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1 introduction
A requirement for the processing of image sequence data—
frequently taken at high temporal sampling rates—can be
found in a steadily increasing array of both military and
civilian applications, ranging from surveillance and tracking
systems to intelligent vehicle highway systems to real-time
medical imaging. The reasons for this are several, including
the availability of new or enhanced sensing technology, the
ever-increasing capabilities (and decreasing cost) of ad-
vanced computing systems, and the desire or need to confront
increasingly ambitious applications.

Because of these developments, there are a number of
critical challenges that must be met by the image processing
and computer vision communities, including the apparently
enormous computational complexity of image sequence pro-
cessing problems and the particular technical challenges of
different applications. In this paper, we describe an approach
to meeting these challenges in one particular context, namely
in the spatiotemporal estimation of motion in an image se-
quence and, more specifically, in the use of such a system
to enhance the detection (and ultimately the tracking) of low-
contrast moving targets in cluttered backgrounds.

A first point to note is that the estimation of motion—or
more precisely what is known in the computer vision com-
munity as optical flow—can by itself be a computationally
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Abstract. We discuss a novel multiscale approach to the detection of
moving objects in a sequence of images. The approach is based in part
on a multiframe generalization of an optical flow estimation algorithm
previously developed by two of the authors. This algorithm provides an
extremely efficient multiscale method for estimating optical flow in an
image sequence and allows for the temporal accumulation of motion
information. Moving objects in a sequence correspond to discontinuities
in the true optical flow and, as a result, the residual image associated
with the estimated optical flow can be used as a basis for detecting these
objects. We propose an approach to detection based on morphological
processing of the residual image, and illustrate its potential on real data.

daunting task. For example, methods such as that developed
by Horn and Schunck1 require the solution of coupled partial
differential equations (PDEs) for each successive image
frame. Discretization of these PDEs for 512 X 5 12 images
leads to linear systems of equations with over 500,000 var-
iables. The extension of these approaches to the integration
of motion information over a number of frames is even more
complex and has generally been viewed as being prohibi-
tively expensive computationally. In addition, in contexts
such as target tracking, producing estimates of motion is not
enough. Specifically, one must also produce an estimate of
the accuracy in the optical flow estimates—forexample, error
variances—for these quantities to be meaningfully inter-
preted or fused with data from other sensors. Again, the
computation of such quantities for standard optical flow for-
mulations is far too complex to be considered.

Finally, there are several particular features of the target
detection and tracking problem that add to the challenge. In
particular, in standard surveillance systems data from im-
aging sensors such as infrared cameras or arrays are processed
on a frame-by-frame basis producing ''detections' ' analo-
gous to plot reports produced by other sensors such as radar.
From that point on, the data provided by the imaging systems
are treated simply as a set of measurements of a target or
targets taken over time, and only at this point are these "de-
tection reports" integrated over time using various tracking
algorithms such as Kalman filters. Although such techniques
work well in contexts in which the targets are bright, they
are fundamentally suboptimal, because the full imagery data
are not coherently processed over time. Consequently, when
one is confronted with targets with low contrast relative to
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the background, performance degrades significantly and pos-
sibly catastrophically.

Overcoming this problem, then, requires that we consider
the problem of tracking the entire image field of view over
time. If we can do this in a computationally reasonable way—
including the computation of error statistics—we can then
develop enhanced target detection schemes, either by inte-
grating image energy over time to enhance target contrast or
by detecting statistically significant anomalies in motion in-
dicative of localized targets moving relative to a cluttered
background (taking advantage of the fact that detecting a
moving deer in the forest is far easier than detecting one that
is standing still).

In this paper, we describe an approach to meeting these
requirements. Our starting point is the method developed in
Ref. 2 for estimating optical flow at a single instant in time
based on two successive frames of image data. This approach
uses a new class of multiscale statistical models that quali-
tatively and quantitatively lead to the same types of flow
estimates obtained using other approaches (such as Horn and
Schunck' s) but with several critical differences and advan-
tages. In particular, the resulting optical flow estimation al-
gorithm is extremely fast. Furthermore, not only does it pro-
duce these estimates quickly, but in the process it also yields
the desired error variance estimates. Moreover, these esti-
mates and error variances are produced at a complete hier-
archy of spatial scales, allowing one to trade off resolution
versus accuracy and in fact to define the optimal scale for
optimal flow estimation at each point in the image in the
sense that estimation of finer scale detail at that point is not
justified based on the level of uncertainty in the estimates
predicted by the error variance calculation.

Starting from this optical flow estimation algorithm, we
extend the approach in two ways. First, we describe a method
for estimating optical flow over time rather than simply es-
timating it independently in each frame, thus allowing ac-
curacy to improve over time as we gain information. Con-
ceptually, what we describe is an extremely efficient temporal
Kalman filter of extraordinarily high dimension—the state
consists of a 2-D flow vector for each pixel—allowing us to
solve problems that previously had been considered beyond
the range of practicality.

The second extension that we describe here is the use of
the measurement residual, i.e. , the image of violations of the
so-called ' 'brightnessconstraint' ' (see Sec. 2). Areas in which
these residuals are of statistically significant size (i.e., large
with respect to the corresponding error standard deviation
computed by our algorithm) indicate locations at which mo-
tion discontinuities caused by targets may be present. We
propose an approach to detection based on morphological
processing of the residual image, and illustrate its potential
on real data.

This paper is organized as follows. In Sec. 2, we briefly
review the multiscale signal processing framework developed
in Refs. 3 to 5 along with the optical flow problem formulation
and estimation algorithm as developed in Ref. 2. In Sec. 3,
we describe our multiframe extension of the optical flow
estimation algorithm that allows us to exploit temporal
smoothness in the optical flow field, and we illustrate the
extended algorithm on a real image sequence. That sequence
contains a helicopter that is moving with respect to the back-
ground clutter, and in Sec. 4, we discuss our approach to

target detection based on morphological processing of the
optical flow residual image. Conclusions and areas of on-
going and future research are discussed in Sec. 5.

2 Multiscale Model-Based Algorithms for Optical
Flow Calculation

The optical flow field is the 2-D distribution of apparent
velocities on the imaging surface corresponding to the var-
iation of brightness patterns in a series of image frames. The
concept of optical flow is commonly defined through the
brightness constraint equation':

z2,t) + VE(z, , z2,t)x(z, , z2,t) = 0 (1)

where x(z,,z2,t) is the optical flow vector field, E(z,,z2,t) is

the image intensity at point (z, ,z2) in the image at time t, and
VE(z1 , z2,t) is the gradient of the image intensity:

[a a
VE(z1 , z, ,t) = I —E(z, , z2,t),—E(z1 , z2,t)

[aZ,
(2)

The brightness constraint equation supplies a single con-
straint on the optical flow field at each point. However, there
are two unknowns to recover at each pixel—the two com-
ponents ofx(z,,z2,t)—and hence the problem of determining
these at each pixel using only Eq. (1) is ill-posed. Additional
information must be supplied to completely specify the flow
field; the usual approach is to regularize the problem by
postulating some additional structure. One of the first, and
most well known, regularization procedures is that proposed
by Horn and Schunck' in which a global smoothness con-
straint (SC) is imposed on the optical flow field. The optical
flow field is found in this case by solving the following op-
timization problem:

=
argminxJJR '[E(zi ,z2,t) + VE(z, ,z2,t)x(z, ,

z2t)]

+IlVx(z1,z2,t)112 dz, dz2 (3)

where R is a parameter specifying the relative importance of
the two constraints. We refer to the solution to the optimi-
zation problem in Eq. (3) as the SC solution. It can be shown
using the calculus of variations that the solution of Eq. (3)
satisfies a pair of coupled PDEs that when discretized lead
to a sparse, but large, set of linear equations. Solution tech-
niques encountered in the optical flow literature include
Gauss-Seidel methods, successive over-relaxation (SOR)
techniques, and multigrid methods."6'7 The problem with
these methods is that they are notoriously expensive corn-
putationally, and this was a principal motivation for the de-
velopment of a multiscale optical flow estimation algorithm
developed in Ref. 2 and briefly reviewed next.

The multiscale regularization (MR) algorithm is a method
of computing optical flow inspired, in part, by the structure
of the smoothness constraint. As discussed in Ref. 8, the
optical flow problem formulation in Eq. (3) has an equivalent
formulation in an estimation-theoretic context. Specifically,
it corresponds to a statistical model in which the error in the
brightness constraint is assumed to be spatially white and in
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which the two components of the optical flow are modeled
as independent random fields, each of which has a zero-mean,
spatially white gradient. As a result, the smoothness con-
straint essentially corresponds to modeling each component
of the optical flow as a spatial Brownian motion, i.e., as a
statistically self-similar, fractal process with a 1/f2 gener-
alized spectrum.9 Given this, a natural idea is that of using
alternate prior statistical models—corresponding to alterna-
tive penalty terms to that in Eq. (3)—that possess the same
type of fractal characteristics but that lead to computationally
more attractive problem formulations. In Ref. 2 we propose
the use of a fractal-like class of prior models recently intro-
duced in Refs. 3 to 5. As shown there and in Refs. 10 and
1 1 , this model class is extremely rich, and also leads to very
efficient estimation and likelihood calculation algorithms.

These models represent the flow field at a set of scales of
increasing resolution, m = 0 M. In particular, at scale
m, we define a set of optical flow vectors:

Xm(l,J), i,j1, 2 2
At the coarsest level (m = 0), the optical flow consists of a
single vector aggregating the entire flow field. Each subse-
quent scale increases the number and resolution of optical
flow vectors by a factor of 4, until at the finest level (m =M)
the flow field has the same resolution as the raw image data.
This series of scales is defined on a quadtree structure, as
illustrated in Fig. 1 , wherein each node at level m has four
descendants at level m + 1 , m =0 M — 1.

The quadtree is not merely a data structure used in im-
plementation of specific algorithms. Much more fundamen-
tally, it defines the underlying structure of the multiscale
optical flow model—the statistical dependencies between
pixel values that will be exploited by an optical flow algo-
rithm. The multiscale model is a downward (coarse-to-fine)
model on the tree in which the value of the state at each node
is a linear interpolation of its parent, plus an additional detail
term. The measurements at each node in this scale recursive
model are linear transformations of the node state, corrupted
by Gaussian noise. For optical flow estimation, the mea-
surements will be available only at the finest level and these
measurements correspond precisely to the brightness con-
straint, as discussed in more detail in Ref. 2. The algorithm
developed there uses these measurements to compute at each
node the best estimate of the optical flow vector at each pixel

V 7/

SCALE 1 z
SCALE 2

Fig. 1 Multiresolution model quadtree structure.
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(in a least-squares sense) and leads to root-mean-square error
performance that is comparable to that of smoothness con-
straint-based formulations such as that in Ref. 1, but with
order of magnitude reductions in computational cost. Refer
to Ref. 2 for detailed algorithm development, complexity
analysis, and examples.

3 Multiframe Extension of the MR Algorithm
Applying the MR algorithm to a sequence of images is ac-
complished through a series of independent applications of
the algorithm. The optical flow field is computed for the first
frame, discarded, computed for the second frame, discarded,
and so on, as if each field was independent of all prior and
subsequent fields. It is logical to expect that the flow estimates
in a given frame would be useful in improving subsequent
estimates and we describe next a multiframe extension of the
MR algorithm that allows us to do just that.

There are two basic approaches to temporal modeling of
(4) optical flow, Eulerian and Lagrangian.'2 The Eulerian model

is viewer based, i.e. , temporal coherence is imposed on the
flow vectors as opposed to the underlying physical scene. In
contrast, the Lagrangian model is object based, and so im-
poses the temporal coherence on the surface elements within
the scene, not directly on the optical flow.

A first-order Eulerian dynamic model can be given by

a
-x(i,j,t)=w(i,j,t) , (5)

where w(i, j,t) is a zero-mean space-time white noise with
covariance q . A first-order Lagrangian dynamic model is
similar, but employs the total derivative with respect to time
in place of the partial derivative:

x(i,j,t)=w(i,j,t) . (6)

The Eulerian model is straightforward to implement, as the
discrete counterpart of Eq. (5) is simply

x(i, j,k)=x(i,j,k — 1) +w(i, j,k) , (7)

w(i,j,k)---N(O,qI) . (8)

Implementation ofthe Lagrangian model is far more difficult,
requiring a correspondence between the image coordinates
and the moving surface elements.12 Such a correspondence
can be calculated by tracking the surface elements within the
frame.

In Ref. 1 2, it is argued that under standard optical flow
conditions the Eulerian method is a good approximation to
the Lagrangian method. This is partially because the spatial
optical flow derivatives have relatively small magnitudes,
because of the smoothness-type constraints. In addition, the
optical flow itself will have small magnitudes, because large
object motions cannot be estimated from locally computed
gradients. Therefore, the partial derivative in Eq. (5) is ap-
proximately equal to the total derivative in Eq. (6).

Our multiframe generalization of the MR algorithm is
based on an Eulerian approach applied at the finest scale.
That is, we assume

SCALE 0
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XM(i, i' k) = xM(i, J k — 1) + w(i,I, k)

w(i,j, k)—N(O,qI)

Our approach to including at time k the optical flow infor-
mation from time k — 1 involves two steps. First, we predict
ahead the MR algorithm estimate of xM(i, J k — 1) using the
(trivial) dynamics in Eq. (9)—the estimate ofxM(i, I' k) based
on the MR estimate of xM(i,j, k— 1) is the MR estimate of
XM(i, i k — 1)—and we use the associated Lyapunov equation
to update the smoothed error covariance provided by the MR
algorithm. The predicted estimate is then combined with the
MR estimate ofxM(i, J k) based on the measurement available
at (i, J ) at time k, which comes from the brightness constraint
equation. The combination of the two estimates is based on
viewing them as independent estimates of the same random
variable, XM(i, i k), and hence can be computed using stan-
dard linear least-squares fusion equations (see e.g., Ref. 3).
The fused estimate and error covariance then are used as a
basis (in place of the estimate based solely on the measure-
ment at time k) for completing the rest of the MR algorithm
calculations as usual.

We illustrate the multiframe extension of the MR algo-
rithm on a sequence of real images of a helicopter against a
natural background. Each frame in the sequence is an 8-bit
gray-scale image of 480 X480 pixels. The selection of this
sequence was motivated by three factors: (1) the objects and
background are real, not simulated; (2) the background is
reasonably complex, with both varied vegetation and terrain;
and (3) the target is difficult, if not impossible, to extract
from the background using nontemporal methods. Figure 2
illustrates a frame in this sequence.

As described previously, the MR algorithm not only pro-
vides the optical flow at a resolution equivalent to the image
itself, it also supplies the optical flow and associated 2 X2
error covariances at increasingly coarse levels of resolution.
As discussed in Ref. 2, the trace of these multiscale co-

(9) variances can be employed to determine an optimal level of
resolution for each region of image flow, and Fig. 3 illustrates

(10) the optimal resolution as a function of position. Given that
each location in the flow field has an optimal representation
resolution, and that the flow field itself is multiresolution, it
is possible to construct the optimal representation optical
flow. For each location in the image this is simply the optical
flow estimate at the optimal representation resolution. Figure
4 contains the optimal representation optical flow for frame 2.

Figure 5 displays the optimal representation resolution at
frame 2 for the multiframe MR algorithm (computed with a
value of q =0). Comparing these results with those of the
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Fig. 3 Optimal representation resolution.

Fig. 2 Raw helicopter image. Fig. 4 Optimal representation optical flow.
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standard MR algorithm in Fig. 3 shows that the inclusion of
multiframe temporal information improves the representation
resolution in three ways: (1) the region around the helicopter
fuselage resolved at level 5 has been increased in size, (2) the
resolution at the center of the helicopter has been increased
from level 5 to level 6, and (3) the large background patches
have been partially reduced by level 4 to level 3 (homogenous
background regions should be resolved at relatively coarse
levels). The optimal representation resolution optical flow for
the multiframe MR algorithm is shown in Fig. 6. The smooth-
ness of this flow appears superior to that of the MR results
in Fig. 4, particularly at the bottom of the image.

4 Moving Target Detection
There are several approaches to the development of moving
target detection algorithms that exploit the optical flow esti-
mates. One approach would be to segment the image based
on the optical flow field.1''6 Such a method is attractive in
that it can be combined with other methods of image seg-
mentation, such as texture estimation, to improve the separ-
ability of the scene. The approach to target detection that we
take here is based on exploitation of the artificial smoothness
of the flow imposed by the global smoothness constraint. Spe-
cifically, the smoothness constraint tends to obscure abrupt
changes in the field resulting from the motion of small objects.
The measurement data itself, i.e., the temporal and spatial
derivatives, do not necessarily support the smoothed flow es-
timates. It is therefore possible to locate regions of discontin-
uities in the flow field by locating where the measurement data
disagrees with the flow estimates. This is a definition of the
measurement residual at each pixel, given by

(i, j) =—E(i,j) +VE(i, j )îM(i, i)

where rM is the optimal representation resolution optical flow.

Fig. 7 Brightness constraint residuals: threshold = 5.

The residuals computed for the multiframe MR algorithm
at frame 2 are displayed in Fig. 7. These are actually the
absolute values of the residuals (because only magnitude is
important for target detection), thresholded to create the bi-
nary image. The helicopter is quite visible. More importantly,
the helicopter is the only element in the image with coherent
structure (except for edge artifacts). It is particularly en-
couraging to notice the distinctness of the helicopter rotors.

111 The rotors are less visible in the individual raw frames than
" the fuselage, but have significant temporal gradients, dem-

onstrating the importance of employing optical flow infor-
mation in target detection.
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Fig. 5 Optimal representation resolution: multiframe MR algorithm. Fig. 6 Optimal representation optical flow: multiframe MR algorithm.
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Fig. 8 Morphological processing: opening.

As an attempt to further increase the image of the heli-
copter, several simple binary morphological operations were
applied to the thresholded image. Figure 8 shows the results
of opening the image with a 2X2 square structuring ele-
ment.17 This result is only an example of operations that could
be performed on the thresholded residuals. For instance, an
obvious addition to the morphological transformations is an
intermediate operation to remove isolated pixels, or small
clusters of pixels. Such a process would eliminate much of
the randomly structured residuals, leaving areas where a sig-
nificant number of frame elements have moved in a coherent
fashion.

5 Conclusions
The major objective of this effort was to determine whether
multiresolution-based image analysis algorithms could meet
the requirements for practical image analysis and information
extraction in an advanced surveillance and tracking system.
Our results demonstrate the considerable promise that these
algorithms have for practical implementation and integration
into advanced surveillance systems. Specifically, the multi-
scale algorithm we have proposed provides a direct mech-
anism for spatiotemporally coherent processing of image se-
quence data for enhanced target detection, by producing
motion estimates over an entire image frame. This can be of
considerable value for the detection and tracking of low ob-
servable targets for which methods based on standard single-
frame detection algorithms fail because of low single-frame
SNR. Moreover, the error statistics thaf are available with
these estimates will be useful for the optimal fusion of image-
derived estimates into a multitarget and possibly multisensor
tracking system, and for system performance assessment. The
multiscale motion estimates allow for the possibility of dis-
criminating between areas in which fine-scale target motion
can be discerned and areas in which only coarser background

motion can be estimated. This is of potential use both for
fully automated algorithms, in which this information can be
used to provide ' 'hand-over'' informationto a target tracking
algorithm when fine-scale target motion is detected, and for
operator cueing. Thus, multiresolution information provides
the critical service of filtering the vast amount of image data
for the operator or pilot and indicating the regions in which
he or she should focus attention. Finally, the multiscale al-
gorithm provides measurement residuals in which discontin-
uities in the motion field—because of targets moving relative
to the background—are enhanced. These residual images pro-
vide an enhanced data set for automatic target detection and
possibly identification.
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