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Estimation of Dynamically Evolving Ellipsoids 
with Applications to Medical Imaging 
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Abstruct- The estimation of dynamically evolving ellipsoids 
from noisy lower-dimensional projections is examined. In particu- 
lar, this work describes a model-based approach using geometric 
reconstruction and recursive estimation techniques to obtain a 
dynamic estimate of left-ventricular ejection fraction from a 
gated set of planar myocardial perfusion images. The proposed 
approach differs from current ejection fraction estimation tech- 
niques both in the imaging modality used and in the subsequent 
processing which yields a dynamic ejection fraction estimate. For 
this work, the left ventricle is modeled as a dynamically evolving 
three-dimensional (3-D) ellipsoid. The left-ventricular outline 
observed in the myocardial perfusion images is then modeled 
as a dynamic, two-dimensional (2-D) ellipsoid, obtained as the 
projection of the former 3-D ellipsoid. This data is processed 
in two ways: first, as a 3-D dynamic ellipsoid reconstruction 
problem; second, each view is considered as a 2-D dynamic ellipse 
estimation problem and then the 3-D ejection fraction is obtained 
by combining the effective 2-D ejection fractions of each view. The 
approximating ellipsoids are reconstructed using a Rauch-ring- 
Striebel smoothing filter, which produces an ejection fraction 
estimate that is more robust to noise since it is based on the 
entire data set; in contrast, traditional ejection fraction estimates 
are based only on two frames of data. Further, numerical studies 
of the sensitivity of this approach to unknown dynamics and 
projection geometry are presented, providing a rational basis 
for specifying system parameters. This investigation includes 
estimation of ejection fraction from both simulated and real data. 

I. INTRODUCTION 
HIS RESEARCH presents a medical imaging application T of the estimation of dynamically evolving ellipsoids 

from noisy projection observations. Much work in geometric 
reconstruction [ 11-[5] has focused on reconstructing objects 
such as ellipsoids from noisy lower-dimensional projections. 
This work differs from previous applications of ellipsoid 
reconstruction [3] since the precise ellipsoid dynamics and 
projection geometries are unknown. In particular, a method to 
obtain the ejection fraction of the left ventricle of the heart 
from a gated set of planar radionuclide (99mTc) myocardial 
perfusion images [6]-[ 81 is presented. Gated myocardial per- 
fusion imaging is a radionuclide technique that may be used 
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to produce a sequential set of images of the heart in motion, 
which are not traditionally used to estimate ejection fraction. 
The model-based approach described in this paper employs 
geometric reconstruction and recursive estimation techniques 
to track left ventricular shape throughout the cardiac cycle. 
This approach allows the generation of a dynamically based 
ejection fraction estimate, which we show is more robust to 
variations due to noise than traditional static ejection fraction 
estimates. Our proposed approach differs from current ejection 
fraction estimation techniques, both in the imaging modality 
used and in the subsequent processing which yields a dynamic 
ejection fraction estimate. 

The ejection fraction (EF) of the left ventricle has long been 
known as an effective gauge of cardiac function [9] and has 
great prognostic value to cardiologists. The ejection fraction 
is defined as 

(1) 

where end systole (ES) and end diastole (ED) are the fully 
contracted and fully expanded cardiac phases, respectively. 

In this work, a temporal set of planar myocardial perfusion 
images [6]-[8] is used to estimate ejection fraction. Tradition- 
ally, these images are not used to estimate ejection fraction. 
These observations are obtained by injecting the patient with 
a radionuclide marked substance (ggmTc in this case) and 
imaging with a gamma camera. Sixteen images are produced 
at equally spaced points in the cardiac cycle via ECG-gating. 
The resulting images are the sum of a particular cardiac phase 
over many cardiac cycles, not snapshots of the heart in motion. 
The data set consists of images from three views: anterior 
(ANT), lateral (LAT), and left anterior oblique (LAO). ANT 
is a frontal view; LAT is a side view, underneath the left 
arm; and LAO is a frontal view, skewed down and to the left 
side (see Fig. 1). This data-acquisition modality coupled with 
beat-to-beat variability combine to give poor visual quality 
images. 

Myocardial perfusion images, while of poor visual quality, 
contain a large amount of physiological information reflecting 
the tie between the chosen radionuclide and the biochemistry 
of the region under study. As a result, these images are 
traditionally used to locate infarcts, areas in the heart muscle 
that are being deprived of nutrients because of an occlusion in 
the vessels of the heart. In addition to this traditional role, it 
is possible to distinguish the outline of the left ventricular 
chamber from myocardial perfusion images and to obtain 
structural information about the left ventricle. In this work, 
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Fig. 1. 
object in the center is the left ventricular wall. 

A sample ANT myocardial perfusion image. The horseshoe-shaped 

we will estimate the ejection fraction from this projection-like 
outline of the left ventricle. 

Geometric reconstruction and recursive estimation tech- 
niques are used here to formulate a dynamically based ejection 
fraction estimate which is more robust to variations due to 
noise than traditional static ejection fraction estimates. One 
commonly used approximation to the true shape of the left 
ventricle is a 3-D ellipsoid [lo]-[12]. The projections (or 
shadows) of this left ventricular ellipsoidal model are 2-D 
ellipsoids which model the left ventricular outline in the 
observed myocardial perfusion images. By projections, we 
mean shadow projections of this ellipsoidal shape as opposed 
to line integral projections. By combining previous work 
in geometric reconstruction [ 3 ]  with a statistical recursive 
estimation procedure known as Rauch-Tung-Striebel (RTS) 
smoothing [13], it is possible to formulate an efficient es- 
timation procedure that combines the observed temporal set 
of projection images with an evolution model to produce the 
estimate of the ellipsoid which minimizes mean-square error 
at any point given all the data. This smoothing technique 
combines all tfie frames of data to estimate the left ventricular 
volume at ES and ED. This dynamically based ejection fraction 
estimate is more robust to noise compared to traditional 
techniques, where the ejection fraction estimate is calculated 
from volume estimates at ES and ED based on only those two 
frames of data. 

We examine two ways of processing the projection data. In 
the first, the three projection views are processed together as 
a single 3-D ellipsoid reconstruction problem. In the second, 
simpler method, each view is processed individually as a 2-D 
dynamic ellipse estimation problem; the 3-D ejection fraction 
estimate is calculated by combining the effective 2-D ejection 
fractions obtained from each view. 

Many techniques exist for estimating ejection fraction in- 
cluding angiography [ lo], echocardiography [ 141, magnetic 
resonance imaging [ 151, and radionuclide ventriculography 

[lo], [16]. The “gold standard” (GS) estimate of ejection 
fraction used here is based on multiple-gated blood pool 
(MUGA) images. The ultimate objective of this work will be 
to show a high degree of correlation between our ejection 
fraction estimates based on myocardial perfusion images and 
standard estimates based on MUGA. 

Several important points should be noted in comparing 
our ejection fraction estimates based on myocardial perfusion 
images to those based on MUGA. First, an ejection fraction 
estimate based on myocardial perfusion images provides a 
safer and more cost-effective alternative to the MUGA based 
estimates. This is because the typical diagnostic procedure 
includes both myocardial perfusion imaging to obtain physio- 
logical information about possible cardiac infarcts and MUGA 
imaging to estimate ejection fraction. Thus, by estimating 
ejection fraction from myocardial perfusion images alone, 
we may be able to eliminate the need for MUGA imaging 
and minimize the patient’s exposure to radiation. Second, 
the smoothing techniques combine all the frames of data (in 
contrast to current techniques) to give an ejection fraction 
estimate which is more robust to variations due to noise. 
Third, in a formulation based on geometric reconstruction and 
statistical methods, the modeling assumptions are explicitly 
stated. Thus, it is possible to investigate the sensitivity of 
the estimate with respect to these assumptions. Indeed, we 
do precisely that in Section 111. 

The dynamically based smoothing techniques presented in 
this work are also directly applicable to ejection fraction esti- 
mates from other imaging modalities. That is, similar smooth- 
ing filter-based reconstruction could be applied to MUGA 
images or even angiographic data. Again, our dynamically 
based smoothing techniques combine the entire data set to give 
an ejection fraction estimate which is more robust to variations 
due to noise than those methods using only two frames of data. 

The organization of this paper is as follows. In Section 
11, the necessary background from geometric reconstruction 
and statistical recursive estimation is discussed together with 
their application to the estimation of ejection fraction from 
myocardial perfusion images. In Sections I11 and IV, we test 
our methods on simulated and real myocardial perfusion data, 
respectively. 

11. PROBLEM FORMULATION 

This section summarizes the mathematical background 
needed to describe the reconstruction of an n-dimensional 
dynamically evolving ellipsoid and the application of ellipsoid 
reconstruction to the processing of myocardial perfusion 
images to estimate ejection fraction. 

A. Mathematical Background 

Consider the general problem of reconstructing a dynami- 
cally evolving n-dimensional ellipsoid from a series of noisy 
(perhaps lower-dimensional projection) observations [3 ] .  This 
problem may be greatly simplified by choosing appropriate 
representations for the ellipsoids, their dynamics, and their 
projections. Several such representations (including the one 
used in this work) are discussed in [3]. It is possible to 
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represent the points included in an n-dimensional, origin- 
centered nondegenerate ellipsoid in the following way: 

{ z  1 z T X - ' z  5 1 ,z  E R"} (2) 

where the symmetric, positive definite n x n matrix X that 
represents the ellipsoid is easily determined. For example, a 
2-D ellipsoid (an ellipse) centered at the origin with semiaxis 
lengths, a and b, and an angle of rotation 4 is represented by 
the matrix 

) cos4 s i n 4 ) T ( $  :)( cos4 s in4 
X =  ( -s in4 cos4 

The projections of an ellipsoid are themselves ellipsoids 
of lower dimension. The symmetric matrix representation of 
the ellipsoid in (2) yields a linear relationship between the 
matrix X that represents the ellipsoid and the matrix Ya that 
represents the ellipsoid in a given projection. In particular, 
this relationship is given by 

-s in$ cos4 ' 

y,  = c,'xca (3) 

where the columns of C; span the space of the projection, 
capturing the projection geometry. 

By representing an ellipsoid by its associated matrix X, 
it is possible to capture a broad range of ellipsoid dynamics 
through the following evolution equation: 

x(k + I )  = A ( ~ ) ~ x ( ~ ) A ( I c )  (4) 

where changes such as magnification, rotation, and eccentricity 
change may be included in a simple way in A( k ) .  For example, 
in the 2-D case, one convenient choice for A ( k )  is (see [5]) 

where the first term represents uniform scaling by the factor 
c ( k )  2 0, the second term an area preserving stretching along 
the coordinate axes by a ( k )  2 0, and the last term a rotation by 
an angle O ( I C ) .  This general form is easily extended to express 
similar dynamics for ellipsoids of higher dimensions. 

Now, if we have noisy observations of the evolving matrix 
X ( k )  of the form (3), these may be captured by the observation 
equation 

where the symmetric matrix V , ( k )  represents the effects of 
observation noise. Note that this model assumes that our 
observations are actually ellipsoids, with the uncertainty ap- 
pearing in the exact shape of the ellipsoid. To simplify 
the ellipsoid reconstruction problem, we assume that the 
independent elements of V,  (IC) have a Gaussian distribution.' 

By casting the geometrically intuitive formulas (4) and (6) 
in standard state space form, it is possible to invoke the well- 
developed methods of recursive estimation theory and still 
preserve the geometric interpretation of the original problem 

formulation. Note that the set of n x n symmetric matrices 
forms a --dimensional vector space. Thus, there exists 
an equivalent vector representation for the linear ellipsoid 
dynamics (4) and the observation equation (6) given by 

(7) 
(8) 

where the matrices A and C are matrix representations of 
the linear operators on X ( k )  defined in (4) and (6) with 
respect to given orthonormal bases on the sets of symmetric 
matrices of corresponding dimension. Thus, there is a one- 
to-one correspondence between X (  k) and z ( k )  (similarly 
between Y ( k )  and y( k)) and our intuition about the ellipsoid 
evolution and measurement equations is preserved. In [3], 
specific orthonormal bases for the- matrices A and C are 
discussed. Specifically, the matrix C is obtained by stacking 
the matrix representations of each of the linear operators 
(CT(.)Ci). Further, it follows from (6) that the term w(k) 
is a Gaussian vector with zero mean and variance R = r I .  
This problem formulation is directly amenable to the extensive 
set of techniques from recursive estimation. In particular, the 
Rauch-Tung-Striebel (RTS) smoothing algorithm [ 131 may be 
used to obtain 2 ( k  I T), the estimate of the ellipsoid z ( k )  at 
time IC which minimizes mean-square error given data over 

z ( k  + 1) = A ( k ) z ( k )  
y(k) = C z ( k )  + w(k) 

[O, TI. 

B. Application to Processing of Myocardial Images 

A few comments are in order before we proceed. Recall 
that the formulation of (6) assumes that our observations are 
ellipsoids (albeit perturbed ones) and not images. Since this is 
not the focus of this paper, we assume that a preprocessing step 
which extracts ellipses and provides the statistics of the mea- 
surement noise is available. There exist many such methods 
to extract both ellipses from planar data and the statistics of 
w(k) in (8) [17]-[19]. In addition, note that the transformation 
from the ellipsoid shape, as specified by the symmetric matrix 
X ( k )  (or equivalently by .(IC)), to the ejection fraction is a 
nonlinear one and that the transformation between ellipses and 
ejection fraction is not one-to-one since many combinations of 
different maximum and minimum ellipses will yield the same 
ejection fraction. 

In this section, we use the formulation in Section II-A 
to combine the information in the different projection views in 
two ways. The first approach is to process the three projection 
views together in a single 3-D ellipsoid reconstruction prob- 
lem, i.e., our observations are taken to be 2-D projections of an 
underlying 3-D ellipsoid. An ejection fraction estimate is then 
based on the resulting reconstructed 3-D dynamic ellipsoid 
according to (1). Of course, this approach inherently requires 
that a projection geometry be specified which we describe 
later in this section. 

An altemative, simpler method is to process each lower- 
dimensional view individually as an independent 2-D ellipse 
estimation problem; hence, three 2-D dynamic ellipse esti- 

'This model is not strictly proper since it implies that 1; ( k )  will not 
always be a positive definite matrix, which it must be to represent an ellipsoid. 
However, we choose to employ this commonly used assumption because of 

mates are obtained. this case, our observations are of the 2-D 
For each Of these three dynamic 

the simplification it provides in the ellipsoid reconstruction problem. estimates, a corresponding apparent planar "ejection fraction" 
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can be found. The overall ejection fraction may then be 
obtained by combining these 2-D ejection fractions calculated 
from each view under certain simplifying assumptions. For 
example, by assuming the projection views onto three mutually 

fraction of the 3-D ellipsoid is given by 

by the following recursive form: 
p(y(k) I & - I ,  model i is correct)p;(k - I) 

Cj”==lp(y(k) I Y k - 1 ,  model j is correct)pj(k - 1)’ 

orthogonal planes aligned with the ellipsoid axes, the ejection (11) 

The quantity p(y(k) 1 Y k - 1 ,  model i is correct) is obtained 

where E F  is the overall ejection fraction of the 3-D ellipsoid 
and EFviewz is the apparent ejection fraction of the ellipses 
in projection i. Note that this formulation implicitly assumes 
a projection geometry, i.e., orthogonal projections onto planes 
aligned with the ellipsoid axes. 

Regardless of how we use the results of Section 11-A to 
combine the data, two significant obstacles must be addressed 
to obtain reliable ejection fraction estimates from the real 
data. First, obviously, the dynamics of the ellipsoid which 
approximates the left ventricle are unknown and vary from 
person to person. Thus, the underlying ellipsoid dynamics, 
as captured by A ( k ) ,  are unknown to us (though we clearly 
have significant prior knowledge in this regard). Second, the 
gamma camera is positioned to obtain roughly the ANT, LAT, 
and LAO views, but the exact position varies from patient 
to patient. Therefore, the projection geometry, as captured 
explicitly in C or implicitly in a formulation such as (9) is 
imperfectly known. 

1)  Imperfectly Known Dynamics: In this work, we use a 
model identification scheme based on hypothesis testing to 
determine a coarse approximation to the true ellipsoid dy- 
namics. The RTS smoothing filter reconstruction is then based 
on the dynamics chosen by the model identification scheme. 
Note that because the model identification yields only a coarse 
approximation to the true dynamics, model mismatch will still 
remain in the smoothing filter reconstruction. We discuss how 
to account for this effect later in this section. 

Given our significant prior knowledge of cardiac dynamics, 
it is straightforward to define a small set of reasonable hy- 
pothesized dynamic models. In particular, we assume that the 
underlying left ventricular dynamics correspond to a uniform 
shrinking phase followed by a uniform expansion phase, the 
only uncertainty being in the rate. Each hypothesized model is 
thus based on a hypothesized rate parameter which induces an 
associated ejection fraction. Since it is ejection fraction that 
is of interest to us and each model has associated with it a 
corresponding (unique) ejection fraction, we will often refer 
to these different models by their associated ejection fractions. 

Model identification is a stochastic estimation technique 
which determines which of several hypothesized models is 
most likely given the data. That is, the model identifier chooses 
model i from m hypothesized models at time k if model i 
maximizes the quantity 

p ; ( k )  = Pr(mode1 i is correct I y k )  

as a byproduct of the Kalman filter based on model i and is 
given by 

p(y(k) I &_l,model i is correct) = N ( v , ( k ) ; O , V , ( k ) )  
(12) 

where N(v , (k ) ;  0, V , ( k ) )  is a Gaussian distribution with a 
mean of zero and a variance V z ( k )  evaluated at v2(k) ,  the 
Kalman filter residuals at time k under hypothesis i .  Both 
v,(k) and V , ( k )  are obtained directly from the Kalman filter. 
By substituting (12) in ( l l ) ,  we can evaluate p , ( k ) .  Thus, 
the model identification scheme consists of a bank of Kalman 
filters, one based on each of the hypothesized models, and 
a comparison step to determine which hypothesized model 
maximizes p, (T) ,  where T is the time interval over which we 
have collected data. 

Since the model identification phase yields only a coarse 
approximation to the true dynamics, a residual dynamic model 
mismatch will still remain in the smoothing filter-based ejec- 
tion fraction estimates. One method to compensate for this 
remaining error is through the addition of a process noise 
term to the modeled dynamics in (7) on which we will base our 
filter; that is, the error introduced by dynamic model mismatch 
is modeled as a process noise with a variance of Q = q l .  In 
general, the smoothed state estimate at any time is a weighted 
average of the measured and predicted states. In the smoothing 
filter, the variance of such a process noise term may be 
interpreted as a measure of the trust in the dynamic model, and 
thus the predicted state versus the measured data. If q is very 
high, the estimate will be based on the measurements alone. In 
contrast, if q is low, the estimate will be based on the predicted 
state (and thus the dynamic model and initial condition) alone. 
Hence, the value of q may be used to compensate for the effect 
of dynamic model mismatch by reducing the dependence on 
the model in the estimate. 

im- 
perfect knowledge of the ellipsoid dynamics, the relationship 
between the ellipsoid and our projection observations of it, 
i.e., the projection geometry specified by C,, is imperfectly 
known. For this work, we will simply assume orientations for 
the three projection planes then examine the sensitivity of our 
reconstructions to this assumption.2 

We expect that the effect of errors in this assumed projection 
geometry on the resulting ejection fraction estimate to be 
minimal for the following reasons. First, the left ventricle is a 
minimally eccentric ellipsoid; its shape tends toward a sphere. 
Thus, the assumed projection geometry introduces minimal 
error in the ejection fraction estimate. Second, the dynamics of 
the left ventricle include only a slight rotation. For the simple 
case where the dynamics consist of only isotropic contraction 
without rotation, it is easy to show that the assumed projection 

2) lmperjiectly Known Projection Geometry: Beyond 

where y k  is the set Of measurements to and the ’One could also imagine developing a further hypothesis testing procedure 
measurement at time k .  Applying Bayes’ rule, p ; ( k )  is given to estimate the projection geometry. 
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geometry does not introduce any error into the ejection fraction Z 
estimate. Even for more complicated dynamics, which include 
isotropic contraction and a gross rotation, the effect of the 
assumed projection geometry on the ejection fraction estimate 
is minimal. 

3)  3-0 Versus 2-0  Processing: For the 3-D processing, the 
three views are processed together as a single 3-D model 
identificationheconstruction problem. That is, the model iden- 
tifier and smoothing filter-based reconstruction are used to 
reconstruct the 3-D ellipsoid that best approximates the left 
ventricle based on the set of noisy 2-D projections in the three 
views. The outcome of the model identifier is used to provide 
a dynamic model for the smoothing filter-based reconstruction. 
Based on the volume of the estimated 3-D ellipsoids which are 
the output of the smoothing filter, an estimate of the ejection 
fraction is calculated according to (1). Since the true projection 
geometry is unknown, we use an assumed projection geometry 
that approximates the standard ANr, LAT, and LAO views. 
In particular, we assume our three projections are onto the 

0 = 45" from the zy-plane, as shown in Fig. 2. This third 
plane is completely specified by its normal, p,, where 

Y 

zz-plane, the yz-plane, and a plane which is tilted at an angle X 

Fig 2 Projection plane orientation 

p ,  = (-  cos @sin@, - sin @ sin 0. cos 0). (13) 
A. Model Identijication 

mance of the model identifier. For both Experiment #I and 
#2, the following simulation setup is assumed. A computer- 
simulated 3-D ellipsoid and its projection measurements are 
generated as described by (7) and (8). The initial ellipsoid 
has semiaxis lengths of 8, 7.2, and 8, aligned with the z-, y-, 
and z-axes, respectively. The true dynamics are expressed by 

This assumed (or modeled) projection geometry is captured in T~~ experiments were conducted to evaluate the perfor- 
(6) by the set of matrices 

1 0 0  
(14) 

(15) 

G n l  = (" 
0 )  

0 1 0  
cm2 = (o 

- sin @ cos @ (16) matrices A , ( k )  of the form " ) c o s a c o s ~  s i n a c o s o  s i n 0  
c,R(O,) 

l/c,'R-O+) 
for (1 5 IC mod 16 + 1) 5 8 
for (9 5 k mod 16 + 1) 5 16 Equivalently, the assumed projection geometry may be repre- A,(k) = { 

sented by C,, obtained by stacking the matrix representations ,. -\ 
of the linear operators CnLi, as discussed in Section 11-A. I 1  /) 

Our alternative method of combining the three views of 
data to estimate the ejection fraction is to process each 
view individually as a 2-D problem. That is, we use a 
model identifier to individually estimate the dynamics of the 
ellipses observed in each view. The outcome of the model 
identifier is then used to provide a dynamic model for the 
smoothing filter-based reconstruction of the ellipse trajectory 
in that view. Based on the smoothed ellipses, the apparent 
2-D "ejection fraction" for each view is calculated. For 2-D 
processing, the matrix C in (8), which relates the ellipsoid to 
the measurements, is given by the identity. Note that each 2-D 
ejection fraction actually underestimates the underlying 3-D 
ejection fraction. The overall ejection fraction estimate is then 
formulated using the formula given in (9). 

where R(.) describes rotation about the z-axis and is a 
generalization of the last term in (5); et and 0, are the true rates 
of contraction and rotation, respectively. These true dynamics 
generate a shrinkinghotating and expandinghotating ellipsoid. 
Since the myocardial perfusion data consists of 16 frames per 
cycle, the simulated ellipsoid cycle was chosen to be 16. The 
ejection fraction that corresponds to the true model (17) will be 
denoted EFt. The measurements, as described by (3), are taken 
to be noisy projections onto three orthogonal planes which 
are aligned with the ellipsoid axes. This projection geometry 
corresponds to projections on the zy-, yz-, and zz-planes and 
is represented by C1, (72,  C3 in (14)-(16) with @ = 0 = 0, 
or equivalently, by the matrix C, as described in Section 11-A. 

The model identifier is based on two hypothesized dynam- 
ical models with associated dynamic matrices A1 and A2. 

These hypothesized dynamics have corresponding contraction 
rates of c1 and e2 and rotation rates of 81 and &. The 
matrices AI and A2 are of the same form as (17) with true 
contraction and rotation rates replaced by the corresponding 
modeled contraction and rotation rates. The ejection fractions 
corresponding to the two hypothesized models, AI and AP, 

111. SIMULATIONS 
In this section, we present simulation results which illustrate 

the methods outlined in Section 11. Included are simulations to 
investigate the performance of the model identifier, the effect 
of the dynamic model mismatch, and the sensitivity to the 
assumed projection geometries. 
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Fig. 3. Model identification Experiment #1 results. 

will be denoted as EF1 and EF2. Experiments #1 and #2 
differ in which of the values ct, cl, c2, O t ,  01, and O2 are held 
fixed and which are varied. The model identifier is initialized 
with the linear least squares estimate of the ellipse at time 
k = 0 and with an initial error covariance, PO, which is high 
to indicate that our confidence in this initial estimate is low. 
Our initialization is given in (18) and (19) where R = r l  is 
the measurement noise variance. 

Both sets of experiments will be carried out for several 
levels of measurement noise variance. This noise variance will 
be held constant throughout the experiment interval. We will 
categorize each noise level by the initial signal-to-noise ratio 
(ISNR) defined as 

V nr 
where x(1) is the vector representation of the ellipsoid at 
time k = 1, n is the dimension of z, and r is the variance 
of the measurement noise. The ISNR for each of the four 
measurement noise levels under consideration are listed in the 
legend of Fig. 3. The noise levels are chosen to cover the range 
of variability expected from typical ellipse extraction routines. 

The objective of Experiment set #1 is to investigate how 
sensitive the model identifier is to the separation of the 
hypothesized ejection fractions when one of the hypothesized 
dynamic models exactly matches the dynamics used to create 
the set of ellipses. Even though such a scenario does not exist 
in the real world, this exercise is useful since it illustrates the 
sensitivity performance of the model identification scheme. In 
Experiment set #1, the true dynamics and ejection fraction 
always equal those associated with hypothesized Model #1 
(i.e., ct = c1, EFt = EF1) and c2 is allowed to vary. For 
Experiment set #1, neither the true nor modeled dynamics 
include rotation (i.e., Ot = 01 = O2 = 0). The hypothesized 
models have associated ejection fractions that yield an EF 
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Fig. 4. Model identification Experiment #2 results. 

separation which is given by EF, = EF1 - EF2 = EFt - 
EF2. The performance of the model identifier is evaluated 
at four ISNR levels as EF, is decreased. To control the 
complexity of this experiment, the projection geometry was 
assumed known to the model identifier. Fig. 3 shows the 
number of realizations out of 100 that correctly identify 
Model #1 as a function of the separation between the two 
hypothesized ejection fractions and the measurement noise 
level. These results indicate that for high ISNR the model 
identifier always chooses the correct model regardless of the 
separation between the two hypothesized ejection fractions. 
Although the performance deteriorates for lower ISNR levels, 
these results indicate that 75% correct identification can be 
obtained over an extremely wide range of separations even 
for low ISNR levels. 

The objective of Experiment set #2 is to evaluate the 
performance of the model identification scheme when the 
true ellipsoid dynamics include contraction, expansion, and 
rotation, but the hypothesized models are simpler, including 
only contraction and expansion at a rate that differs from the 
true contractiodexpansion for a wide range of ISNR levels. To 
study this case, the dynamics and thus, ejection fractions of 
the two hypothesized models are fixed and the true dynamics 
vary so that the true ejection fraction varies between those of 
the two hypothesized models. The two hypothesized dynamic 
models are captured by dynamic matrices A1 and A2 of the 
form (17) with hypothesized contraction rates of c1 = 0.9572 
and c2 = 0.9907 which correspond to ejection fractions of 
EF1 = 0.65 and EF2 = 0.20. These modeled dynamics do 
not include rotation (i.e., 01 = O2 = 0). The true ellipsoid 
dynamics are also of the form (17) with values of ct in the 
range from 0.9605 to 0.9892, which correspond to values of 
EFt from 0.62 down to 0.23. The true dynamics include a 
rotation at each step of 6t = n/54 about the x-axis, which 
implies a total rotation of n/6. Fig. 4 shows the number of 
realizations out of 100 that picked Model #1 given all the 
data for each value of ct. For ISNR #1, the model identifier 
performs as follows: If EFt 2 0.47, then Model #I is chosen; 
if EFt 5 0.4, then Model #2 is chosen; if 0.4 5 EFt 5 0.47, 
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Fig. 5. Ejection fraction error using an assumed dynamic model. 

then the outcome is uncertain. For lower signal-to-noise ratios, 
the results indicate that the performance of the model identifier 
deteriorates and the transition region widens. As expected, 
outside of these relatively narrow transition regions, the model 
identifier chooses the hypothesized model which more closely 
approximates the true ellipsoid dynamics and, in particular, 
more closely matches the true ejection fraction. These results 
show that, even for low ISNR, the model identifier based on 
simple hypothesized models will adequately capture dynamics 
reflecting our quantity of interest, i.e., the ejection fraction. 

B. Dynamic Model Mismatch 

Next, we evaluate the error introduced by dynamic model 
mismatch and investigate methods to minimize the error by 
introducing a process noise term in our smoothing filter recon- 
struction, as discussed in Section 11-B. A computer simulated 
3-D ellipsoid and its noisy measurements are generated as 
described in (7) and (8). The initial ellipsoid, true projection 
geometry, and smoothing filter initialization are exactly as 
described in Section 111-A. The true dynamics include periodic 
contractiodexpansion without rotation as described by (17) 
with ct = 0.9615 and Bt = 0 which yields an ejection 
fraction EFt = 0.60. A smoothing filter based on the RTS 
smoothing algorithm is implemented to reconstruct the 3-D 
ellipsoid from the noisy 2-D projections. This smoothing 
filter is based on the periodic dynamic model given by 
matrices A ,  ( I C )  of the form (17) with modeled contraction and 
rotation rates c, and 0,. In reality, a method such as model 
identification might have been used to choose these matrices 
A ,  ( I C ) .  For the experiment, these model dynamics consist of 
simple periodic contractiodexpansion with no rotation chosen 
to yield a corresponding intrinsic ejection fraction of EF, = 
0.70, which corresponds to c, = 0.9515. An estimated 
ejection fraction value is calculated from the reconstructed 
ellipsoids as q and ISNR vary. 

The results of this simulation are given in Fig. 5, which 
shows the variation of the percent error in the ejection fraction 
estimate with q .  This percent ejection fraction error is defined 
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Note that the percent ejection fraction error is flat for a wide 
range of q even at high levels of measurement noise. At the 
highest noise level, it is possible to reduce the percent ejection 
fraction error by a factor of two by appropriate choice of 
q.  Thus, q may be effectively used to minimize the error 
introduced by dynamic model mismatch by varying the amount 
of smoothing introduced by the filter, though we do not in fact 
bother to do this in our use of real data to follow. 

C. Projection Geometry-A Sensitivity Analysis 

Finally, we investigate the sensitivity of the 3- and 2-D data 
processing approaches (described in Section 11-B) as the true 
projection geometry is varied. Both of these data processing 
approaches are based on an assumed projection geometry 
also described in Section 11-B. In this section, we investigate 
the error in the ejection fraction estimate introduced by the 
assumed projection geometries underlying both the 3- and 2-D 
processing of the projection data. 

The experimental procedure used for this sensitivity analysis 
is as follows. We generate computer-simulated dynamically 
evolving ellipsoids whose observations are taken as noiseless 
projections at a range of true projection geometries. For each 
of these true projection geometries, the noiseless observations 
are processed using both the 3- and 2-D assumed geometries. 
Static reconstruction is used to eliminate the uncertainty due to 
imperfectly known dynamics. The ejection fraction estimate is 
formulated for both methods and compared to the true ejection 
fraction. 

The computer-simulated ellipsoids are illustrated in Fig. 6. 
The parameters for these ellipsoids are chosen so that our 
experiment is a worst case sensitivity analysis in the phys- 
iological sense. That is, a real left ventricle is expected to 
be much less eccentric than the ellipsoids being considered 
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here; the real left ventricular dynamics are expected to display 
only a slight rotation instead of the gross rotation used here. 
The dynamics that relate the fully expanded ellipsoid and 
fully contracted ellipsoids (x( kma) and x(kmin)) consist of 
an isotropic scaling by 0.7368 and a rotation of 90" about the 
z-axis, yielding an ejection fraction of 0.60. 

The range of true projection geometries, which are used 
to generate the data (projections of the ellipsoid), consist of 
three projection planes which we denote { Ctl, Ctz, Ct3). The 
first two are given by the (orthogonal) xz- and yz-planes. The 
third plane is specified by (13) or equivalently by (14)-(16) 
with = 45' and 0" < 0 < go", which captures our prior 
belief that, in a real acquisition, the LAO image plane contains 
the greatest amount of variability. 

For the 3-D processing approach, the three views are 
processed together as a single reconstruction problem. Here, 
we assume a projection geometry described in Section 11-B 
and represented by the set of matrices {C,1, Cmp, Cm3} 
(as in (14)-(16) with @ = 0 = 45") or equivalently C, 
(as described in Section 11-A). Because the observations are 
noiseless, _a static rec_onstruction method is used which gives 
i ( k )  = (CKC,)-'C:y(k) where y(k) are the observations 
of the ellipsoid. From the reconstructed ellipsoids ?(kmax) and 
i (  kmin), the estimated ejection fraction is calculated using (1). 

For the 2-D processing approach, each view is processed 
individually. That is, the areas of the projections of x(kmax) 
and ~ ( k , ; , )  in each view are used to calculate the 2-D ejection 
fraction of that view. Then, the three 2-D ejection fractions are 
combined using (9) to obtain a 3-D ejection fraction estimate. 

The percent ejection fraction errors from this angle sensi- 
tivity analysis are presented in Fig. 7. For the 3-D processing, 
the results show that, for a wide range of true projection 
geometries, the error in the ejection fraction estimate is small, 
less than 10%. While not as impressive as the 3-D results, the 
2-D results show that the ejection fraction errors are less than 
12% for a wide range of true projection geometries. Since this 
analysis is a worst case study, in general, the 2-D processing 
will be less affected by variations than is indicated in Fig. 7. 

Iv.  APPLICATION TO REAL DATA 

In this section, our approach will be applied real data. 
Note, once again, that these approaches require as their inputs 
ellipses that have been extracted from the myocardial perfusion 
images via a preprocessing step. For this work, a very simple 
ellipse extraction routine is used (see [20] for details) and the 
measurement noise variance is assumed to be R = TI where 
T is chosen empirically. 

In addition, the outputs of the model identifier and smooth- 
ing filter are affected by the variance of the process noise, 
Q, assumed to be qI.  It would also be logical to use a value 
of q that is in the range that minimizes the effect of residual 
dynamic model mismatch for the given T ,  as was illustrated 
in Section 111. However, for this work, we use an empirically 
chosen value for q.3 Specific values for the parameters T ,  q used 

An alternative to these empirically chosen values for the parameters T ,  q, 
which control smoothing, is discussed in [21]. 

1 - - _  1 

Fig. 7. Worst case angle sensitivity analysis results. 

for each case are given in the respective section discussing 
that case. 

The ejection fraction calculated from myocardial perfusion 
images using our methods is compared to a "gold standard" 
(GS) ejection fraction obtained using MUGA images. Thus, 
the ejection fraction estimate based on myocardial perfusion 
images is evaluated by calculating the sample correlation? 
ps(x,y), with the GS value. 

A. 2 - 0  Processing 

In 2-D processing of the data, each view is processed 
individually. That is, a model identification scheme is applied 
to each view to determine which of three hypothesized models 
best approximates the true ellipse dynamics. Next, the model 
chosen by a simple vote of the outputs of the model iden- 
tifier for the three views is used in a Rauch-Tung-Striebel 
smoothing filter to reconstruct the underlying ellipses. From 
the reconstructed ellipses, an effective 2-D ejection fraction 
for each view is found. Then, using the formula given in (9), 
an estimate of the 3-D ejection fraction is calculated. 

The model identification scheme is implemented in the 
following way. For each of the three views, the input to the 
model identifier consists of the set of 16 ellipses extracted from 
the raw data for that view. The observations are of the ellipses 
themselves; therefore, the matrix C that specifies the projection 
geometry in (8) given by the identity. Three hypothesized 
models are used which yield hypothesized ejection fractions 
EF1 = 0.60, EF2 = 0.40, and EF3 = 0.20, respectively. The 
specific dynamics used for each of these hypothesized models 
are of the form of (17), where the parameters c, are chosen so 
that the time (i.e., frame) of maximal contraction matches the 
corresponding time determined by eye from the data (i.e., so 
end systole of the model matches end systole of the heart data). 
Once again, the model identifier is initialized as in (18) and 
(19). The measurement noise variance T is chosen empirically 

4Here, sample correlation coefficient is given as p s ( s ,  y )  = rov,(r.y) 
~ * , * ~ s . y  

and where cov,(z, y) refers to the sample covariance of .?: and y and u9 
are the sample standard deviations of s and y, respectively [22]. 
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to be 100. The value of q is set to zero to accentuate the 
difference between the three models. The dynamic model used 
for the smoothing phase is then chosen by a simple vote of the 
individual decisions of the model identifier for the three views. 

Next, the Rauch-Tung-Striebel smoothing filter for each 
view is implemented based on the dynamic model chosen 
by the model identifier phase. For the smoothing filter, the 
empirically chosen values of r / q  is 2. Again, the initialization 
of the smoothing filter is as given in (18) and (19). The 3-D 
ejection fraction estimate for each individual is obtained from 
the effective 2-D ejection fraction estimates using (9). Each 
2-D ejection fraction is obtained using (1) (with volumes 
replaced by areas). 

We begin by comparing the 2-D based estimated ejection 
fraction values to the GS ejection fraction values for each of 
14 patients. For the data presented in Fig. 8(a), the sample 
correlation coefficient is calculated to be ps = 0.9135. In 
addition, the 95% confidence region [23] is given as 0.7431 < 
p < 0.9727. These results can be compared to the traditional 
"static" estimate of ejection fraction which is calculated using 
only the ES and ED frames of the raw (unsmoothed) data. 
Ellipses are extracted from the ES and ED frames and the 
3-D ejection fraction estimate is calculated using (9). The 
correlation coefficient for this scenario is 0.7532. Thus, the 
RTS-based ejection fraction estimate is more robust to noise 
in spite of the simplified assumed dynamics. 

B. 3 - 0  Processing 

In this section, model identification and smoothing filter 
reconstruction are applied to directly combine the set of 2-D 
observations as projections of a single 3-D ellipsoid that 
approximates the left ventricle. Based on the reconstructed 
dynamically evolving ellipsoid, an estimate of the ejection 
fraction is calculated. For this processing, an assumed pro- 
jection geometry is used in which ANT and LAT views 
correspond to projections onto orthogonal planes and the LAO 
view corresponds to a projection onto a plane that is tilted by 
7r/4 from the plane that is orthogonal to both the ANT and 
LAT planes, as discussed in Section 11-B and shown in Fig. 2. 
The normal to this modeled LAO plane is given as in (13) 
with 0 = = 45". 

The model identifier processes the combined data set from 
all three views for each individual to determine which of 
the hypothesized models should be used to model the true 
dynamics in the smoothing filter-based reconstruction stage. 
The hypothesized models and filter initializations are analo- 
gous to those described in Section IV-A. The values of T and 
q are chosen to be 100 and zero, respectively. The Rauch- 
Tung-Striebel smoothing filter then uses the dynamic model 
chosen by the model identifier together with r / q  = 2. The 3-D 
ejection fraction estimate for each individual is then obtained 
from the volume change of these ellipsoids using (1). 

Fig. 8(b) compares the GS ejection fraction values and 
the ejection fraction estimates based on the 3-D dynamic 
approach. The sample correlation coefficient is calculated to be 
ps = 0.8527 with a 95% confidence interval of 0.5883 < p < 
0.9524. Again, these results can be compared to the "static" 

08 
- Best fit line 

Unit slope line _ _  
07- 

06- 

0'2 0'3 0'4 0'5 0'6 
Gold Standard 

(a) 

0.8 I 
- Best fit line 
- ~ Unit slope line /il 

0 O / '  1 

251 

7 

02V 0'0° 1 
a! 0'2 0'3 0'4 0'5 0'6 0'7 

Gold Standard 

(b) 

Fig 8 
2-D based EF estimates (b) GS versus 3-D based EF estimates 

Companson of GS and EF estimates for 14 pahents (a) GS versus 

ejection fraction estimate which is based on only ellipses 
extracted from the ES and ED frames of the unsmoothed 
data and the same assumed projection geometry. For this sce- 
nario, ps = 0.6981 which again demonstrates the robustness 
introduced by the RTS-smoothing. 

These results indicate that the 3-D processing did not 
perform as well as the 2-D processing, which seems coun- 
terintuitive. One explanation is that, in the 3-D processing, 
the interaction between the imperfectly known dynamics and 
the imperfectly known projection geometry may result in 
this greater error. In contrast, for the 2-D processing, the 
dynamics and projection geometry are handled independently. 
Further study with a larger sample size will be needed to fully 
understand this phenomenon. 

V. CONCLUSION 
This paper has outlined a model-based statistical approach to 

obtain a dynamic estimate of left ventricular ejection fraction 
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from a gated set of planar myocardial perfusion images. This 
approach was tested on simulated as well as real myocardial 
perfusion data. Although a relatively small sample size was 
used, the smoothing filter-based ejection fraction estimates 
showed a high degree of correlation with the GS ejection 
fraction estimates. 

Further studies might directly apply our dynamically based 
smoothing techniques to other imaging modalities (e.g., 
MUGA) to obtain ejection fraction estimates. In addition, 
more hypothesized models may be included in the model 
identification phase so that the assumed ejection fraction used 
in the smoothing filter-based reconstruction is closer to the true 
ejection fraction. Finally, a circular smoothing algorithm might 
be considered which incorporates the additional constraint that 
the ellipsoid estimate at initial and final points of the cardiac 
cycle should be the same; thus, capturing a true periodicity 
assumption on the cardiac dynamics. 
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