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Abstract. In this paper, we present an approach to the nonlinear inverse scattering 
problem using the extended Born approximation (EBA) on the basis of methods from the 
fields of multiscale and statistical signal processing. By posing the problem directly in 
the wavelet transform domain, regularization is provided through the use of a multiscale 
prior statistical model. Using the maximum a posteriori (MAP) framework, we introduce 
the relative Cram•r-Rao bound (RCRB) as a tool for analyzing the level of detail in a 
reconstruction supported by a data set as a function of the physics, the source-receiver 
geometry, and the nature of our prior information. The MAP estimate is determined using 
a novel implementation of the Levenberg-Marquardt algorithm in which the RCRB is used 
to achieve a substantial reduction in the effective dimensionality of the inversion problem 
with minimal degradation in performance. Additional reduction in complexity is achieved 
by taking advantage of the sparse structure of the matrices defining the EBA in scale space. 
An inverse electrical conductivity problem arising in geophysical prospecting applications 
provides the vehicle for demonstrating the analysis and algorithmic techniques developed 
in this paper. 

1. Introduction 

The desire to characterize the composition of a 
medium on the basis of observations of scattered ra- 

diation is a common problem in a variety of applica- 
tion areas [Kak and Slaley, 1987; Bates et al., 1991; 
Torres-Verdi'n and Hahashy, 1994]. Despite the ubiq- 
uity of such inverse scattering problems, generating 
a solution can be quite difficult because of the com- 
putational burden associated with the nonlinearity 
of the problem and the fact that these problems are 
highly ill posed. In this paper, we present a col- 
lection of methods for overcoming these difficulties 
based upon techniques drawn from the disciplines of 
multiscale and statistical signal processing. We em- 
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ploy estimation-theoretic analysis techniques to iden- 
tify those degrees of freedom in a wavelet representa- 
tion of the quantity to be reconstructed for which the 
data provide significant information. Such a formula- 
tion represents a natural framework for the analysis 
of issues such as the trade-off between reconstruction 

accuracy and resolution, as well as the development 
of bounds on our ability to localize spatial anomalies 
in the region of interest. Direct incorporation of this 
information into a nonlinear inversion algorithm cou- 
pled with a multiscale implementation of the forward 
scattering model results in substantial computational 
savings with little loss in reconstruction fidelity. We 
apply our method to an inverse electrical conductiv- 
ity problem encountered in geophysical exploration 
applications. 

The extended Born approximation (EBA) devel- 
oped by Hahashy e! al. [1993] is used to lower the 
computational complexity of the forward modeling 
portion of our inverse scattering algorithm. The 
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EBA provides a simple functional relationship be- 
tween the conductivity perturbation and the scat- 
tered field, which makes this model ideally suited 
for the computationally efficient implementation of a 
complete, gradient-based nonlinear optimization al- 
gorithm for solving the inverse scattering problem 
[Torres-Verd•n and Hahashy, 1994]. We further im- 
prove the efficiency of our inversion algorithm by ex- 
ploiting the fact that the matrices defining the ex- 
tended Born approximation are of the class which 
are "nearly diagonalized" by the wavelet transform 
[Beylkin et al., 1991]. 

The traditional technique for overcoming the ill 
posed nature of these inverse scattering problems is 
through the use of a regularization method [Bertero 
et al., 1988; Groetsch, 1984; Kress, 1989]. From an es- 
timation-theoretic perspective, the regularizer repre- 
sents a prior statistical model for the quantity under 
investigation [Miller and Willsky, 1995b]. Here we 
demonstrate the utility of specifying such a model di- 
rectly in the wavelet transform domain, where there 
exists a wide variety of scale-space modeling struc- 
tures well suited for this task [Miller and Willsky, 
1995a, 1995b]. These models are useful for represent- 
ing many common, naturally occurring self-similar 
phenomena, are easily specified in scale-space, and 
for certain problems, lead to fast inversion algo- 
rithms. Moreover, in the linearized inverse scattering 
context, a wavelet representation of the conductiv- 
ity provided a natural basis for defining the space- 
varying optimal level of detail in a reconstruction as 
a function of the resolution, quality, and spatial dis- 
tribution of the data [Miller and Willsky, 1995b]. 

The solution to the nonlinear inverse scattering 
problem is obtained as the maximum a posteriori 
(MAP) estimate of the wavelet components of the 
conductivity field. Using the MAP formulation, we 
generalize the results from Miller and Wilisky [1995b] 
by introducing the relative Cram•r-Rao bound 
(RCRB) for quantitatively evaluating the informa- 
tion provided by the data with respect to the con- 
ductivity's wavelet transform. At each stage of the 
inversion, the RCRB is used to identify those wavelet 
coefficients for which the data do and do not provide 
significant information. Use of this partition leads to 
substantial computational savings with little loss in 
reconstruction fidelity. 

In section 2, we present the physical space formu- 
lation of the inverse electrical conductivity problem. 
Section 3 is devoted to a review of the wavelet trans- 

form and a derivation of the scale-space MAP esti- 
mation problem. The relative Cramdr-Rao bound is 
defined and its properties discussed in section 4. Our 
nonlinear inversion scheme is presented in section 5 
with a collection of examples discussed in section 6. 
The conclusions to be drawn from this work are pre- 
sented in section 7. 

2. Physical Space Problem 
Formulation 

2.1. The Forward Problem 

We consider a two-dimensional inverse conductiv- 

ity problem, illustrated in Figure 1, where there ex- 
ists a set of electromagnetic line sources oriented 
perpendicularly to the page emitting time-harmonic 
waves into a lossy medium characterized by a con- 
stant background conductivity of go Siemens per me- 
ter and the free space values for electric permittivity, 
e0, and magnetic permeability,/z0. The objective of 
the problem is to reconstruct a conductivity pertur- 
bation, g(r), in A given noisy, pointwise observations 
of that component of the scattered electric field ori- 
ented perpendicularly to the page. These measure- 
ments are obtained along receiver arrays positioned 
on the vertical edges of A from a collection of K 
scattering experiments. Each experiment produces a 
vector of measurements, yi, comprising the in-phase 
and quadrature components of the scattered field ob- 
tained over a single receiver array due to energy put 
into the medium from one of the sources operating 
at a particular frequency. 

As discussed by Torres- Verdi'n and Hahashy [1994], 
the relationship between g(r) and the jth element of 
yi, that is, the measured scattered field at position 
rj, is 

yi(rj) ----uvi/z0 f Gi(rj, r')g(rt)Ei(rt)dr t 
• (1) 

+ 
where ni(rj) represents additive noise, Gi(r, r •) is the 
Green's function for the problem, and Ei(r) is the 
component of the total electric field perpendicular to 
the page. From Torres-Verd[n and Hahashy [1994], 
Ei(r) satisfies 

+ ilzo Gi(r, r')g(r')Ei(r')dr' 
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Figure 1. Inverse conductivity problem of interest 
in this paper. 

with /•i(r) - Ii,wittoGi(r, ri) the background field 
generated by a line source with current density Ii 
positioned at ri. Finally, Gi(r, r') is 

Gi(r r') - -• rr(•)(ki 0It - r'l) (3) , 4--0 , 

with ,,o- + 
order Hankel function of the first kind. 

A d•screte representation of (1) is obtained using 
the method of moments (MoM) [Harpington, 1968], 
where g(r) and Ei(r) are expanded in pulse bases. 
Similarly, a Galerkin scheme is used to discretize (2) 
on the basis of the same pulse basis expansions (i.e., 
we use the pulse basis for both test and weighting 
functions). Thus, upon discretization, (1) and (2) 
reduce to 

Yi -- Gi,•7•(Ei)g + ni (4a) 
Ei - Ei + Gi7•(g)Ei, (4b) 

where Ei (respectively El) is a vector of pulse basis 
expansion coefficients for Ei(r) (respectively /½i(r)), 
Gi,s (respectively Gi)is a matrix representation of 
the integral kernel in (1) (respectively (2)), and 
is the diagonal matrix whose (i, i)th element is the 
ith component of the vector x. 

To alleviate the computational burden associated 
with the use of (4b) and (4a)in an inversion rou- 
tine [Torres-Verd•n and Hahashy, 1994], we employ 
a forward model based on the extended Born approx- 
imation. For the geometry of interest here, the EBA 
amounts to approximating Ei(r) in A as [Torres- 
Verd[n and Hahashy, 1994] 

e (5) 

X(r) - [1- . (6) 
Upon substituting (5) into (1) and discretizing again 
using the MoM approach described previously, we 
obtain the model [Miller, 1994] 

Yi -- •Ti V(Xi)g• +ni. (7) 
hi(g) 

In (7), Ti is a matrix identical to that associated 
with the first-order Born approximation in the work 
by Miller and Willsky [1995b], and Xi is a vector 
whose nth element is 

[Xi]n - (1 + [Ui](n,:)g) -1 (8) 

where [Ui](,,:) is the nth row of the matrix Ui whose 
(n, m)th element is [Miller, 1994] 

_ •o, tto f.a f.a H•)(k"ølr-r'l)drdr' 4(area of An) . 

with Aj the jth element in the pixelation of A. 
Finally, we collect the data from the K scattering 

experiments into a single vector, y, so that the overall 
observation model is given by 

y -- h(g) + n, (9) 

where yT _ [y•T y2T, ...,y•:] and h(g) and n are 
defined accordingly. 

2.2. The Inverse Problem and Its 

Probabilistic Interpretation 

Onc method for recovering g from y is to define •,, 
the estimate of the conductivity fie]d, as the solution 
to the nonlinear ]east squares problem: 

I• arg min Ily- h(g)11- + Ilgl -- , IL:r'L, (10) 

where I[x[[A = xTAx. For completeness, the op- 
timization problem should include a positivity con- 
straint on the conductivity. We defer consideration 
of this question until section 5.2. As discussed in sec- 
tion 1, the matrix L in (10) is employed to regularize 
the problem and 7• is generally a diagonal matrix 
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whose entries reflect the noise levels present in the 
measurements, y. 

The Gauss-Newton (GN) algorithm represents one 
common method for performing the minimization in 
(10) [Torres-Verd•n and Hahashy, 1994; Tarantola 
and Valette, 1982]. Specifically, 1• is generated it- 
eratively starting from an initial guess •0. At the 
(k + 1)st stage of the algorithm, •k+• is 

1• k+• - 1• • + s •, (11) 

where s • is given as the solution to the linear system 

paper, it proves useful to consider the definition of 
(14) in which the expectation is replaced by evalu- 
ation at an arbitrary g. Finally, comparing (14) to 
(12), we see that 7>CRB(•) is the inverse of the ma- 
trix on the left-hand side of the linear system defining 
the Gauss-Newton iteration. In section 5, we make 
extensive use of this fact to reduce the computational 
complexity of our inversion algorithm. 

3. Wavelet Domain Formulation 

{LTL + [X7g h(l•)] T 7Z -• [X7g h(ik)] } s • 
= [X7g h(i•)] T 7Z -• [y - h(l?)] - LTLi • (12) 

with Vg h(g) • the matrix whose (i, j)th component 
is 0h(g)/0g. 

The nonlinear le•t squares formulation and the 
G N iteration admits a direct interpretation in the 
context of optimal statistical estimation. Equation 
(10) is equivalent to the MAP estimate [Van Trees, 
1968] of g given y assuming 

ni • •(0, riI) (13a) 
g • •(0, (LTL)-•), (13b) 

and all the noises are uncorrelated so that • = 

diag(rxI, r:I,..., rKI). The notation x • •(m, P) 
implies that x is a Gaussian random vector with 
mean m and covariance matrix P. 

An estimation-theoretic approach toward inversion 
is especially useful, because it provides menures of 
performance in terms of the second-order error statis- 
tics. For the nonlinear problem of interest here, ex- 
plicit expressions for this information cannot gener- 
ally be obtained; however, the Cramdr-Rao bound 
(CRB) is a commonly used lower bound on the mean 
square error performance of the MAP estimator [Van 
•ees, 1968]. For the problem defined by (9), the 
CRB takes the form (A. S. Willsky, Class Notes, 
Spring 1990), 

cas(g) - {LrL + h(g)] r h(g)l} . 
(14) 

Technically, the CRB is defined to be the inverse 
of the expected value of the matrix in braces on 
the right-hand side of (14), where the expectation 
is taken with respect to the distribution of g. In this 

3.1. The Discrete Wavelet Transform 

The basic idea behind the discrete wavelet trans- 

form is to decompose a signal, here represented as a 
vector, into a sequence of increasingly "coarser" rep- 
resentations while retaining the information lost in 
moving from a fine to a coarse scale. While we will 
be concerned both with one- and two-dimensional 

signals, we describe first the wavelet representation 
and notation for a one-dimensional signal, a, of di- 
mension 2 M• . The elements of a are termed the finest 

scale scaling coefficients associated with a, and the 
vector a is denoted by a(Ma), indicating that this is 
a representation of a at the finest scale, 

Beginning with a(Ma), a coarser set of scaling co- 
efficients, a(Ma- 1), is obtained by passing a(Ma) 
through a low-pass, finite impulse response filter, l, 
and decimating the filtered output by a factor of 2. 
Thus a(Ma - 1) is coarser than a(Ma) in that the 
filtering and downsampling procedure has removed 
the high-frequency structure from the original sig- 
nal, and a(Ma - 1) is half as long as a(Ma). The 
detail lost in moving from a(Ma) to a(Ma - 1) (de- 
noted ct(Ma - 1)) is extracted by a high-pass filter 
and decimation procedure. The filtering and decima- 
tion process is applied successively to the coarsened 
versions of a, resulting in a sequence of scaling co- 
efficient and detail vectors, a(m) and ct(m), respec- 
tively, each of dimension 2 m, for m - Ma - 1,..., La 
with La the coarsest scale at which a is represented. 

As described by Daubechies [1988], filters I and h 
can be constructed so that we may build an orthonor- 
mal matrix, •a relating the finest scale scaling co- 
efficients to the coarsest scaling coefficients and all 
detail coefficients. We subscript the wavelet trans- 
form operator as •a to make explicit that this is 
the transform for a. We will use different wavelet 

transforms for the different variables. Thus, we write 
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a = ]4/aa, (15) 

where c• = [o•(Ma- 1) T, ..., o•(La) T a(La)T] T is 
the wavelet transform of a. The nth element of c•(m) 
is denoted c•(m, n) and is referred to as the nth shift 
of c• at scale m. Similarly, a(m, n) is the nth element 
of the vector of scaling coefficients at scale m. 

The wavelet decomposition of a two-dimensional 
function is obtained by considering a as a matrix 
and applying one orthonormal wavelet transform to 
the columns and another to the rows. We use ]/V• 
to represent the composition of these two operators. 
It is easily shown that the orthonormality of the row 
and column transforms ensures that ]/V• is also or- 
thonormal. Finally, we denote a particular element 
of c• by c•(m, n), where in and n are two vectors in- 
dexing the scales and shifts in the x and z directions, 
respectively. 

3.2. Multiscale Prior Models 

A key component in our formulation of the inverse 
problem is the use of a multiscale stochastic model 
for g to regularize the inversion and to capture prior 
information. To motivate the particular choice of 
prior model used here, consider (13b), the stochastic 
interpretation of the regularization term in the non- 
linear least squares formulation of the inverse scatter- 
ing problem. In the case where g is a function of one 
variable and L represents first-order differentiation, 
(13b) implies that g is a Browninn motion satisfy- 
ing Lg = w with w ~ A/'(O,I). Work by Wornell 
[1990] Flandrin [1992] and Tewfick and Kim [1992] 
has demonstrated that Browninn motions and other 

related fractal processes can be closely approximated 
via statistical models in which the wavelet and coars- 

est scale scaling coefficients of g are independent ran- 
dom variables distributed according to 

if(re, n) ~ A/'(0, n22-•m) (1On) 
g(L•, n) ~ Af(0,pœ,). (16b) 

Here n2 controls the overall magnitude of the pro- 
cess and/• determines the fractal structure of sample 
paths. The scalar pl:• is chosen to be a sufficiently 
large number so as to avoid any bias in the estima- 
tor of the low-frequency structure of g. For these 
models, the resulting covariance matrix, P0, for •t is 
diagonal with nonzero entries corresponding to the 
variances of each component of -•. 

For the case where g is two-dimensional, we con- 
sider the separable representation with 

if(m, n) (0, 2 22-(l•m•+/•,m,)) ,',., Ig x lg z 

for Lg,x _• mx _• Mg,•- 1 and Lg,z 
Mg,z - 1. For m• - Lg,x, we take ff(m,n) 
(0,pœg,•n•2 -(•'m')) with analogous results holding 
when mz -- Lg,z. 

3.3. A Scale-Space Representation of the 
Extended Born Model 

We use the wavelet transform to effect a change 
of basis with respect to the EBA model developed 
in section 2.1. To perform the scale-space transfor- 
mation, we define one wavelet transform, W g, for 
the conductivity perturbation, g, and for each scat- 
tering experiment a separate wavelet transform Wi, 
i = 1, 2, ..., K, is specified. Taking advantage of 
the orthonormality of the wavelet transform, (7) is 
transformed as follows: 

WiYi -- •i 

-{-Wini 

---- (I)i(•') + •'i, (17) 

where (I)i(•,) - Oi.':.i(•')•', and •i(•t) is related to •t 
by noting that (8) can be written as 

-1 

T g) (1 [Xi]n -- (1 + [Ui](n,:)WgWg 8) 

(1 + [Ti](n,. ) 
-1 

Gathering the transform domain observations, 'we 
obtain 

r/- (I)(•,) + •,, (19) 

where •, (I)(ff), and v are defined analogously to the 
quantities in (9). 

In summary, the overall problem of interest in 
this paper is the determination of the MAP estimate 
of ff based on the observation model in (19) with 
ff ~ A/'(0, P0) and v ~ A/'(0, R), where P0 is defined 
in section 3.2 and R = diag(rtI, r2I,..., rKI). For- 
mally, this leads to a definition of •, the estimate of 
the conductivity 's wavelet transform, as 

ff - arg min J(•t), (20) 
3' 
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where the cost function, J(•t), is defined as 

- IIn- (v)llt-1 q-IIll (21) p;•' 

While (20) is structurally identical to (10), a wavelet- 
domain formulation yields a variety of benefits ex- 
plored in the following sections of this paper. 

4. The Relative Cram•r-Rao Bound 

In the work by Miller and Willsky [1995b], the rela- 
tive error covariance matrix (RECM) was introduced 
as a quantitative tool to analyze issues related to the 
manner in which the physics of the linearized inverse 
scattering problem impact the structure of the recon- 
struction. Without explicit knowledge of the error 
covariance matrix for the nonlinear inverse scatter- 

ing problem, we use the Cram•r-Rao bound as the 
basis for a generalized RECM. Specifically, we define 
the relative Cram•r-Rao bound (RCRB) as 

(22) -T/2 [P0 PcaB(•t)] P0 Ilcas(•t)- P0 - 

which, for the model given by (19), is 

PCRB('7)- [TT(ff)R-•T(ff)+ r•'l] -1 (23) 

with 

__ , .. ', }T - {[Vv •x(•t)] z [Vv •K(•t)] r . (24) 
A detailed description of the straightforward yet te- 
dious calculations required to compute T(ff), • well 
• an expression for T(ff), are presented by Miller 
[1994]. 

As with the RECM defined for the linear case, 
•CRS possesses a variety of useful properties. From 
(22), •CRS is a symmetric matrix. Also, like the 
RECM, the diagonal elements of •CRS are bounded 
between zero and one and provide a direct measure 
• to the information content of the data with respect 
to each component of if. This property of the RCRB 
provides a mechanism for defining the spac•varying 
appropriate level of detail to include in a reconstruc- 
tion of g [Miller and Wilkky, 1995b]. In particular, 
for each location j in the finest scale representation 
of g, we say that the data support a reconstruction 
of g(Mg,j) at scale m if there exists a component in 

•t at scale in for which the data provide a sufficiently 
large quantity of information; that is, the diagonal 
element of IIcRs associated with that coefficient of 
-•, is greater than a threshold, r 6 [0, 1). The finest 
scale detail to include in the reconstruction at that 

point j is just the finest scale for which a wavelet 
coefficient may be found that satisfies the above cri- 
terion. In addition to obtaining these detail maps, 
the ability of the RCRB to provide a measure of the 
information content in the data leads to a substan- 

tial reduction in model complexity for the inversion 
algorithm developed in the following section. 

5. A Wavelet-Based Inversion 

Algorithm 

5.1. The Basic Algorithm 

On the basis of (11) and (12), the (k + 1)st step of 
the scale-space form of the Gauss-Newton algorithm 
is 

^•+• • • (2•) • -S +½ 

and 

[Tr('•)R-•T(• •) + P•] ½• 
= - 

which we write in a more compact form as 

(2•) 

where .T '• -- 7T('•k)l•-lT('•k), and we recall from 
the discussion in section 2.2 that the matrix on the 

PCRB(V )' left-hand side of (26) is -• ^ • 
At the kth step of the Gauss-Newton algorithm, 

we would like to use the diagonal components of 
PCl•B('• •) and P0 to construct the diagonal elements 
of the RCRB according to (22) so that we can de- 
termine and then compute only those elements of ½ 
for which "significant" information exists. The diffi- 
culty here is that we only have access to the inverse 
of PcrtB('•), and our desire is to avoid explicitly in- 
verting this matrix. Thus we make two assumptions. 
First, at step k we assume that we know the diago- 
nal elements of PCaB(•-•), that is, the diagonals 
from the Cramdr-Rao bound matrix of the previous 
iteration of the algorithm, from which we are able to 

•'• + P • • ] ½• - v • (27) 
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construct the diagonal elements of IlcRs(• •-•) us- 
ing (22) (since P0 is diagonal). For the first iteration 
of the algorithm, we begin by explicitly inverting the 
matrix on the right-hand side of (27). Second, we as- 
sume that IlcRs(• •-•) is close to Ilcas(•); that 
is, the bounds at successive iterations do not change 
dramatically. 

Formally, we let Ilcmas,n(• •-1) be the component 
on the diagonal of Ilcas(• }-•) corresponding to the 
wavelet coefficient in ff at scale in and shift n. Us- 

ing II•as, n(•-•), we partition ½• into ½• and ½}, 
where the component of ½• at scale m and shift n is 
included in • if n•as,•(• •-•) is greater than some 
threshold r • [0, 1). If this condition is not met, 
then that element of • is placed into •. Thus • 
contains those components of • for which significant 
information is available relative to that of the prior 
model where the level of significance is defined by the 
threshold r. 

On the basis of this decomposition of •, the rows 
and columns of (27) are appropriately permuted so 
that the linear system at step k of the Gauss-Newton 
algorithm takes the block-partitioned form 

+ - ,1 P-• •} v• ' 

which we invert directly using the block matrix in- 
version formula [Beyer, 1987] to obtain 

' . (29) 
In (29), • and the Schur complement, $• are de- 
fined as 

and $-• -- ($•)-1. 
The utility of (29) through (31) arises from two 

observations. First, we anticipate from our work on 
linear inverse problems [Miller and Willsky, 1995b] 

Table 1. Data Set Definitions for Observation Pro- 

cesses of Interest in the Paper 
Experiment Source Frequency Receiver 

Number Position of Source Array 
kHz 

1-6 1-6 fLo = 0.1 Right 
7-12 1-6 fMID = 1.0 Left 
13-18 1-6 faI = 10.0 Left 

that the dimension of ½• should be much smaller 
than the dimension of the full vector ½•. Hence the 
cost of computing the inverse in (30) will be small. 
Second, the Schur complement matrix is well ap- 
proximated by only its diagonal components, so that 
evaluation of $-• requires little computation. While 
a detailed verification of this approximation is pro- 
vided by Miller [1994], here we demonstrate its va- 
lidity through the accurate results obtained in our 
examples using the diagonal approximation to $•. 
The diagonal approximation to $• means that ½• 
may be obtained from v • using the first block row of 
(29) with far fewer computations than direct inver- 
sion of.•. Moreover, rather than setting ½} to zero, 
the presumed diagonal structure of $• and the small 
size of • imply that the second block row of (29) 
can be applied to v • with little computational over- 
head. Finally, because the matrix on the right-hand 
side of (29) is a row- and column-permuted form of 
PC•B(•), (29) provides an efficient method for com- 
puting the diagonal elements of the RCRB to be used 
in the next iteration of the Gauss-Newton method. 

Specifically, the diagonals of PcRs(• •) are obtained 
by inverting the diagonal elements of $• and com- 
puting the diagonal elements of the upper left block 
of the matrix in (29), which is small in dimension. 

Table 2. Common Parameters Defining Numerical 
Experiments 

Parameter Value 

go 0.1 S/m 
z Wavelet Daubechies 2-tap 
x Wavelet Daubechies 2-tap 
No,• = No,• 16 
Mo,• = Mo,• 4 
Lo,• = Lo,•, 2 
!• z = !• a, 1 

pLo,z = pLo,x 16 
2 2 

•z = •cx 0.1 
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Figure 2. True conductivity profile for the first ex- 
ample. 

5.2. Implementation Details 

To improve the convergence of the nonlinear op- 
timization procedure, we implement a form of the 
Gauss-Newton algorithm known as the Levenberg- 
Marquardt (LM)method [Gill et al., 1981]. Essen- 
tially, this approach replaces (25) and (27) by 

•k+• _ .•k + • (32a) 

+ 
where P0 - P0/(n•n•) with defined in section ExEz 

3.2. As discussed by Gill et al. [1981], proper selec- 
tion of a • guarantees that J(•+•) < J(•), so that 
the LM procedure does in fact converge to a min- 
imum of the cost function. Here we choose a • so 
• to minimize the cost associated with the resulting 
•+• that is, 

a•--argmin J 
V . 

We use a line minimization procedure to solve (33), 
resulting in around 20 calls to the EBA forward 
solver per iteration in the examples presented in sec- 
tion 6. Clearly, a more e•cient implementation of 
the LM algorithm would avoid much of this burden. 

Physical principles dictate that the overall conduc- 
tivity, g0 + g, in region A be positive. In order to en- 
force this constraint on the inversion algorithm, we 
assume that the ith element of the vector g is given 
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Figure 3. Bounds on the space-varying optimal 
level of x-oriented detail in a reconstruction when the 

structure in Figure 2 has an amplitude of (a) 0.1 S/m, 
(b) I S/m, and (c) 5 S/m. All figures are computed 
using a threshold of 0.5 in the relative Cramdr-Rao 
bound analysis. The corresponding z-oriented detail 
maps are constant over the region A. 
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0.2 0.4 0.6 0.8 I 

Figure 4. Percentage of elements expected to be 
considered significant as a function of truncation pa- 
rameter. Solid line: results for first example; dashed 
line: results for second example. 

gi = e •' - go, (34) 

where we estimate the vector • - 14/•, rather than 
g. Here g is obtained by lexicographically ordering 
the •,i. As in the work by Wang et al. [1994], this 
change of variables only results in a slight modifica- 
tion to the structure of (I)(-•) and its gradient matrix. 
The general structure of the LM algorithm, including 
the computational benefits associated with a wavelet 
domain implementation, are not affected by this sub- 
stitution. 

Finally, the matrices defining the extended Born 
approximation are either sparse by construction (•i 
in (17) which is the wavelet transform of a diago- 
nal matrix) or are of the variety which are made 
sparse by the wavelet transform (Oi in (17) and Ti 
in (19)). In the examples considered in section 6, we 
explore the effects of truncating the small elements 
of Oi and •'i in the performance of the inversion al- 
gorithm. For this, we follow the strategy of Alperr 

(a) Iteration = 1 (b) Iteration = 20 

•0.44] • 
o.4t 

5• 100 100 
z 100 0 x z 100 0 x 

(c) Iteration = 40 (d) Iteration = 50 

50 50-- 
z 100 0 x z 100 0 x 

Figure 5. Estimated conductivity structure after 1, 20, 40, and 50 iterations of the nonlinear, 
multiscale inverse scattering algorithm. The true conductivity is shown in Figure 2. Note that 
the z-axis scaling in (a) is different from that in (b) to (d). 
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Figure 6. Performance curves as a function of iter- 
ation numbers for the first example. Solid line: value 
of cost function, J(•); dashed line: norm of estima- 
tion error, (11g- 

et al. [1993] in which the level of truncation is gov- 
erned by a parameter • • 0 with zero corresponding 
to no truncation. 

6. Examples 

We now consider the problem of recovering the 
electrical conductivity in region A of Figure i on the 
basis of observations of scattered radiation from the 

18 scattering experiments described in Table 1. The 
source frequencies are 100 Hz (used in a cross-well 
configuration), as well as i and 10 kHz (used to ob- 
tain information near the left edge of A). Region A is 
100 m x 100 m with the top left corner at (0, 0). For 
the method of moments discretization, A is decom- 
posed into a 16 x 16 array of square pixels so that the 

Table 3. Mean Length of ½x for the First Example, 
Expressed as a Percent of the Maximum Length (256 
in This Case) a 

10 -5 0.01 0.1 

0.0 100 100 100 

0.1 24 25 30 

0.3 14 14 18 

0.5 11 11 14 

a Each entry in this table is obtained as an average over 
the 50 iterations of the corresponding inversion. 

Figure 7. Plots of p•(r) for the first example. 

overall dimensionality of the problem is 256. Both 
receiver arrays consist of 32 equally spaced elements 
extending from z - -0.05 m to z - 100.05 m. The 
left array is located at x = -0.05 m and the right at 
x - 100.05 m. The six sources are located along the 
line x = -0.05 m equally spaced from z = 0.05 m 
to z = 99.95 m. All other parameters describing 
the examples presented in this section are listed in 
Table 2. We define the signal-to-noise ratio (SNR) 
for the model r/i = (I)i(•,)+ •'i with r/i E I1• •v' and 

~ 7I) 

$NR•- (I)/•(ff)(I)i(ff) (35) 
ß 

While the inverse algorithm is based on the extended 
Born approximation, all data are generated using the 
exact physical model in (4a). Finally, for all exam- 
ples, if0 _ 0. 

As a first example, we examine the inverse prob- 
lem for which the geometric structure of the under- 
lying conductivity field is shown in Figure 2. Un- 
like the linear inverse problem in which performance 
is independent of the true conductivity field [Miller 
and Willsky, 1995b], in the nonlinear case, expected 
performance of the imaging algorithm does depend 
on the configuration of the underlying conductivity 
profile. As an example of this relationship, we use 
the RCRB-based analysis methods, and we display 
in Figures 3a-3c the finest scales of x-oriented detail 
supported in a reconstruction when the amplitude 
of the rectangular structure in Figure 2 is 0.1 S/m, 
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Figure 8. Final conductivity reconstruction for the 
first example with r- 0.5 and e- 0.1. 

z lOO o 

lOO 

Figure 9. True conductivity profile for the second 
example. 

1 S/m, and 5 S/m, corresponding to 1'1, 10'1, and 
50:1 contrasts, respectively. The finest z-oriented de- 
tail for this problem is basically constant over A be- 
cause of the dense sampling pattern of the receivers 
along each vertical edge of the region. All figures 
were obtained using an RCRB threshold parameter 
r: 0.50. These illustrations demonstrate that as 

the amplitude of the conductivity block increases, 
the level of resolvable detail decreases. Comparing 
Figure 3a to 3b, we see a drop in the scale of detail 
for the region directly behind the conductivity struc- 
ture. This loss in detail is explained by the fact that 
the dissipation of electrical energy in a medium is 
directly related to the level of the conductivity with 
larger values corresponding to greater loss. 

The spatial structure of Figure 3 is related closely 
to the three different frequencies used to probe the 
medium. The ability to recover finer scale informa- 
tion near the left vertical edge of A extends to ranges 
on the order of a skindepth (16m and 50m for the 
10 kHz and I kHz sources, respectively) for the two 
higher frequencies. Although the skin depth for the 
100-Hz source is 160m while the size of A is only 
100m, the frequency is sufficiently low such that only 
the coarsest scale of information regarding g may be 
recovered further into the medium. Finally, note that 
the high detail which can be recovered near the two 
vertical edges also can be partially attributed to the 
singularities of the Green's functions for this problem 
which exist at the source and receiver locations. A 

more detailed treatment of these issues in the context 

of a linearized inverse conductivity problem similar 
to the one considered here may be found in the work 
by Miller and Willsky [1995b]. 

To gauge the expected savings associated with the 
use of the RCRB at each iteration of our inversion 

algorithm, in Figure 4 we plot (solid line), as a func- 
tion of r, the percent of coefficients for which the 
data are deemed to supply a reasonable amount of 
information (i.e., the percentage of elements in -), for 
which the value of II TM exceeds the threshold r) CRB,n ' 
This illustration is obtained for the case in which 

the amplitude of the structure in Figure 2 is set to 5 
S/m and provides a benchmark for the expected per- 
formance of the inversion routine explored in subse- 
quent paragraphs. Specifically, Figure 4 is generated 
using the CRB matrix evaluated at the true conduc- 
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Figure 10. Bounds on space-varying optimal level 
of x-oriented detail for r - 0.5 in a reconstruction 

when the structures in Figure 9 both have amplitudes 
of i S/m. The corresponding z-oriented detail maps 
are constant over the region A. 
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(a) Iteration = 1 (b) Iteration = 20 

5o 5o 
z 100 0 x z 100 0 x 

(c) Iteration = 40 (d) Iteration = 50 

100 100 

z100 0 x z100 0 x 

Figure 11. Estimated conductivity structure after 1, 20, 40, and 50 iterations of the nonlinear, 
multiscale inverse scattering algorithm. The true conductivity is shown in Figure 9. Note that 
the z-axis scaling in (a) is different from that in (b) to (d). 

tivity profile, while the CRB used at the kth step 
in the inversion algorithm is evaluated at fla. Thus 
there will be some discrepancy between the number 
of coefficients retained during the execution of the al- 
gorithm and the number indicated in Figure 4; how- 
ever, as we shall see shortly, this difference is small. 

The estimates of the conductivity field after 1, 20, 
40, and 50 iterations of the LM algorithm are shown 
in Figure 5. These results are obtained with e = 10 -5 
(corresponding to EBA matrices all greater than 99% 
full) and r - 0 so that no approximation was made in 
the least squares problems. In Figure 6, we plot the 
values of the cost function J(-•)in (20) and the norm 
of the estimation error IIg - l•ll, as a function of it- 
eration number. We observe that after 50 iterations, 
the estimate of the conductivity has converged to at 
least a local minimum of the cost function. More- 

over, this reconstruction captures the basic features 
of the true conductivity field in that we have isolated 
both the location of the perturbation as well as its 
amplitude. 

In Table 3, the average length of the vector ½ x over 
the 50 iterations of the LM procedure is shown as a 
percent of the size of the problem, 256, as we vary 
the parameters e and r. As e is raised to 0.01 (respec- 
tively 0.10) the sparsity of the EBA matrices drops to 
around 30% (respectively less than 10%). Examining 
Table 3, we see that for r = 0.5 and e = 0.01, on av- 
erage only 11% of the elements of ff• (corresponding 
to 28 rather than 256 degrees of freedom) are deemed 
important. Finally, comparing Table 3 and the solid 
line in Figure 4 shows excellent agreement between 
the average number of coefficients retained at each 
iteration of the inversion and the theoretical bound 

obtained using the RCRB analysis based on the true 
conductivity profile. 

In Figure 7, we observe that this truncation pro- 
cedure results in little degradation in inversion per- 
formance. Define ^ 50 'rr,• as the estimate of ff obtained 
after 50 iterations of the LM algorithm with trun- 
cation parameters r and e. In Figure 7, we plot as 
a function of r and for e • {10 -5, 10 -2, 10-x}, the 
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Figure 12. Performance curves as a function of it- 
eration numbers for the second example. Solid line: 
value of cost function, J.(•,); dashed line: norm of 
estimation error, (11g- 

quantity 

^ 50 ^ 50 

p•(r) - ^•o , (36) 
I1o,o-,11 

which provides a measure of the effects of operator 
and model truncation on the reconstruction. For 

e - 10 -5 and ½ - 10 -2 we see negligible performance 
degradation; however, with ½ = 0.1 there is some 
loss in fidelity. Specifically, in Figure 8, we display 
1•ø•,•0_,, the inverse wavelet transform of 5•0ø•,•0_•. 
C•mparing this image to that obtained with n•) trun- 
cation (Figure 5d), shows little difference in the two 
reconstructed conductivity profiles. Thus, even with 
this severe level of truncation, the conductivity struc- 
ture remains well localized, and the final amplitude 
is still close to that of the true profile. 

Table 4. Mean Length of ½• for the Second Exam- 
ple, Expressed as a Percent of the Maximum Length 
(256 in This Case) a 

½ 

v 10 -• 0.01 0.1 
0.0 100 100 100 

0.1 38 41 54 

0.3 21 22 34 

0.5 18 18 25 

øEach entry in this table is obtained as an average over 
the 50 iterations of the corresponding inversion. 

, , 
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Figure 13. Plots of p•(r) for the second example. 

We next examine the performance of our imaging 
algorithm for a more difficult problem in which the' 
underlying conductivity distribution is illustrated in 
Figure 9. Here there are two structures to be re- 
solved, each of which is smaller than that considered 
in the previous example and lies further from the 
two vertical edges where the sources and receivers 
are located. In Figure 10, we display the optimal 
x-oriented detail for this problem for r - 0.5. It 
should be noted that both conductivity structures 
are in the region for which it is anticipated that the 
least amount of detail can be recovered. As seen by 
the dashed line in Figure 4, the greater complexity 
of this problem is captured directly by an increase 
in the expected number of significant wavelet coef- 
ficients for all values of r relative to the previous 
problem. 

With •- 10 -5 and r- 0, the reconstructions ob- 
tained for this problem after 1, 20, 40, and 50 itera- 
tions of our inverse scattering algorithm are displayed 
in Figure 11, and the corresponding performance 
curves are shown in Figure 12. We observe that the 
algorithm is quite successful both in distinguishing 
the two structures from one another and in determin- 
ing their amplitudes. The two reconstructed blocks 
are larger in area than the true structures; however, 
this is consistent with the lack of fine scale detail 
expected to be recoverable from the data in these re- 
gions of A. Moreover, we observe from Figure 11b 
that valuable geometric information is embedded in 
the reconstructed profile after only 20 iterations of 
the algorithm. In particular, the number (two) and 
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Figure 14. Final conductivity reconstruction for 
the second example with v - 0.5 and e - 0.1. 

locations of both structures are clearly evident. In 
many applications, such information could be as im- 
portant as the absolute amplitudes of the structures 
or the final image itself. Finally, from Figure 12, we 
see that after 50 iterations the algorithm has reached 
at least a local minimum of the cost function; how- 
ever, the still-decreasing curve of the norm of the es- 
timation error indicates that further iterations may 
be useful, particularly in refining the amplitudes of 
the two structures. 

In Table 4 and Figure 13, the performance charac- 
teristics of the inversion method are displayed as a 
function of the truncation parameters v and e. The 
results here are similar to those seen in the first exam- 

ple. The average length of ½• is consistent with that 
predicted by the RCRB analysis in Figure 4. The 
effects of truncation on the quality of the reconstruc- 
tion as measured by pe(v) defined in (36) are again 
small with the reconstructed profile obtained under 
the most severe truncation (v - 0.5 and e - 0.1) 
shown in Figure 14. Although slightly less smooth 
than Figure 11d, this estimate of the conductivity 
clearly retains all essential features of the untrun- 
cated version. 

7. Conclusions 

We have presented a multiscale, statistical ap- 
proach to the nonlinear inverse scattering problem 
based on the extended Born approximation. We 
considered an inverse electrical conductivity problem 
arising in the field of geophysical prospecting. The 
application of statistical signal processing methods 
to the recovery of the conductivity's wavelet trans- 

form leads to the quantitative analysis of issues, such 
as reconstruction accuracy versus resolution and the 
development of bounds on our ability to localize con- 
ductivity anomalies in the region of interest. Finally, 
our approach allowed for the use of physically realis- 
tic, computationally efficient regularization methods 
which are described most naturally in scale-space. 

We introduced the relative Cram•r-Rao bound ma- 

trix as a generalization of the RECM employed by 
Miller and Willsky [1995a, 1995b]. The RCRB pro- 
vided useful information regarding the level of detail 
expected to be recoverable from a given data set and 
played a central role in reducing the complexity of 
our inversion algorithm. 

The reconstruction itself was specified as the so- 
lution to a maximum a posteriori estimation prob- 
lem which was obtained using the the Levenberg- 
Marquardt method. At each iteration of the algo- 
rithm, the RCRB was used to identify those degrees 
of freedom in scale space for which the current linear 
problem provided substantial information relative to 
the prior model. The resulting block-partitioned 
form of the normal-type equations were directly and 
efficiently inverted, yielding not only the solution to 
the linear system but also the RCRB information 
required to compute the partition at the next step 
of the algorithm. The computational difficulties of 
solving the forward problem at each LM step were 
reduced significantly through the use of a scale-space 
form of the extended Born approximation. Specifi- 
cally, the matrices defining the structure of the EBA 
model relating the conductivity to the observations 
could be made up to 90% sparse with little impact 
on inversion performance. 
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