m )  = block diag[O(zN--2n+l), I(zm), O ( z m ) ] .  (6) 

Finally, with these definitions note that we have the following 
scale-recursive relationship for the partially zeroed vectors: 

A("+1) = A(m) + D ( m )  E .  (7) 



~ 

94 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 15, NO. 1, FEBRUARY 1996 

Ili U 
1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Scale 2 Scale 1 Scale 0 Coarsest , Approximation 

(b) 

Fig. 1. 
fixed angle k corresponding to the Haar wavelet. 

Example of relationship between (a) original strip basis functions contained in Tk and (b) transformed multiscale basis functions of 7) for a 

111. THE MULTISCALE RECONSTRUCTION TECHNIQUE 

A. Multiscale Object Representation 

In this section we derive our 1-D wavelet-based multiscale 
reconstruction technique. We start by applying a multiscale 
change of basis, as defined by the matrix W in Section 11-C, 
to the original set of object coefficients Xk at each angle k to 
obtain an equivalent set of multiscale object coefficients 

= W X k .  (8) 

Thus, the vector & forms a multiresolution representation of 
xk. More importantly, by reflecting this change of basis into 
the original FBP object representation (2), we naturally induce 
a corresponding multiscale representation of the object through 
a corresponding set of transformed multiscale basis functions. 
In particular, substituting (8) into (2) we obtain 

(9) 
k=l k=l  

The rows of the transformed matrix 7 k  = WTk will now 
contain the multiscale object basis functions at angle k.  
The wavelet-transform operator matrix W ,  acting identically 
on each column of TA, will thus form the new multiscale 
basis functions at that angle from linear combinations of the 
corresponding original strip functions, where these linear com- 
binations correspond precisely to a one-dimensional wavelet 
transform perpendicular to the projection direction. This trans- 
formation of the basis functions is shown schematically in 
Fig. 1 (which corresponds to the case of the rectangular, Haar 
wavelet). We may naturally group the multiscale 2-D spatial 
basis elements into a hierarchy of scale-related components 
based on their support extent or spatial localization (or, equiv- 
alently, their relation to the coefficients in &), as shown in 
Fig. 1. 

A multiresolution object decomposition can now be ob- 
tained through (9) by using a series of approximations to 
Xk at successively finer scales, thereby inducing a series of 
corresponding approximate representations of the o_bject. In, 
particular, we define the mth scale approximation f(”) to f 
through 

k=l 

where A(m)  is defined in Section 11-C. The approximation 
F m )  uses only the m coarsest-scale components of the full 
vector &. Similarly, by AT(-) we denote the additional detail 
required to go from the object approximation at scale m to that 
at scale (m + l), which is given by 

Ne 

a?-) 2 &T ( D ( m )  &) (11) 
k = l  

where D ( m )  is also defined in Section 11-C. Combining the 
object approximation and detail definitions (10) and (1 1) with 
the scale recursive relationship (7), we see that the object itself 
satisfies the following scale recursive relationship: 

Note that our 2-D multiscale object representation given 
in (10) and corresponding scale recursive construction (12) 
are induced naturally by the structure of the individual 1-D 
wavelet-based multiscale decompositions at each angle k and 
is not simply a 2-D wavelet transform of the original object 
estimate ,r 
B. Multiscale Coeflcient Determination 

We now have a natural multiscale object-representation 
framework though (lo), ( l l ) ,  and (12) that is similar in 
spirit to the FBP case (2). To complete the process and 
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create multiscale object estimates from data, we must find 
the multiscale object coefficients [k (which contain all the 
information we need). To this end, we perform a wavelet- 
based multiscale change of basis to the data sequences Yk to 
obtain an equivalent set of multiscale observations 

(13) 
A 

q k  = W Y k  

where, recall, W is a matrix representing the wavelet trans- 
form. By combining the two transformations (8) and (13) 
together with the original FBP relation (3) we obtain 

Ek = R q k  (14) 

where R = WRWT is the multiscale data filter, corre- 
sponding to the ramp filter R of the usual FBP case. The 
operator R is compressed by the wavelet operator so that R 
is nearly diagonal. Further, higher compression is achieved if 
Daubechies wavelets D,  with larger n are used, consistent 
with the observations of Beylkin et al. [19]. 

C. The Overall Multiscale Algorithm 
We are now in a position to present our overall multiscale 

reconstruction method, which parallels the identical and inde- 
pendent angular processing of the FBP approach, and is thus 
no more complex than this popular method 

Algorithm 1 (Multiscale Reconstruction): 
1) For a given choice of wavelet, form the multiscale filter 

2) For each angle IC perform the following: 
matrix R = W R W T .  

a) Find the multiscale observations r]k = Wyk by 

b) Find the multiscale object coefficient set [ k  = R q k  

c) Back-project & along the corresponding multiscale 

3) Combine the back-projections at each angle to obtain 

Beyond simply finding a finest-scale object estimate, as 
described in Algorithm 1, however, we may also reconstruct 
the underlying object at multiple resolutions through (IO), (1 1), 
and (12), and thus easily obtain information about the object at 
multiple scales. In particular, if an approximation Fm) at scale 
m is desired, then in Algorithm 1 we need only replace & by 
(A(m)&)  in Step 2-c) and 3) .  Further, if instead we want 
to reconstruct the detail AF-1 at a particular scale, we need 
only replace & by ( D ( m )  &) in Step 2c and 3 A of Algorithm 
1. Such intermediate scale information about f can even be 
efficiently found by calculating only those elements necessary 
for reconstructing the scale of interest-i.e., all of & is not 
required. 

Examples: We now show some examples of our multiscale 
reconstruction framework. Fig. 2 shows the 256 x 256 phan- 
tom used in the experiments of this section. Projection data 
were collected at 256 equally spaced angles (Ne = 256) with 
256 strips per projection (Ns  = 256) and the Daubechies 
0 3  wavelet was used for the multiscale decomp_osition W .  
Fig. 3 shows approximate object reconstructions f(") for the 

taking the 1-D wavelet transform of y k .  

by filtering these observations. 

basis functions '&, %T[k.  

the overall estimate, Ck I:&. 

Fig. 2. Phantom used for reconstruction experiments. The phantom is 
256 x 256 and projections are gathered at 256 equally spaced angles 
(No = 256) with 256 strips per angle (Ns  = 256). 

entire range of scales m = 1,. . . ,8. Fig.. 3(i) shows the FBP 
reconstruction for com arison (which is identical to the finest- 
scale approximation f i 8 ) ) .  The intermediate-scale estimates 
demonstrate how information is focused-at different scales. For 
example, in the scale 3 reconstruction f ( 3 )  [Fig. 3(c)], though 
only 8 of the full 256 coefficient elements in the vectors & 
are being used, we can already distinguish separate objects. 

In Fig. 4 we show the corresponding detail components 
Af^cm) for the same phantom. Notice that the fine-scale, edge- 
based, features of the phantom are clearly visible in the AT(') 
and Ay(') reconstructions [Fig. 3(e) and (01, showing that 
structural information can be obtained from these detail images 
alone. 

The wavelet-based multiscale transformation also serves to 
compress the ramp filter matrix R so that the corresponding 
multiscale filter matrix R is nearly diagonal. One consequence 
is that a very good approximation to the exact reconstruction 
procedure of Algorithm 1 can be achieved by ignoring the off- 
diagonal terms of R in (14). Further, this approximation to the 
exact reconstruction becomes better as Daubechies wavelets 
D, with larger n are used. As an illustration,-in Fig. 5 we 
show complete (finest scale) reconstructions f of the same 
phantom as before, based on the same projection data but using 
a diagonal approximation to R in (14) and Algorithm 1 for a 
variety of choices of the wavelet defining W .  

IV. MULTISCALE REGULARIZED RECONSTRUCTIONS 

The presence of noise in projection data often leads to 
reconstructions by standard methods, such as FBP, that are 
unacceptable and thus require some form of regularization. 
In contrast to the standard techniques, we will develop a 
multiscale MAP object estimate that, while retaining the 
advantages of statistically based approaches, is obtained with 
the same computational complexity as the FBP reconstruction. 
To accomplish this we continue to work in the projection 
domain and build our statistical models there, rather than in 
the original object domain.2 To this end, we start with an 
observation equation relating the noisy data y k  to the FBP 
object coeficients xk, rather than the corresponding 2-D object 

We point out that our approach for obtaining regularized reconstructions by 
working directly in the projection domain is similar in spirit to the recent work 
of Fessler [20]. However, an important difference between the two approaches 
is that the latter is not multiscale based. 
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(8) (h) (i) 

Fig. 3. 
3‘). (g) f?’). (h) F8), (i) Shows the corresponding FBP reconstruction f for comparison. The FBP reconstruction is the same as 
the complete reconstruction 

Approximation reconstructions of phantom of Fig. 2 at various sca@, using &wavelet. (a) ?‘I. (b) f?’)’. (c) f?’). (d) F4). (e) F5).  (f) 
since it is 

f as is usually done. Such a relationship may be found in the 
FBP relationship (3), which in the presence of noise in the 
data becomes 

yy~~ = R-lxk + n k ,  n k  - N(0; An,) (15) 

where R is the FBP ramp-filter ~ p e r a t o r , ~  and the notation 
z - .n/(m,h) denotes a Gaussian distribution of mean m 
and covariance A. We assume that A,, = A ~ I ~ , T ~  (where 
I, denotes an n x n identity matrix), i.e., that the noise 
is uncorrelated from strip to strip but may have different 
noise covariances at different angles. Further, we assume that 
the noise is uncorrelated from angle to angle, so that n k  is 
independent of nj,  k # j .  This model of independent noise in 
the projection domain is well justified for most tomographic 
applications. 

3Note (15) assumes that Rpl exists. For the case where R represents an 
ideal ramp filter this will indeed not be the case, as this operator nulls the dc 
component of a signal. For filters used in practice, however, this inverse does 
exist and the expression given in (15), based on such a filter is well defined 
PI. 

For purposes of estimation we desire a relationship between 
multiscale representations of the data, object coefficients, 
and noise. Working in the multiscale-transform domain will 
again allow us to obtain induced multiresolution estimates 
of the object, in addition to parsimonious prior models. By 
combining (15) with the multiresolution orthogonal changes 
of bases (8) and (13) based on W (defined in Section 11-C) 
we obtain 

where vk = Wnk is the multiscale-transformed noise vector at 
angle k with Avk = WA,, WT = A ~ I N ~  as its corresponding 
covariance. Note that the assumption of uncorrelated noise 
from angle to angle and strip to strip in the original projection 
domain results in uncorrelated noise from angle to angle and 
multiscale strip to multiscale strip in the multiscale domain as 
well, since W is an orthonormal transformation. 
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(g) (h) 

Fig.4. The detail added between successive scales in the reconstructions of Fig. 3. (a) AT(0). (b) AT(1). (c) AT(2). (d) AT(3). (e) AT(4). (f) 
W 5 ) .  (8) Af(6). (h) M 7 ) .  

A. The Multiscale Prior Model 

To create a MAP estimate of the multiscale object coeffi- 
cients &, we will combine the observation equation (16) with 
a prior statistical model for the desired unknown multiscale 
coefficient vectors J k .  We base our prior model of the object 
coefficients directly in scale-space. In particular, self-similar, 
fractal models can simply be obtained by choosing the detail 
components [im) (i.e., the wavelet coefficients at each scale) 
as independent, M(0 ,  a22-pm) random variables [21] whose 
variance decreases geometrically with scale. The parameter 
p > 0 determines the nature, i.e., the texture, of the resulting 
self-similar process while 0’ controls the overall magnitude. 
In addition to defining the probabilistic structure of the detail 
components of &, we also need a probabilistic model for 
the DC or coarsest-scale element xf) of [ k ,  of which we 
expect to have little prior knowledge. As a result we choose 
this element as N(O,&), where the (scalar) uncertainty & 
is chosen sufficiently large to prevent a bias in our estimate 
of the average behavior of the field. Our overall prior model 

is then given by & N n/(O,Rc) with [k  independent from 
angle to angle, and where the diagonal matrix At is given 
by 

Such scale-space-based, self-similar models are commonly and 
effectively used in many application areas such as modeling of 
natural phenomenon and textures, biological signals, geophys- 
ical and economic time series, etc. [21]-[25]. Obviously other 
choices may be made for the statistics for the multiscale object 
coefficients. The choice we have made in (17), while simple, 
is well adapted to many naturally occurring phenomenon. 
Since the observation noise power is uniform across scales 
or frequencies, the geometrically decreasing variance of this 
prior model implies that the projection data will most strongly 
influence the reconstruction of coarse-scale features and the 
prior model will most strongly influence the reconstruction of 
fine-scale features. 
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Fig. 5. Complete finest-scale multiscale reconstructions for phantom of Fig. 2 for different approximate filtering operators. The three frames show approximate 
multiscale reconstructions using only the diagonal elements of Rcorresponding to different choices of the underlying wavelet: (a) Haar, (b) D3, and (c) Ds.  
Note that the approximation to the exact reconstruction becomes better as Dauhechies wavelets D ,  with larger n are used. 

B. The Multiscale MAP Estimate 

We are now in a position to present our overall afgorithm 
for computing a MAP [26] multiscale object estimate &. Since 
the data at each angle q k  and the corresponding prior model for 
<k are independent from angle to angle, the MAP estimates 
of the vectors <k decouple. In particular, the estimate of & 
at each angle, based on the observations (16) and the prior 
model (17) is given by 

where the regularized multiscale filter operator is defined 
in the obvious way. This regularized filtering matrix is exactly 
analogous to the unregularized filtering operator R of (14). 

Finally, as in the noiseless case, the resulting object estimate 
f^ is then obtained by back-projecting the MAP estimated 
multiscale object coefficients & along the corresponding mul- 
tiscale basis functions T k  and combining the result. The 
overall structure of this regularized reconstruction parallels 
that of the original FBP method, and therefore is of the same 
computational complexity as FBP. In summary, our overall, 
efficient regularized multiscale estimation algorithm is given 
by the following procedure: 
Algorithm 2 (Regularized Multiscale Reconstruction): 

1) For a given choice of wavelet, find the regularized 
multiscale filter matrix R as follows: 

A 

c) Back-project & dong tke corresponding multiscale 

3) Combine the back-projections at each angle to obtain 

As before, we may also easily obtain regularized recon- 
structions of the object at multiple resolutions by using (10) 
and (1 1) together with the MAP coefficgnt estimates &. In 
particular, to obtain the approximation f(") at scale m, we 
need only replace & by ( ~ ( m ) & )  in Step 2-c) and 3).  
Similarly, the corresponding object detail components Ay(-) 
at scale m may be obtained by using (o(m)  &) in place of 
& in these steps. 

While Algorithm 2 is already extremely efficient, additional 
gains may be obtained by exploiting the ability of the wavelet- 
transform operator W to compress the FBP filtering operator 
R. In particular, let us assume that the wavelet transform 
W truly diagonalizes R by effectively ignoring the small, 
off-diagonal elements in R-' so that4 

basis functions T k ,  IT&. 
the overall regularized estimate, <T&. 

RP1 M diag(r1,r2,...,TNs) (19) 

where T, are the diagonal elements of R-'. Now let us 
represent the diagonal prior model covariance matrix as A6 = 
diag[pl> p2 , . . . , p ~ , ] ,  and recall that A,, = X k l N , .  Using 
these quantities together with our approximation to R-l in 
the specification A of the estimate (18) yields an approximate 
expression for & 

r1 7-2 

( T I  + ( A k / P l ) '  + ( x k / p Z ) '  

Form the unregularized multiscale filter matrix R = A 

Ek M diag W R W T .  
Choose the model parameters X k  specifying the 

Choose the multiscale prior model parameters L?, 

of the model and the uncertainty in its average 

matrix A, through (17). 

Form 2 = [A;' + R-TA;JR-l] -' WThP1 ,,, . 

(20) observation noise processes A,, c.f. (16). . . .  

p> and & specifyin& the magnitude texture where the approximate MAP filtering matrix is defined 
in the obvious way, Our experience is that when is 

using D3, 04, ...), the estimates obtained using 2 in place 
of the exact regularized filter %! in Algorithm 2 are visually 

and generate the prior covariance defined using Daubechies wavelets of order 3 or higher (i.e., 

- h  

indistinguishable from the exact estimates, where R-' is not 
assumed to be diagonal. Indeed, it is actually this approximate 

I - &  L "  
2) For each angle k perform the following: 

a) Find the multiscale observations q k  = Wyk by 
taking the 1-D wavelet transform of &. 

& = nq, by filtering these observations. 

4 0 n e  can imagine another level of approximation in which we set the off- 
diagonal elements of R itself to zero prior to inversion rather than those of 
R-' . This further approximation results in reconstructions that are visually 
very similar to what we obtain here. 

b, Find the regu1arized Object coefficient set 
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Fig. 6.  The Fourier transform of the central row of R,e for different values of regularization parameters p (the decay rate of the added scale detail) and 
Ak (the noise variance). (a) Ah = 1000.0, (b) Ah = 100.0. In each of the plots, the V-shaped heavy line corresponds to the standard FBP ramp filter 
and the four curves from top to bottom correspond to p = 0.5 (solid line), 1.0 (dashed line), 1.5 (dash-dot line), and 2.0 (dotted line), respectively. In all 
cases we fixed uz = 1 (the overall prior model amplitude) and K, = 1 (the prior model DC variance). 

filtering operator 5 that we use to generate the example 
reconstructions we show next. 

Before proceeding, however, let us examine our MAP 
regularized filtering operator %? in more detail to understand 
how our multiscale MAP estimation procedure relates both 
to the standard FBP method and the regularization obtained 
through apodization of the FBP filter. The multiscale MAP 
estimation operation specified by (1 8) imposes a corresponding 
relationship between the original finest-scale quantities z k  and 
Yk, given by 

where the effective multiscale MAP regularized filtering ma- 
trix  re^ is defined in the obvious way. The behavior of 
the matrix operator  re^ can be most easily understood by 
examining its corresponding frequency-domain characteristics. 
To this end, in Fig. 6 we plot the magnitude of the Fourier 
transform of the central row of the effective regularized matrix 
Reft. corresponding to a variety of choices of the model or 
regularization parameters. We also plot, with heavy lines, 
the magnitude of the Fourier transform of the corresponding 
central row of the standard, unregularized FBP ramp filter 
matrix R for comparison. From Fig. 6, we can see that in 
the multiscale MAP framework regularization is basically 
achieved by rolling off the ramp filter at high frequencies, the 
same principle as used in apodization regularized FBP recon- 
structions. The multiscale-based algorithm, however, provides 
a rational way of achieving this roll-off as a function of the 
relative strengths of the observation noise and our belief in 
the prior model. 

Examples: Next we show some examples of reconstruc- 
tions using our multiscale methods in the presence of noise. 
The same 256 x 256 phantom shown in Fig. 2 was used for 
all experiments. In each case projection data for the phantom 
were again generdted at = 256 equally spaced angles with 
N,  = 256 strips in each projection. These noise-free values 
were then corrupted through the addition of independent, zero- 
mean Gaussian noise to yield our observations. The variance 
A, of this additive noise depended on the experiment and was 
chosen to yield an equivalent signal-to-noise ratio (SNR) of 

the resulting observations, defined as 

where, recall, T k f  is the noise-free projection data at angle 
k.  Finally, in all multiscale reconstructions we show here, the 
Daubechies 0 3  wavelet was used in the definition of W for 
the reconstruction. 

Fig. 7 shows the approximate object reconstructions f ^ c m ) ,  
at various s2ales m, corresponding to our multiscale MAP 
estimate of & using noisy data with SNR = 5 dB. The MAP 
estimate & was generated using the approximate expression 
(20), which, for the Daubechies 0 3  wavelet we are using, was 
indistinguishable from the corresponding estimate based on the 
exact expression (1 8). Again the approximations become finer 
from left to right and top to bottom in the figure. All images 
are displayed with the same, common scaling. The effect of 
the regularization can be readily seen in its ability to suppress 
noise in the finest-scale reconstruction. For comparison, one 
can see that the object is completely lost in the unregularized 
reconstruction for this case [Fig. 7(i)] due to the extreme level 
of noise. Finally, the multiscale nature of the information 
focusing can be seen in the scale evolution of the estimates. In 
particular, there appears to be little difference between scale 
5 and finer-scale estimates in the figure, suggesting that little 
additional information is being obtained in proceeding to such 
finer scales so that we should stop the reconstruction at this 
coarser scale. 

Finally, in Fig. 8, we show a series of finest-scale multiscale 
MAP regularized reconstructions, corresponding to different 
choices of the prior model texture as determined by the 
parameter p .  The same phantom as before is used, but we 
use observations with a SNR of -10 dB (much worse than 
used earlier). The unregularized reconstruction [Fig 8(d)] is 
shown for comparison. All images are displayed with the 
same common scaling. The object is completely lost in the 
unregularized reconstruction at this extreme level of noise. 
The MAP reconstructions are shown in Fig. 8(a)-(c), with 
a smoother, more correlated prior model being used as we 
proceed from left to right. 

h 
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( 8 )  (h) ( 0  

Fig. 7. Multiscale MAP regularized reconstructions at various scales of phantom of Fig. 2 from 5 dB SNR projection data using 0 3  wavelet. The values 
of the statistical model parameters used were: observation noise variance Xk = 5.5 x lo', added detail decay rate p = 1.5, overall prior model 
magnitude uz = 11, prior model DC variance & = 1. (a) $'I. (b) $'I. (c) F3). (d) 8"). (e) 3'). (0 F6). ( 8 )  $'). (h) F8). For comparison, 
the unregularized reconstruction for this case is given in (i). 

(a) (b) (c) (dl 
Fig. 8. Multiscale MAP regularized reconstructions of the phantom of Fig. 2 at the finest scale from -10 dB SNR observations for different choices 
of prior model texture, p,  with observation noise variance Xk = 1.7 x lo', overall prior model magnitude uz = 17, and prior model DC variance 
A t  = 1, are shown in the first three frames: (a) p = 0.5. (b) p = 1.0. (c) p = 1.5. For comparison the unregularized reconstruction is shown in (d). 
The RMS variation of the image values is (from left to right): 9.5, 7.7, 7.3, 140. 

- 

V. CONCLUSION our 2-D multiscale object representation is naturally induced 

by expanding the FBP coefficients, and hence basis functions 
(i.e., strips), in a I - D  wavelet basis. This approach is in contrast 
to other multiscale reconstruction techniques that begin with 

In this paper we have developed a wavelet-based multiscale 
tomographic reconstruction technique that is different from 
other multiscale techniques in the following respects. First, 
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a 2-D object representation obtained from a full 2-D wavelet 
decomposition of the object space. In contrast, the multiscale 
representation resulting from our approach, arising as it does 
from the projection strips themselves, is much closer to the 
measurement domain. This results in a highly efficient method 
to compute our multiscale object coefficients, in particular, no 
more complex than the widely used standard FBP operation. 
Yet, unlike the FBP method, our multiscale reconstructions 
also provide a framework for the extraction and presentation 
of information at multiple resolutions from data. Further, 
our resulting multiscale relationships between data and object 
allow extremely simple approximations to be made to our 
exact relationships with virtually no loss in resulting image 
quality. 

In addition, based on this wavelet-based multiscale frame- 
work, we have presented a statistically based multiresolution 
MAP estimation algorithm. This method provides statistically 
regularized reconstructions from noisy data and does so at 
multiple resolutions, with effort similar to that required for 
the standard FBP method. This approach, based on the con- 
struction of prior models directly in scale-space, allows for 
the inclusion of natural, self-similar prior models into the 
reconstruction process. In contrast, conventional statistically 
based regularization methods, utilizing MRF-type prior models 
constructed directly in (finest scale) object space, lead to ex- 
tremely complex and taxing optimization problems. The result 
has typically been that such statistically-motivated methods 
have been largely shunned in practice in favor of fast, though 
ad hoc, approaches. Our results provide a bridge between 
these two extremes. Further, in providing estimates at multiple 
resolutions, our results provide tools for the assessment of 
the resolution-versus-accuracy tradeoff, wherein we expect 
coarser-scale features of data to be more accurately determined 
than finer-scale ones. Though we did not exploit this ability 
in the present paper, our formulation also allowed the pos- 
sibility of combining data from projections of fundamentally 
different quality, through the specification of different noise 
variances Xk at different angles. The resulting estimates do 
not correspond to a simple FBP or even rolled-off FBP recon- 
struction, yet are easily obtained in our framework. Finally, as 
before, our multiscale MAP approach leads to algorithms that 
are amenable to an additional level of approximation, with 
resulting improved efficiency, again at virtually no loss in 
corresponding reconstruction quality. 
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