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Abstruct- A recently developed multiresolution estimation 
framework offers the possibility of highly efficient statistical 
analysis, interpolation, and smoothing of extremely large data 
sets in a multiscale fashion. This framework enjoys a number of 
advantages not shared by other statistically-based methods. In 
particular, the algorithms resulting from this framework have 
complexity that scales only linearly with problem size, yielding 
constant complexity load per grid point independent of problem 
size. Furthermore these algorithms directly provide interpolated 
estimates at multiple resolutions, accompanying error variance 
statistics of use in assessing resolutionlaccuracy tradeoffs and 
in detecting statistically significant anomalies, and maximum 
likelihood estimates of parameters such as spectral power 
law coefficients. Moreover, the efficiency of these algorithms 
is completely insensitive to irregularities in the sampling or 
spatial distribution of measurements and to heterogeneities in 
measurement errors or model parameters. For these reasons this 
approach has the potential of being an effective tool in a variety 
of remote sensing problems. In this paper, we demonstrate a 
realization of this potential by applying the multiresolution 
framework to a problem of considerable current interest-the 
interpolation and statistical analysis of ocean surface data from 
the TOPEXPOSEIDON altimeter. 

I. INTRODUCTION 

HIS paper describes and uses a new statistically optimal T approach to the interpolation and analysis of large, ir- 
regularly sampled geophysical data sets. The vehicle which 
we use to illustrate the methodology is the particular problem 
of estimating the shape of the ocean surface from satellite 
altimetry measurements. This application is of considerable 
current interest both because of its importance in global ocean 
modeling and climate studies and because of the relatively re- 
cent launch of the joint American/French TOPEXPOSEIDON 
altimeter [7], [ 161, [27], a satellite-based platform capable 
of measuring ocean height to an unprecedented accuracy of 
approximately 5 cm. 
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The availability of data of this quality and coverage makes 
it possible to address a variety of scientific questions ranging 
from producing regularly gridded maps of ocean height (to 
be used, for example, in global ocean modeling studies) 
to the accurate estimation of the spatial spectrum of ocean 
height variations. Achieving objectives such as these, however, 
presents daunting challenges to the data analyst, in particular 
in terms of the enormous size of the problems to be solved. 
This paper presents a methodology that permits the production 
of statistically optimal results, with computational loads that 
are extremely modest. 

The TOPEXPOSEIDON altimetry and ocean height anal- 
ysis problem encompasses many of the issues and char- 
acteristics of a broader class of geophysical data analysis 
problems that have motivated our work, and we have used 
a specific case study here to illustrate these issues as well as 
our methodology. Fig. 1 depicts a region of the northeastem 
Pacific from Hawaii to Alaska. Overlaid on this region is 
the distribution of TOPEXPOSEIDON satellite measurements 
[18] over a typical ten day cycle. Successive measurements 
along a track are separated by approximately 7 km or 0.06 
degrees; the spacing between adjacent tracks is approximately 
270 km. For many reasons gridded images of the ocean are 
required at fine scales, both in order to observe features of 
interest, and to produce numerical values compatible with fine 
scale ocean models. Even for the comparatively modest portion 
of the ocean shown in Fig. 1, we must estimate ocean surface 
heights at more than 100000 grid points based on roughly 
20000 altimetric measurements. For a full ocean basin, or 
the entire global surface, the problem is of truly formidable 
proportions. 

However the size of data analysis problems such as this 
is not their only significant challenge. First of all in many 
cases, including the one of interest here, significant spatial 
nonstationarities are present for several possible reasons: 

1) The sampling pattern of the data is frequently nonuni- 
form and irregular, including occasional periods of data 
dropout as shown in Fig. 1. 

2) The sensed phenomenon is itself nonstationary, exhibit- 
ing differing spatial scales and magnitudes of variabil- 
ity in different regions. Ocean surface statistics, for 
example, differ between regions containing vigorous 
currents such as the Kuroshio or the Gulf stream and 
those regions which are comparatively quiet such as the 
northeast Pacific. 
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Set of TOPEXPOSEIDON measurement tracks in north Pacific 

The quality of measurements may also be nonstationary. 
In particular, the TOPEXPOSEIDON altimeter provides 
direct measurements of the distance from the satellite to 
the ocean surface. What is actually desired, however, is a 
measurement of ocean height relative to the gravitational 
equipotential surface [22] known as the geoid; the ocean 
current field may be inferred from the derivative of this 
relative surface. The complex and nonstationary error 
structure of the geoid model [21] thus translates di- 
rectly into nonstationary errors in the corrected altimetry 
measurements. 

Such nonstationarities or irregularities in the data pattern 
present a major challenge [8], [32], as there is no regular 
structure that can be used to advantage. In particular Fourier 
methods, with their noteworthy efficiencies, cannot be applied 
directly or without significant approximations and idealiza- 
tions. 

Furthermore, in addition to the estimation of quantities such 
as ocean surface height, there are compelling reasons for 
desiring a characterization of the errors in these estimates. 
In particular, to assess the value of a set of estimates we must 
have a measure of their accuracy, requiring at the very least 
the calculation of error variances. Moreover, there are strong 
motivations for the characterization of the spatial correlation 
structure in the estimation errors. For example, the assimilation 
of ocean surface estimates into global circulation models [8], 
which effects a blending of the surface measurements and 
the underlying science, in principle requires the full specifi- 
cation of the error correlations so that accurate model/data 
combinations can be effected. 

In addition, error covariance calculations are useful for 
a variety of other scientific reasons. For example, geoid 
estimates have errors due to unresolved, spatially localized 
perturbations such as sea mounts or trenches. Such errors can 
manifest themselves as outliers in the data, or more precisely in 
the residuals (data minus estimates); the availability of error 
statistics permits the identification of statistically significant 
outliers and the estimation of localized geoid corrections 
implied by these residuals. 

However the brute-force explicit computation and storage of 
a dense 100 000 x 100 000 estimation error covariance matrix 
is entirely impractical. Moreover, other statistical calculations 
place equally severe demands on data analysis. In particular, 
an important problem in oceanography which has received 
considerable attention, but remains of current interest is that 
of estimating the spatial statistical structure of Ocean height 
variations--e.g., the structure of the spectral density of ocean 
height as a function of wavenumber. Frequently parametric 
models for such spectra are posited [8], but the statistically 
optimal estimation of these parameters, e.g., using methods of 
maximum likelihood estimation, and the associated specifica- 
tion of the accuracy in these estimates also present significant 
computational challenges. 

Finally an important characteristic of many remote sensing 
problems, including the one examined here, is that the phe- 
nomenon under study exhibits behavior across a broad range of 
scales. For example, global Ocean models predict behavior at 
(and interactions among) a vast range of spatial scales. Indeed, 
models for ocean height spectra [8] are typically described 
in terms of inverse power-law relationships. Such a spec- 
tral description corresponds directly to a scaling relationship 
between the expected amplitude and spatial scale of ocean 
features-i.e., it corresponds to a fractal model. Statistical 
modeling of the Ocean surface and the processing of ocean 
height data must account for this multi-scale structure. 

A number of smoothing and data assimilation algorithms 
(e.g., objective analysis [5], kriging [25]) have been developed, 
each of which has emphasized varying degrees of statistical 
structure or computational efficiency. The combination of 
the issues we have mentioned-problem size, nonstationarity, 
statistical characterization of errors, and accounting for corre- 
lation structures over a range of scales-has generally required 
that compromises be made in the statistical consistency and 
optimality of the results. The method that we describe and 
illustrate here avoids the need to make such compromises. 

The key to this new approach is that we begin by focusing 
explicitly on scale. In particular, rather than starting with the 
statistical description of the phenomenon to be estimated at 
a single, fine scale of resolution we describe its statistical 
structure at a hierarchy of scales. That is, we directly cap- 
ture the multi-scale correlation structure of the phenomenon 
through a scale-recursive statistical model, proceeding from 
coarser representations to finer ones. With such a model we 
can meet the challenges presented in all of the issues men- 
tioned previously. In particular, the algorithm that we describe 
directly deals with the issue of scale, has a total computational 
complexity per grid point independent of the size of the grid, 
can accommodate nonstationarities in the model of the phe- 
nomenon or the data, and allows the complete characterization 
of error statistics and the calculation of maximum likelihood 
parameter estimates. The results presented later in this paper 
for the processing of data over the region shown in Fig. 1 take 
seconds on a current generation single processor workstation. 
Moreover, our approach produces estimates at a hierarchy of 
scales, facilitating resolutionlaccuracy tradeoffs and the direct 
extraction of estimates of coarser scale features. Furthermore, 
although we do not use it here, this framework also supports 
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the fusion of data of differing resolution and coverage with no 
change in algorithmic structure. 

Section I1 summarizes the general problem of optimal 
estimation of interest here in order to establish terminology and 
to specify the precise statistical problems to be solved. Section 
I11 contains an outline of our multiscale estimation framework, 
a detailed description of which is contained in the appendix. 
Section IV describes the TOPEXPOSEIDON altimetric inter- 
polation problem and uses it to illustrate our methods and the 
types of scientific .questions which maybe addressed. Section 
V lists conclusions and summarizes ongoing efforts. 

11. STATISTICAL MODELS AND OPTMAL ESTIMATION 

The starting point is the basic problem of estimating a 
collection of random variables, represented abstractly by the 
vector z, based on a set of noise-corrupted measurements, 
represented by y:  

y = Cz + u E[u] = 0 E[wzT] = 0 E[wwT]  = R (1) 

where u represents the measurement noise or error. For the 
problem to be considered in Section IV the components of w 
are assumed to be uncorrelated but possibly with nonconstant 
variances-i.e., R is diagonal but not a multiple of the 
identity. The matrix G describes the nature of the measurement 
process. For the problems considered here, the components 
of z includes a full grid of ocean height values, and C is a 
"selection matrix" indicating which of the components of z 
are measured and which s; corresponds to each yj. 

We can view our estimation problem as estimating the 
deviations of z from its mean, thus for simplicity, we assume 
that z is zero-mean and has prior covariance 

For problems of substantial size, the explicit specification of 
the correlation structure of z through the full covariance matrix 
P, is neither feasible nor useful unless P, is extremely sparse 
with known structure--e.g., if P, is banded, implying only 
local correlation among the components of z. However, such 
sparse or banded structures are not particularly appropriate or 
useful for problems of interest here, as we are interested in 
representing phenomena possessing Correlations at many (and 
not just local) scales. Furthermore, as we will see, banded or 
sparse covariance structures do not necessarily lead to simple 
algorithms for statistical data analysis. 

Consequently we are led instead to construct an implicit 
model of the statistical structure of z of the form 

M Z = W  (3) 
P,-l = M T P p 1 M  W (4) 

where P, is the covariance of w. There are several reasons 
why representations as in (3) and (4) can be attractive. One 
is that processes with complex correlation structures can be 
represented in a very compact manner. For example consider 
the linear state space model 

z ( t  + 1) = A z ( t )  + w(t) E[s(O)wT(t)] = 0. ( 5 )  

If we construct the vectors 

zT = [s'(O>s'(l)s'(2) . . . ]  
WT = [sT(O)wT(O)wT(l) . . ' 1  (6)  

then we obtain a representation as in (3) with P, block 
diagonal and M lower bidiagonal: 

As we now show, it is the inverse of P,, which according to 
(4) involves only M and P,, that is critical in constructing 
solutions to optimal estimation problems. 

Specifically, the problem of interest here is the computation 
of the minimum variance linear estimate of z based on y, as 
well as a statistical characterization of the error Z = z - 3. 
There are numerous ways in which to represent the solution 
to this problem, but the one that is most convenient for our 
discussion is that given by the normal equations for this least 
squares problem: 

(8) 

This problem formulation and the normal equation solution 
are well known in many disciplines including geophysical 
problems of optimal interpolation [9], where,as we have indi- 
cated, approximations or suboptimal solutions have generally 
been required in order to deal with the issues we have 
described, To understand some of these, consider the formal 
explicit solution, 3, to (8) and the resulting error covariance Pj: 

(9) 
(10) 

Note that if P, has a sparse or banded structure, indicative 
of local correlations, this structure is not generally preserved 
either in the estimation gain matrix L (10) or in the estimator 
error covariance Pj:. Thus simple, local, smoothing algorithms 
(e.g., local least squares, local interpolation) while efficient 
computationally, generally represent a suboptimal approxi- 
mation to (10) even in situations in which they appear to 
be best matched, Le., when the field to be interpolated has 
local correlations. Moreover, a very important point is that the 
statistical structure of the resulting estimation error field, Pj:, is 
not local, despite locality in P,. Furthermore the calculation of 
Pj: is generally prohibitively complex (since, in particular, the 
inversion of the prior covariance P, is extremely demanding). 
Thus the use of simple local algorithms generally involves 
a compromise in statistical consistency, in the explicit and 
faithful use of prior statistical models and information, in the 
calculation of accurate error statistics, and in the ability to 
account for correlations at many scales. 

The situation looks much different, however, if we examine 
the normal equations (8) directly. If we begin with an implicit 
model for z as in ( 3 ) - 0 r  equivalently with a decomposition 
of P;' as in (4) with M and P;' having sparse or local 
structure-then from (10) we see that this structure is main- 
tained in PL1 and in the normal equations. In particular, since 

(PxP1 + CTR-'C)3 = CTR-ly. 

3 = Ly = P,CTR-'y 
PF' = P,J' + CTR-lC. 
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the measurements are point measurements of components of 
z with uncorrelated errors-so that C is a selection matrix 
and R diagonal-then CTR-lC is also diagonal, so that 
P;' = P;l+CTR-lC maintains the same structure as P;'. 

The significance of these observations is considerable. For 
example, for the time-recursive state space model (5) with 
local measurements, i.e., 

y(t) = H z ( t )  + v(t) (1 1) 

we have from (4) and (7) that P;' is block tridiagonal, 
a structure that is shared by P;'. As a consequence, the 
normal equations can be solved in an extremely efficient 
fashion, namely Gaussian elimination-also known as the 
Kalman filter [ 11-followed by back-substitution-known as 
the Rauch-Tung-Striebel (RTS) smoothing algorithm [23]. 
Furthermore in the process of performing these calculations 
we directly compute the diagonal elements of Pz-i.e., the 
estimation error covariance matrices for z ( t )  for each value 
of t. Moreover, perhaps less widely known, these calculations 
also yield a model for i without any additional work. In 
particular since P,T1 has the same structure as P;', we might 
hope to model Z as 

M i = W  (12) 

where W is block diagonal and h;r has the same structure as 
M in (7)-i.e., so that 2 has a time-recursive model as in 
(5). Such a model does in fact exist, and its parameters are 
directly and very simply computable from the original model 
(5) parameters and from the error covariances computed by 
the Kalman filter and RTS smoother. 

Furthermore, since we have a model (12) for the estimation 
errors in this time-recursive statistical estimation problem, we 
can use the measurement residuals 

y = y - (7% = ci + v  (13) 

to detect statistically significant deviations from the assumed 
statistics. In addition, the recursive Kalman filter algorithm al- 
lows whitening of the data y and thus the efficient computation 
of likelihood functions, leading to statistically optimal meth- 
ods for estimating parameters of the model (e.g., parameters 
embedded in M ,  Pw, C, and R). 

The critical question, then, is whether we can find analogous 
classes of models for phenomena that vary in space rather 
than time, i.e., models that have a similar set of properties 
and that also allow us to capture rich classes of spatial 
phenomena including those with multiple correlation scales. 
One class of such models that has been widely proposed used 
is the class of Markov random fields (ME'S) .  As discussed 
in [ l l ] ,  such fields have models as in (3) in which M is 
an elliptic (symmetric, positive definite) partial difference 
operator and where P, = M .  In this case P;' = M ,  
emphasizing the correspondence between models and inverse 
covariances. Furthermore such models can capture multiple 
correlation scales. Moreover kr = P;' in (10) is also an 
operator of the same structure as M so that subsequent 
data assimilation stages, in which the error statistics at one 
stage form the prior model for the next, face structurally 

Scale m=l 

Scale m=2 

Fig. 2. 
nodes on three different scales. 

Simple multiscale tree example showing the connections between 

identical estimation problems. The normal equations in this 
case correspond to an elliptic partial differential equation and 
the error covariance to the inverse of an elliptic operator. 
Consequently the required computations for estimation, error 
covariance calculation, anomaly detections, and likelihood 
evaluation are not simple and can in fact be prohibitively 
complex except in the case of stationary models and data (so 
that Fourier techniques can be applied). 

The next section describes an alternative to MRF's for the 
modeling of random fields that overcomes these difficulties 
through the use of scale-recursive models, permitting the 
realization of the full set of advantages found for the time- 
recursive state model (5). 

111. MULTIRESOLUTION MODEL APPROACH 

The multiscale models of interest in this paper and originally 
introduced in [3], [13], are scale-recursive models defined on 
index sets that are organized as multilevel trees. A simple 
example of such a tree for a 2-D random field is illustrated in 
Fig. 2. Here each level of the tree corresponds to a different 
scale of resolution in the representation of the random field, 
with coarser scales toward the top of the tree, and where 
the components of z correspond to variables defined at the 
various nodes of the tree. This modeling framework is more 
flexible than the figure might suggest however, because it is 
applicable to higher dimensional trees or to asymmetric and 
unusually shaped trees. This flexibility can be used to match 
the particular multiscale structure of the phenomenon being 
modeled or to capture local differences in scale structure (e.g., 
if the field has finer scale details in particular regions). For 
the purposes of this paper the quadtree structure of Fig. 2 will 
suffice. 

The specific model class of interest here is inspired by the 
successes of the time-recursive model (5). In particular, if 
s denotes any node on the tree and sy its parent, then the 
components of z at these nodes are related by a coarse-to-fine 
recursion 

z(s) = A(s)z(s?) + B(s )w(s )  (14) 

where W(S) is a white noise process with identity covariance. 
Moreover, the general measurement model associated with this 
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framework also allows measurements at multiple scales 

Y(S) = C(S)Z(S)  + 4 3 )  (15) 

where ~ ( s )  is white, with covariance R(s ) .  In the applica- 
tions considered here the measurements are all at the finest 
scale-i.e., at a sparse and irregular subset of nodes at the 
lowest level on the tree-and we will focus principally on the 
estimates at this finest scale as well. However, the statistical 
algorithm for the model (14) and (15) can handle data at mul- 
tiple resolutions and produces estimates (and error statistics) 
at all scales. 

Optimal estimation, error model characterization, data 
whitening and likelihood calculation have extremely efficient 
realizations for this class of multiscale models. These 
efficiencies are a result of the structure of the tree and the 
model (14) and (15) which leads to a divide-and-conquer 
structure for statistical analysis: conditioned on any node 
on the tree, each of the subtrees connected to this node are 
conditionally independent (for example, conditioned on the 
top node in Fig. 2, each of the four distinct subtrees below 
this node are conditionally independent). 

Thus for any node s the processing of the data in the subtree 
beneath it can be decomposed into independent processing of 
the data in each of the descendant subtrees. For example, as 
illustrated in Fig. 3, optimal estimation of z (Le., the collection 
of all Z(S)’S) based on y (all y(s)’s) can be implemented as 
two sweeps on the tree. The fine-to-coarse sweep generalizes 
the Kalman filter and results in the calculation at each node s 
of the best linear estimate of Z(S) based on all of the data in 
the subtree below s; next a coarse-to-fine sweep generalizes 
the RTS algorithm and produces the best estimate and error 
variances at every node based on all of the data. 

The resulting algorithm, which is described in detail in 
the appendix, involves only local calculations following the 
structure of the tree. Thus calculations for each node are 
performed once each on the upward and downward sweeps. 
Furthermore, if N denotes the number of nodes at the finest 
scale of the tree, i.e., the number of pixels at the finest scale of 
resolution, then the total number of nodes on the tree is $ N .  
Thus the total complexity of the algorithm is proportional to 
N ,  resulting in constant complexity per grid point independent 
of the size of the grid. Moreover, these same calculations yield 
a model for the error Z(s) which has a multiscale form [14], 
so that subsequent data assimilation stages can be carried out 
in exactly the same fashion. Specifically, 

P ( s )  = P ( S ~ ~ ) P ~ ’ A ( S ) P , ~ P - ~ ( S ~ ~ S ) Z ~ ( S ~ )  + Cj(s) (16) 

where P, is the prior covariance at node s and P(s(cr) 
represents the‘error covariance of ~ ( s )  given all observations 
in the subtree below node a. As detailed in the appendix, 
these error covariances are also calculated via scale-recursive 
generalizations of the Kalman filter Riccati equation and RTS 
error covariance calculation. Once again these algorithms have 
constant per pixel complexity. Furthermore, a closely related 
algorithm based on the Kalman filter allows us to whiten the 
data and compute likelihoods in an equally efficient fashion 
~ 3 1 .  

Scale m=l 

Scale m=2 
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Fig. 3. 
pass, (b) downward pass. 

Order of processing of nodes in the multiscale framework. (a) Upward 

In addition to the computational efficiencies admitted by 
these multiscale models, they also can be used to capture 
the statistical structure of rich classes of phenomena. For 
example, in [ 121 it is shown that multiscale models as in (14), 
(15) can be constructed to represent phenomena frequently 
modeled using MRF’s. Of more direct importance here is 
the fact that this multiscale framework is directly suited to 
capturing phenomena that display a multitude of correlation 
scales. Of particular interest here is the class of so-called l/f 
models [30], i.e., processes that display l/fp-like spectra over 
a significant range of frequencies. Such models are closely 
related to fractals and fractional Brownian motions [31] and 
are widely used to describe a vast array of natural phenomena. 
In particular, such models are frequently used to describe 
the spatial structure of the ocean surface. For example, Fig. 
4 (from [SI) shows a typical power spectrum for the ocean 
surface, modeled as a l/fp-process with different values of p 
over different wavenumber intervals. 

Phenomena with 1 lfp-like spectra display so-called self- 
similar scaling properties in that the variability of such a 
phenomenon scales geometrically with the spatial resolution 
at which the variations are measured. Such scaling rules are 
captured very simply in our multiscale model through the 
imposition of a scaling relationship in the gain B(s )  in (14). 
For example, if we let m ( s )  denote the scale of a node s on 



FIEGUTH ef a[.: MULTIRESOLUTION OPTIMAL INTERPOLATION AND STATISTICAL ANALYSIS 285 

lo2 

Typical TIP Periodogram 
10' 

10-21 I 
10.' 1 o.? 1 o-2 10.. 

Wave Number (/km) 

Fig. 4. Rough characterization of global power spectral density (from [SI). 

the tree of Fig. 2-i.e., the level corresponding to that node, 
with m(s)  = 0 at the coarsest scale and m(s) increasing as 
we move to finer scales, then the choice 

displays the same scaling behavior as that implied by a l / fP 
spectrum. [31] Changes in scaling laws, corresponding for 
example to the changes in slope in Fig. 4, can be captured 
simply by changing the value of p over different ranges of 
scale. Local changes in scaling structure can also be easily 
accommodated by local modifications of B( s). 

IV. RESULTS 

A. Multiscale Model Selection 

The experimental results of this section are based upon one 
year of TOPEXPOSEIDON altimetric data [lo]. In addition 
to subtracting the geoidal reference field [21], [22], the usual 
corrections are applied to the data: ionospheric [ 171, tidal [24], 
orbital [ 181, and atmospheric pressure loading. 

With the multiscale framework outlined in the previous 
section, a first task is the determination of the order of the 
model (Le., the dimension of ~ ( s ) )  and the specific model 
parameters (e.g., the A(s) ,  B ( s ) ,  C(s) values of (14) and (15)). 
For the purposes of this paper, z(s) is a scalar representing the 
ocean height at the particular scale and position corresponding 
to node s. The determination of the scalars A ( s ) ,  B(s )  is 
then made by choosing these parameters to match the ob- 
served spectral characteristics of TOPEXPOSEIDON data. 
As we have mentioned previously, it is possible to use a 
more sophisticated statistical procedure to determine optimal 
estimates for these parameters, and such an investigation, using 
the properties of our multiresolution models to advantage, is 
currently underway. However, performing spectral matching 
is a widely-used method (e.g., [8]), and for the purposes of 
this paper this simpler fashion is sufficient. 

Fig. 5 shows a periodogram determined from 
TOPEXPOSEIDON data. The top spectrum of Fig. 5 

t 
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lo2: 
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10" 
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, , , , , , , , Synth,esized Spectym, , , , . , , , , , , , 

10'1 I 
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Fig. 5 .  
data. Bottom: Power spectral density from simulations of multiscale model. 

Top: Empirical power spectral density based on TOPEXPOSEIDON 

falls as l/f2, which from (17) leads to choices of the 
multiscale model parameters of the form 

A ( s )  = 1 B(s)  = B,2-m(")'2. (18) 

This then gives us the correct spectral roll-off or slope for 
the spectrum of our multiscale process. The corresponding 
offset or power level of our multiscale model can then be set 
by choosing Bo to match the TOPEXPOSEIDON spectrum. 
The resulting value, Bo = 35 cm, corresponds to the power 
spectrum shown in the bottom half of Fig. 5. The resulting 
multiscale model corresponding to (14) is 

(19) 

That is, the aggregate surface height of the ocean at some po- 
sition and scale equals the aggregate height of its parent node, 
i.e., at the same spatial position but at a coarser scale, plus 
a perturbation offset whose variance decreases geometrically 
with scale. 

z(s) = z(sy) + 35.2-"(")/2w(s). 
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The prior variance P, of ~ ( s )  at each node of the tree can 
be determined from a recursion obtainable directly from (14): 

The recursion is initialized with the prior variance Po of ~ ( 0 )  
at the root node of the tree. Roughly speaking this variance 
can be thought of as specifying the prior level of uncertainly 
in the aggregate mean height of the ocean. In this paper, in 
order to avoid biasing our estimate of overall ocean height, 
we have set Po is set to be very large ( d o 5 ) .  

The measurement model is straightforward, since our ob- 
servations are direct measurements of the { ~ ( s ) }  on the finest 
scale of the tree, Le., C is a selection matrix. If the finest scale 
occurs at scale m ( s )  = M, then (see (21), shown at the bottom 
of the page). The final parameter that needs to be specified 
is the measurement noise variance R(s) .  In particular, in this 
study we have accounted for two significant sources of error 
in the measurement data: 

The error in estimating the distance from the satellite to 
the ocean surface, assumed to be 5 cm white Gaussian 
noise. 
The error in the geoid model, which manifests itself as 
an error in the geoid-corrected TOYEXPOSEIDON data. 

The highest quality geoid models currently available [ 191, 
[21], are quite effective at capturing large scale and moderate 
scale geoid fluctuations, but are less accurate in regions of 
sharp local changes. Such a result is not surprising: geoid 
models are typically constructed as truncated spherical har- 
monic expansions, which can exhibit larger errors and Gibbs- 
like phenomena near abrupt changes. Furthermore, navigation 
errors in the satellite lead to errors in registering satellite 
measurements with points on the earth, and thus in areas of 
steep geoid gradient, such registration errors lead to greater 
uncertainty in the geoid reference field than in other regions 
in which the geoid is smoothly varying,. As a result, altimet- 
ric measurements in the vicinity of steep geoid slopes are 
determined relative to a poor geoid reference and therefore 
represent a less accurate assessment of the ocean surface 
height. Consequently we have used the following measurement 
noise variance model: 

R(s )  = ( 5 ~ ~ 1 ) ~  + q5(Geoid Slope) (22) 

where $0 is an increasing function (to be detailed in the next 
section). 

Finally, it is important to make a comment about one of 
the consequences of using a simple scalar version of our 
multiscale model. In particular, since the spatial position of 
the multiscale tree on the ocean is somewhat arbitrary; that is, 
there is no particularly natural orientation for the multiscale 
tree, we will want to make sure that the estimates produced 
by our algorithm are insensitive to the precise positioning of 
the tree. However, consider a node s PO a relatively coarse 
scale on the tree. Since the state at each node is a scalar, 

the correlation between the four children of node s, each 
of which still represent relatively coarse representations of 
ocean height, is captured by only one degree of freedom. 
In particular, the finer scale decompositions of each of these 
four descendants proceed completely independently, and as a 
consequence artifacts may appear along coarse tree boundaries 
due to inadequate correlation. There are several ways in 
which to avoid these artifacts. One of these involves using 
higher-order models (i.e., ~ ( s )  becomes a vector at each 
node), as outlined, for example, in [13]. A second approach 
involving trees in which the nodes at a given scale represent 
aggregate values over overlapping regions is currently under 
development [6]. In this paper, we use a simpler method that 
again is adequate for our purposes. Specifically, we compute 
ocean surface estimates for each of ten tree positions (each 
shifted with respect to the others) and average the results. It 
should be made clear that this is not at all like spatial low-pass 
filtering or interpolation, as strong nonstationarities, such as in 
the quality of the data as measured by R(s), are maintained. 

B. Gridding Results 

Given a collection of observations and the multiscale model 
as defined in the previous section, the multiscale estimation 
algorithm (detailed in the Appendix) permits rapid computa- 
tion of multiscale estimates, estimation error variances, and 
measurement residuals. Each of these computations will be 
explored in the ocean altimetry context below. 

1) Multiscale Estimates: A sample map of ocean surface 
estimates, taken from the finest scale of the tree, is shown 
in Fig. 6. This map is based upon a single repeat cycle, or 
ten days, of data (about 20000 data points). The 250000 
estimates and associated estimation covariance information 
were computed in less than one minute on a Sun Sparc- 
10 (the map is based on ten trees of estimates, each tree 
requiring 5 seconds of computation time). Although Fig. 6 
shows estimates on one scale only, the one minute of computer 
time produces estimates and error variances on all scales of 
the tree. 

The ocean height variations shown in the figure are con- 
sistent with the known large-scale oceanographic behavior of 
the region (that is, a predominant gradient in the north-south 
direction with surface height offset on the order of one meter 
[IO]). Moreover, the estimates such as those shown in the 
figure offer far higher resolution than has heretofore been 
available ( e g ,  [2]). It is this very leap in resolution that makes 
the quantitative assessment of our results difficult-we have 
come across no other altimetric maps of sufficient resolution 
to compare with our plots. For example, Fig. 7 [lo] shows an 
ocean altimetric map for the same region of the ocean and the 
same period of time as we have considered. The figure, typical 
of the methods used by oceanographers, is based upon gridding 
followed by spatial filtering. Thus the thorough validation 
of the enhanced resolution results provided by our method 

0 m( s) < M or X ( S )  does not correspond to a TP observation. 
1 m( s )  = M and z(s) corresponds to a TP observation point. C(S) = 
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will require alternate methods such as integration with global 
circulation models. a problem that remains for the future. 
Nevertheless, the ability to produce such estimates efficiently 
is itself of significance. 

2) Multisccilt. Error Wwiance.s: Estimation error variances 
corresponding to Fig. 6 are shown in Fig. 8. These values 
are based on the same ten day set of measurements as for 
thc estimates just discussed; the distribution of measurement 
dropouts along the satellite tracks in this data set can be 
inferred from Fig. I .  As before, the results are computed as 
the average over ten niultiscale trees, still within the same 
one minute of computer time in which the estimates were 
computed. 

Because of the spatially varying uncertainty in our mea- 
surements due to geoid model error, the occurrence of data 
dropouts, and the irregular pattern of data collection, we would 
expect that the uncertainty pattern in the optimal estimate of 
our ocean height map would be highly variable and would, 
to some extent, reflect these features. In particular, observe 
that the regions of lowest uncertainty (the lightly shaded 

-3lgl:uda <Eas?r 

Fig. 8. 
regions represent greater uncertainty. 

Estimation error variances based on one repeat cycle of data; darker 

regions in the figure) correspond to the points at which 
we have satellite measurements; a careful inspection of the 
figure will also reveal occasional darker breaks along these 
lines, corresponding to data dropouts. In addition, because 
of the spatially-varying noise model, the measurements near 
the Aleutian and Hawaiian chains (which induce a significant 
geoid gradient) are modeled as being noisier, resulting in 
elevated covariance values. The large region of uncertainty 
at the top of the figure is due to the Alaskan land mass, over 
which no oceanographic measurements are taken. 

Specific off-diagonal terms in the error covariance matrix 
may also be computed using (16) with equal computational 
ease (as compared to other approaches which would require 
the impractical calculation of the full error covariance matrix, 
containing z lo1" elements). For example, by computing error 
covariances between a large ensemble of tree node5 (here 50 
000 pairs of nodes, randomly positioned in longitude) one can 
determine averaged correlation coefficients in our estimation 
error as a function of longitudinal separation, as shown in Fig. 
9. 

3)  Multiscule Model Heterogeneities: One of the draw- 
backs with certain accelerated methods, such as those based 
on FFT's, is the need for stationarity or uniformity of the 
phenomenon being modeled. In contrast, the multiscale 
framework employed in this paper allows us to incorporate 
nonstationarities without sacrificing computational efficiency. 

Consider, for example, the Kuroshio current in the north- 
west Pacific off the coast of Japan. Due to the strength 
of this current, the gradient of the ocean surface in the 
neighborhood of the Kuroshio is approximately four times 
larger [28] than in relatively quiescent regions (the Pacific 
northeast, for example). To compensate for this effect, one 
can modify (18) by increasing those process noise values on 
those multiscale tree nodes which overlap part of the Kuroshio. 
Such a process noise is highly nonstationary, and by (20) 
implies a nonstationary prior covariance model. Since the 
adjustments to the process noise as discussed above remain 
compatible with the multiscale framework of (14). (1 .3 ,  not 
only does our approach remain efficient in the face of such 
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Fig. 10. Estimates of ocean elevation in the northwest Pacific using a 
nonstationary model accounting for increased surface gradients in the vicinity 
of the Kuroshio. 

heterogeneities, but the increase in computational burden over 
the homogeneous case is essentially nil. 

Figs. 10 and 11 show estimates and error variances re- 
spectively for the northwest region of the Pacific, using a 
heterogeneous process noise model as detailed above. The 
distribution of error variances show the combined effects of 
irregular spatial sampling by the satellite, loss of satellite 
measurements over land (Japan), increased prior uncertainty 
over the Kuroshio, and nonstationary geoid-model error. For 
purposes of comparison, Fig. 12 shows the differences in 
the altimetry estimates produced by models with and without 
Kuroshio compensation. 

4 )  Calculation of Measurement Residuals: The examina- 
tion of measurement residuals, the differences between 
measurements and the corresponding estimates, serves to 
test the validity of our multiscale models. In particular, by 
normalizing these residuals with respect to their expected 
standard deviations one can isolate statistically significant 
outliers. Such an approach may be used to argue the inclusion 
of the geoid slope dependent term in the measurement error 
(22) .  Fig. 13 shows the distribution of statistically large 
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multiscale model and a model accounting for the presence of the Kuroshio. 

Differences (in cm) in the estimates produced by a homogeneous 

residuals, calculated using a simple measurement noise model 

~ ( s )  = ( ~ c m ) ~  
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that is, a noise model which does not take any geoid model' 
errors into account. Fig. 13 also plots the geoid gradient; the 
correlation between significant residuals and steep geoid slope 
is unambiguous, and argues in favor of a geoid slope-corrected 
measurement noise model. As an additional comparison, the 
same locations of large residuals are shown superimposed on 
a plot of ocean bathymetry contours (the shape of the ocean 
bottom) in the bottom half of the figure. To the extent that 
bathymetry features are responsible for locally steep slopes in 
the geoid, the residual-bathymetry correlation does not come as 
a surprise. Such residual-geoid correlation immediately moti- 
vates the development of adaptive models to estimate the geoid 
or locate unknown bathymetric features: the development of 
such models is underway. 

Fig. 14 plots root mean square estimation residual mag- 
nitudes as a function of geoid slope. This figure not only 
convincingly demonstrates the dependence of the residuals on 
the geoid gradient, but also gives a quantitative form for the 
geoid-slope dependent term in the measurement noise model 
(function @ ( )  of (22)) used for the other results in this section. 
Such a heterogeneous set of measurement noise variances may 
be used with no appreciable increase in computational burden 
(just as before, with the heterogeneous process noise model 
for the Kuroshio). 

V. CONCLUSIONS 

We have demonstrated the application of a highly efficient 
multiscale estimation framework to the problem of ocean 
altimetry estimation based on irregularly sampled satellite 
measurements. A number of significant difficulties which have 
led to significant suboptimalities and approximations in many 
other estimation algorithms are resolved by our approach: the 
multiscale framework presented in this paper possesses the 
efficiency to deal with truly enormous, possibly nonstationary, 
problems, computing both estimates and error variances with 
relative computational ease. Furthermore the concept of scale 
is made explicit, permitting the explicit characterization of 
phenomena possessing interactions across a number of scales. 

Although throughout this paper the ocean altimetry applica- 
tion has been used as a vehicle for demonstrating the use of the 
multiscale framework in such a modeling context, the success 
of the application motivates many further possible applications 
as well as extensions within the current context. With respect 
to the latter, we can point to several problems of considerable 
scientific interest, including the following: 

The distribution of measurement residuals (Fig. 13) 
demonstrates clearly the presence of geoid error as well 
as suggesting a way in which to correct for it and thus 
provide local corrections to our estimate of the geoid. In 
particular, it is possible that joint estimation of the geoid 
and ocean height may simultaneously improve estimates 
of both of  these quantities. 
The precise shape of power spectrum of the ocean remains 
a matter of current scientific interest. Multiscale likeli- 
hood methods [ 131 provide an efficient and statistically 
rigorous machinery for examining problems of identifying 
the statistical structure of random fields, and their use 

Geoid Slope w6* Large Realdual Overlay 

! Ciqitcdt I L  as!? 

(b) 

Fig. 13. Overlay of geoid gradient map (in (a)) and of ocean bathymetry 
contours (in (b)) with the distribution of locations of large residuals; regions 
of lighter shading represent steeper geoid gradient. 

should be of value in assessing the nature of the ocean 
spectrum. 

In addition there are a number of extensions of our multi- 
scale modeling framework under investigation including the 
development of higher-order methods for estimating both 
surface height and surface gradients (a problem of independent 
interest in surface reconstruction problems in computer vision), 
the development of multiresolution methods simultaneously 
in space and time, and the development of models involving 
overlapping regions at each scale, as mentioned in the Section 
IV. 

VI. APPENDIX-ESTIMATOR DETAILS 
This appendix describes the algorithm that implements 

our multiscale estimation scheme. The description below is 
complete but terse; interested readers are referred to [3] ,  [4], 
[ 131, for a more thorough development. 

The multiscale smoother is basically the same as the Rauch- 
Tung-Striebel smoother operating in one dimension (along 
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Fig. 15. Simple multiscale tree demonstrating node nomenclature. 

scale), with the addition of a merge operation, that com- 
bines the information of multiple child nodes into one parent 
node (upwards pass), and a split operation, which distributes 
information from a parent node to its multiple child nodes 
(downwards pass). 

A certain amount of notation is required in order to describe 
the relative positions of state nodes on a tree; Fig. 15 shows 
the various relations: 

S an abstract index for identifying nodes on the 
tree 
the raising operator; Le., s’y is the parent of s 
the sibling operator; Le., s s  is the sibling node 
next to s 
the lowering operator; i.e., sun  is the nth child 
of s 
the order of the tree; Le., the number of 
descendants of each parent 

~ 

Y s 
a! 

4 

Note that operators can be cascaded, e.g., s$az. The terms 
“upwards” and “downwards” are used with respect to the tree 
of Fig. 15; that is “upwards” implies a movement toward 
coarser scales, and “downwards” toward finer scales. 

The tree process and observation relations are described as 
follows: 

where the process noise satisfies 

W ( S )  N N(0, I )  E [ w ( s ) w ( ~ ) ~ ]  = I6,,t (26) 

and. with a prior covariance at the root node 

5,  = 5(0) N N(0, Po). (27) 

From [4], corresponding to any choice of downwards model 

5(s’y) = F ( s ) z ( s )  + w(s) (28) 
Y/(S) = C(S)Z(S) + 4 s )  (29) 
F ( s )  = PsyAT(~)P, - l  (30) 

E [ G ( ~ ) ~ ~ ( ~ ) ]  = P,?(I - A ~ ( ~ ) P , - ~ A ( ~ ) P . ~ )  (31) 
= Q ( S ) .  (32) 

in (24), we have the following upward model 

P, is the prior variance of the state ~ ( s ) .  To make the estimator 
equations more compact, additional notation is required at this 
point: 

Y, = {y(a)laisadescendantof s} (33) 

(34) 
(35) 
(36) 
(37) 

i ( a l s )  = E[z(a)la E Y, u y(s)] 

P(als+) = E[z(a)lu E Y,] 
P(als) = Cov[z(a) - i(als)] 

P(als+) = Cov[z(a) - P(als+)]. 

The algorithm now proceeds in three steps, outlined below. 

A. Initialization 

At each leaf node s, assign the following prior values: 

P(sls+) = 0 
P(s)s+) = P,. 

(38) 
(39) 

B. Upward Sweep 

The upward sweep operates very much like a Kalman filter 
operating along scale, with the addition of a merge step. The 
Kalman filter update step is performed at all nodes: 

~ ( s I s )  = P ( s ~ s + )  + K ( s ) [ Y ( s )  - C(S)P(S~S+)]  (40) 
(41) 

(43) 

The Kalman filter prediction step is applied at all nodes 
except for leaf nodes (which were initialized as outlined 
above): 

P(sls) = [ I  - K(s)C(s)]P(sls+) 
K ( s )  = P(sJs+)CT(s)V-l(s) (42) 
V(s) = C(s)P(s~s+)CT(s)  + R(s ) .  

i(slsa.;)  = F(sa;)P(sai)sa.;) (44) 
P ( s ~ s c I ~ )  = F(S~~)P(S~;~SCI~)F’(S~~) + Q(scY;). (45) 

Finally, at all nodes except leaf nodes, the merge step 
combines predicted estimates from offspring (1 - . . q )  into a 
single prediction to be used in the update step 

4 

?(s~s+) = P(s~s+)  P - ’ ( S ~ S ~ ~ ) ~ ( S ~ S C X ; >  (46) 
i = l  

r 0 1-1 

1 P(++) = (1 - q)P,-l + P-l(slsa;) . (47) I i= 1 
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C. Downward Sweep 

The termination of the upward sweep gives the smoothed 
estimate ?(O) = k(Ol0) at the root node. The remainder of 
the smoothed estimates are found by propagating information 
back down the tree 

P“(s) =P(sIs) + J(s )[P”(sy)  - P(syls)] 
P”(s )  =P(s l s )  + J(s)[P“(sT-y) - P ( s y l s ) ] J T ( s )  (49) 

J ( s )  = P(sl.)FT(s)P-l(srls). (50) 

(48) 

The smoothed measurements are given by P”(s); the corre- 
sponding estimation error variances are given by P”(s). Cross 
covariances are not computed explicitly, rather the means for 
their computation is implicit (although by no means obvious) 
in the above algorithm. The multiscale form of the smoothing 
error [14] is as follows: 

? ( s )  = P ( s ~ s ) F ~ ( s ) P - ~ ( s Y I s ) ~ ” ( s Y )  + a(s )  (51) 
P ( S )  = x ( s )  - x ” ( s )  (52) 

where w(s) represents white noise. 
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