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III. CONCLUSION 

We have shown for symmetric modular sources the existence 
of a sequence of block codes Bn of fixed rate R > R(D) whose 
average distortions pn(Bn) converge to D at a doubly exponential 
rate in block length n. This generalizes the results of Omura 
and Shohara [5] to context-dependent fidelity criteria of local 
span. 
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Estimation and Detection of Signals in Multiplicative Noise 
ALAN S. WILLSKY, MEMBER,  IEEE 

AMP&-We consider a class of matrix signal processes that are 
received in the presence of multiplicative observation noise. By examining 
the differential version of the observation, we are able to derive finite- 
dimensional optimal detection-estimation equations that involve a linear 
filter with gain computed on-line using the incoming observations. An 
example involving the detection of an actuator failure on a rotating rigid 
body is considered. 

I. INTRODUCTION 

Kailath and Duncan [l ]- [3] and Lo [4] have obtained solu- 
tions for rather general classes of continuous-time detection 
problems. These solutions require the explicit calculation of the 
conditional expectation of the signal process given the observa- 
tions, and this calculation cannot, in general, be reduced to the 
solution of a finite-dimensional set of ordinary stochastic dif- 
ferential equations (which then presumably could be solved 
on-line, perhaps with the aid of a digital computer). It is thus of 
interest, from the point of view of practical implementation, to 
understand the structure of the continuous-time nonlinear 
estimation-detection problem in greater detail and, in particular, 
to uncover classes of problems for which finite-dimensional 
solutions are possible. 

The linear-Gaussian case is the best known example of an 
estimation-detection problem for which we have a finite- 
dimensional solution. In addition, Lo [4] has pointed out an- 
other class for which he obtains finite-dimensional solutions 
(briefly described in the following). In this correspondence we 
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describe yet another class of problems for which finite-dimen- 
sional solutions are possible. The solution here is highly non- 
linear in nature and possesses a rather interesting structure. 

Recently, a great deal of effort has gone into the analysis of 
bilinear stochastic systems [4]- [8], and finite-dimensional 
solutions have been obtained in certain cases. Lo [4] has con- 
sidered a class of estimation and detection problems involving 
the injection of nonlinear signal and noise processes into Lie 
groups via right-invariant equations (see the next section). After 
the construction of an inverse to the injection mapping, Lo 
applies the result of Kailath and Duncan to obtain the solution 
to the detection problem in terms of the conditional mean of the 
signal process. Again this solution cannot be realized, in general, 
by a finite-dimensional set of equations; however, by con- 
sidering a special case (right-invariant bilinear signals with 
Gaussian driving terms), Lo obtains a finite-dimensional solution 
consisting of a nonlinear preprocessor (to invert the injection 
mapping), followed by a Kalman-Bucy filter (with precomputed 
gains) and the likelihood ratio calculation. 

In this correspondence we consider another class of estimation- 
detection problems on Lie groups for which one obtains 
finite-dimensional optimal solutions. These problems involve 
observation noise that enters multiplicatively, and the particular 
formulation is motivated by an attitude estimation-inertial navi- 
gation problem described in Section III. By considering the 
differential forms of the hypotheses, we obtain equivalent 
hypotheses that involve bilinear equations that are neither right- 
nor left-invariant. Following the application of the inverse 
injection procedure described by Lo [4], we obtain equivalent 
vector space hypotheses. Analysis of these hypotheses leads to a 
finite-dimensional solution consisting of anonlinear preprocessor, 
followed by a nonlinear filter made up of a Kalman-Bucy flter 
with gains that must be computed on-line using incoming measure- 
ment values, followed by the likelihood ratio calculation. 

II. MAIN RESULT 

Let G be an n-dimensional matrix Lie group of N x Iv 
matrices with associated Lie algebra L having Al,. . . ,A, as a 
basis (see [4]-[7] for a discussion of the relevant aspects of Lie 
theory). Consider the processes x E Rk, y E Rn satisfying 

d-(t) = F(t)x(t) dt + G(t) dw(t) (0 

where w is an m-dimensional Brownian motion independent of 
x(0) with E[dw(t) dw’(t)] = Q(t) dt. We inject y into G via a 
right-invariant bilinear equation [4]- [6] 

dY(t) = Ai n(t)] y(t)- (3) 

The reason for calling this equation right-invariant comes from 
the fact that the process Y(t) = Y(t)D also satisfies (3) (here D 
is an arbitrary matrix). Let v be an n-dimensional Brownian 
motion, independent of X, with E [dv(t) dv’(t)] = R(t) dt. We 
inject v into G via a left-invariant bilinear stochastic equation 

dV(t) = i Af dvi(t) + i f R,j(t)A,A, dt 
I 

. (4) 
i=l i=l j=l 

We define two hypotheses on G 

HI.: M(t) = Y(t)V(t) (5) 
HOG: M(t) = V(t). 16) - * 



CORRESPONDENCE 

The problem is to determine the likelihood ratio for these two 
hypotheses and to display the associated filtering equations that 
arise. Here Y should be interpreted as the signal process and V 
as observation noise (see Example 1 in Section III for motivation 
for this formulation). 

Computing the differential forms of the hypotheses, we obtain 

HIG: dM(t) 

1 M(f) 

2 Ai dvi(t) + 2 t R,j(t)AiA, dt 1 0 
i=l i=lj=l 

H OG: dM(t) 

i Ai dvi(t) + e i Rij(t)AiA, dt 1 . (8) 
i=l i=l j=l 

Note that dM in (7) is neither left- nor right-invariant unless G is 
Abelian, in which case our problem reduces to one considered 
in [4] for which the optimal esti .mation-detection system con- 
sists 0 fa nonlinear preprocessor followed by a linear filter. If 
G  is not Abelian, the solution is somewhat more complicated 
but still is finite dimensional in nature. We  first invert the injec- 
tion procedure as described in [4]. Premultiply (7) and (8) by 
M-l(t). Recalling [5] that X-~AXE L, for all X E G, A E L, 
we have transformed (7), (8) to equivalent hypotheses on L, 
which when coordinatized using the basis Al,. l  .,A,, take the 
form 

HIL: dz(t) = H(M(t),t)x(t) dt + dv(t) (9) 

HoL: dz(t) = dv(t) w 

where H(M(t),t) is an n x k matrix that depends on M(t). 
This matrix can be computed as follows: write 

M-‘(t)ArM(t) = n jxl YijC"Ct)lAj* (11) = 

Then it is easy to show that 

where the iJ’th element of F  is yij. Note that H explicitly depends 
on M  unless G is Abelian. Also, H can be computed with relative 

r ease (see the next section). 
Since M(t) is known at time t, (9) represents a t‘conditionally 

linear” hypothesis. Thus one has that the optimal estimate of x 
given (9) can be computed by a Kalman-Bucy filter with optimal 
gains and covariance computed on-line using incoming values of 
M  and z (see [8] for details): 

di(t 1  t) = F(t)a(t 1  t) dt + K(t 1  t)[dz(t) 

- H(M(t),t)R(t 1  t) dt] (13) 

P(t 1  t) = F(t)P(t 1  t) + P(t 1  t)F’(t) + G(t)Q(t)c’(t) 

- K(t 1  t)R(t)K’(t 1 t) (14) 

K(t 1  t) = P(t 1  t)H’(M(t),t)R- l(t) (15) 

(it should be noted that an example of a scalar discrete-time where LR, is computed by substituting Ri(t I t) into (16). Here 
system for which the optimal filter requires on-line solution of &(t I t) is the conditional mean of x(t) given zt, assuming Hz 
the Riccati equation is reported in [12]). The likelihood ratio holds. The equations for R1 can be easily derived (see [8]; note 
LR(t I t) for hypothesis HI over Ho, given observations up to that for i = 1 we must augment the state with the bias e). 

time t, is then given by [l ]-[3] 

LR (t ] t) = exp R’(s 1 s)H’(M(s),s) 

. R-‘(s)H(M(s),s)g(s 1 s) ds 

s 

t 

+ R’(s 1 s)H’(M(s),s)R-l(s) dz(s) . (16) 
0 I 

III. Two EXAMPLES 

Example I: Consider the Lie group SO(3) of all 3  x 3 orthog- 
onal matrices with positive determinant. The associated Lie 
algebra has the basis 

0 i 1 

-1 0 

A3 = 0 0 0 0. 1 0 

Suppose x E R3 satisfies one of the two hypotheses 

(17) 

and 
Ho: dx(t) = f(t) dt + dw(t) (18) 

HI : dx(t) = t dt + f(t) dt + dw(t) 

where f is deterministic and c is a Gaussian random vector 
independent of x(0). 

The x process is injected into SO(3) via (3) with y = x and 
n = 3. If we think of Y as a direction cosine matrix representing 
the orientation of a rigid body with respect to inertial space, 
then x represents the angular velocity vector (see [5], [8]). 
Also, f represents known torques applied to the body, and c 
represents a possible actuator failure (e.g., a  jammed reaction 
jet on a spacecraft). For a more detailed description of this 
dynamical model, we refer the reader to [5] and [8]. 

Suppose that the rigid body is equipped with an inertial 
platform that is to be kept fixed in inertial space [9]. Because of 
errors in the gyroscopes used to sense rotation, the platform 
drifts. Thus we actually observe 

where M  is the orientation of the body with respect to the plat- 
form and V represents platform misalignment with ‘respect to 
inertial space. One can show [5], [lo] that a good model for V 
is a left-invariant process driven by the gyro noise. For simplicity, 
we assume that the noise is white, in which case V is described 
by (4) with n = 3 (there are no difficulties in taking the noise 
to be colored). 

In this case, one can compute 

H(M) = M’ (21) 

and the likelihood ratio is 

LR(t ] t) = LRl(t I t)lLRo(t I t) (22) 



474 IEEE TRANSACTIONS ON INFORMATION THEORY,  JULY 1975 

Example 2: Consider the Lie algebra of all 2 x 2 matrices 
with basis 

A 3  = [; ;] A 4  = [; ;] l  (23) 

Let x E Rk and y,u E R4 be as in (l)-(4) with E [dv(t)‘dv’(t)] = 
I dt. In this case, (4) becomes 

dV(t) = i Ai duo(t) + (A, + A4) dt 1 . (24) i=l 
L J  

Defining the two hypotheses as in (5) and (6), we obtain the 
optimal estimation-detection equations (12)-(16) where yij, the 
v element of r is given by 

ri3ow = (M-14w,, Yi4uw = (M-14M)22. (25) 

For instance, 

Yll(M) = MllMz2 
. 

Ml lM22 - Ml2M21 

IV. CONCLUSIONS 

(26) 

In this correspondence we have considered a class of optimal 
estimation-detection problems involving multiplicative observa- 
tion noise. By considering the differential form of the observation 
process, we have obtained optimal estimation and likelihood 
ratio equations that are quite interesting in that they are identical 
to those in the linear-Gaussian case except that the estimation 
error covariance depends on the observations and thus must be 
computed on-line. We have noted that these results are poten- 
tially useful in the detection of failures or changes in system 
dynamics. This potentiality was illustrated by examining an 
actuator failure detection problem associated with -rigid body 
rotation and inertial navigation systems. 

Finally, we remark that in this correspondence we have con- 
sidered only the estimation of the vector space processes x and y. 
The estimation of the injected process Y is more difficult, and we 
refer the reader to [S]-[7] and [ll ] for some results for this 
problem. 

111 

PI 

PI 
[41 

151 

E61 

VI 

VJI 

PI 
WI 
Ull 

WI 

REFERENCES 
T. Kailath, “A  general likelihood-ratio formula for random signals 
in Gaussian noise,” 
350-361, May 1969. 

IEEE Trans. Inform. Theory, vol. IT-15 pp. 

-, “A  further note on a general likelihood formula for random 
signals in Gaussian noise,” 
pp. 393-396, July 1970. 

IEEE Trans. Inform. Theory, vol. IT-16 

T. E. Duncan, “Evaluation of likelihood functions,” Inform. Contr., 
vol. 13, 1968. 
J. T. Lo, “Signal detection on lie groups,” in Geometric Methods in 
System Theory, D. Q. Mayne and R. W. Brockett, Eds. The Nether- 
lands : Reidel, 1973. 
A. S. Willsky, “Dynamical systems defined on groups : structural 
properties and estimation,” Ph.D. dissertation, Dep. Aeronautics and 
Astronautics, M.I.T., Cambridge, June 1973. 
A. S. Wil lsky and S. I. Marcus, “Estimation for bilinear stochastic 
systems,” Rep. ESL-R-544, M.I.T. Electron. Syst. Lab., M.I.T., 
Cambridge, May 1974. 
S. I. Marcus and A. S. Willsky, “A  class of finite dimensional optimal 
nonlinear filters,” presented at the 5th Symp. Nonlinear Estimation 
and Its Applications, San Diego, Calif., Sept. 1974. 
A. S. Willsky, “Estimation and detection of signals in multiplicative 
noise,” Rep. ESL-R-521, M.I.T. Electron Syst. Lab., Cambridge, 
Oct. 1973. 
W. Wrigley, W. Hollister, and W. Denhard, Glvroscopic Theory, 
Design, and Instrumentation. Cambridge, Mass. : M.I.T. Press, 1969. 
B. Etkin, Dynamics of Atmospheric Flight. New York: Wiley, 1972. 
J. T. Lo and A. S. Willsky, “Estimation for rotational processes with one 
degree of freedom-Part I: Introduction and continuous-time pro- 
cesses,“IEEE Trans. Automat. Contr., vol. AC-20, pp. 10-21, Feb. 1975. 
K. J. Astrom, Introduction to Stochastic Control Theory. New York: 
Academic, 1970. 

System Error Bounds for Lagrange Polynomial 
Estimation of Band-Limited Functions 

JOHN J. KNAB, MEMBER,  IEEE 

Abstract-Several recent articles [l]-[3] have discussed the use of 
Lagrange polynomials for band-limited signal estimation. We find error 
bounds when using Lagrange polynomials for interpolation and extra- 
polation of finite-power band-limited signals if a finite number of regularly 
spaced noisy samples are used. 

I. INTR~DUC~ON 

Suppose f(t) has a (2N + 1)st derivative and the samples 
f(tk) are given, for 0 5 k 5 2N. The Lagrange polynomial 
and error term that pass through the f(tk) points and used to 
estimatef(t) for points other than tk are given by [4] 

f(t) = 2 f(tk) w0 w(t) 
+ (2N + l)! f (2N+1)(U) (1) 

k=O W ’(tk)(t - tk) 

where w(t) = (t - to)(t - tl) . l  . (t - t2N) and u is some 
point in the smallest interval containing t and [t0,t2N]. If each 
sample f(tk) contains an error &k, then the system error e(t) in 
reconstructing f(t) from the Lagrange polynomial is 

2N 

e(t) = - c ek 
40 w(t) f ‘(2N+ 1’(u). (2) 

k=O Wl(tk)(t - tk) + (2N + l)! 

The first term .of (2) is called the channel error 
term of (2) is called the truncation error. 

We shall consider as a deterministic signal 
bounded by M, which can be represented by 

while the second 

class those f(t), 

1 

s 

a0 

f(t) =cr -oo 
eiot dG(co) 

where G(U) is of bounded variation. We call 
B,,(M); f(t) is said to be bandlimited to cc), if 

this signal class 
it is in this class. 

We shall analyze the system error (2) iff(t) is in B,,(M) and the &k 
are deterministic errors with q = max ]&kl; we call this the 
deterministic case. We shall also consider a random signal class 
in which thef(t) are from a wide-sense-stationaryprocess whose 
autocorrelation function R(z) is in B,,(P) with P = R(0). We 
shall analyze the system error when this random signal class is 
reconstructed using (1) and the &k are random errors of zero 
mean and variance g2 which are uncorrelated with each other 
and uncorrelated with f(tk), for all k; we call this the random 
case. 

Throughout our discussion, we shall assume that the samples 
f(tk) are uniformly spaced at the following t points: - NT, 
-(N - l)T,. l  l ,O,T,. l  .,NT. We let T = ~(1 - 6)/ao, where 
6 is between zero and unity; if 6 = 0, this corresponds to sam- 
pling at the Nyquist rate and as 6 approaches unity, the time 
between samples T approaches zero. We also normalize the 
time: x = t/T. 

II. RESULTS 

If 1x1 5 $, we have the case of central interpolation since there 
are approximately an equal number of samples to the left and 
right of X. For the deterministic case a bound of the system error 
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