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Theorem 3: Let ~ ( s ,  6 )  be the solution to the full-order NP 
problem (1H2) with the initial data given by Theorem 2, and let 
1( SF ( s ,  E )  be the transfer function constructed in the aforementioned 
algorithm. Then for sufficiently small E 
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1) uSF (s, F )  is a T F S S B R  transfer function, and 
2) I l l / ( S ,  F )  - w S F ( s ,  F ) l l ,  = O(E). 

Abstract- A class of multiscale stochastic models based on scale- 
recursive dvnamics on trees has recentlv been introduced. These models 

Proof: By Theorem 2, ~ ( s ,  F )  is a TFS-SBR transfer function. 
Also, ’ F  ( s, E) E T, because it has the same slow and fast transfer 
functions as “(“ Since both Of these ‘low and fast transfer 
functions are SBR functions, by Lemma 1, S F ( S ,  6 )  is also an SBR 
transfer function. This proves part 1 of the theorem. Part 2 follows 
from [9, Theorem 4.11. 

Q.E.D. 

are interesting because they can be used to represent a broad class 
of physical phenomena and because they lead to efficient algorithms 
for estimation and likelihood calculation. In this paper, we provide a 
complete statistical characterization of the error associated with smoothed 
estimates of the multiscale stochastic processes described by these models. 
In particular, we show that the smoothing error is itself a multiscale 
stochastic process with parameters that can be explicitly calculated. 

I. INTRODUCTION 

V. CONCLUSION 

In this note, we have considered a version of the NP interpolation 
problem. We have obtained conditions which guarantee a TFS solu- 
tion. We have formulated two smaller NP interpolation problems and 
have shown that they can be solved in parallel. We have reduced the 
solvability condition in terms of the solvability conditions for these 
two smaller problems. The immediate gain here is the reduction in 
the verification process and hence the computer time. We have used 
the solutions obtained from these two smaller problems and have 
constructed a solution which can become arbitrarily close in the H,- 
norm to the solution of the original NP problem. The results of this 
note should prove useful both from the computational standpoint as 
well as in the areas such as robust stabilization problem for TFS 
systems. 
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A class of multiscale models describing stochastic processes in- 
dexed by the nodes of a tree has recently been introduced in [l], 
[2]. These models can be used to capture a surprisingly rich class 
of physical phenomena. For instance, experimental results in [2] 
illustrate that they can be used to model the statistical self-similarity 
exhibited by stochastic processes with generalized power spectra of 
the form l/f”, and in [3] we describe how they can be used to 
represent any 1-D Markov process or 2-D Markov random field. 
Moreover, this class of models leads to efficient algorithms for 
estimation and likelihood calculation and as a result provides a useful 
framework for a variety of signal and image processing problems [l], 
P I ,  [41-[61. 

Knowledge of the error statistics of smoothed estimates of such 
processes is essential for the development of a number of important 
new applications, including for instance so-called mapping problems 
[7], the multiscale counterpart to the model validation problem in [8], 
and certain oceanographic problems [9]. Several such applications 
have been developed in the context of 1-D Gauss-Markov models 
by exploiting relatively recent results that show that the smoothing 
error processes associated with Gauss-Markov models are themselves 
Gauss-Markov processes [7], [8], [lo], [ll].’ In this paper, we derive 
a dynamic model for the smoothing error process associated with mul- 
tiscale stochastic models. In particular, we show that the smoothing 
error is itself a multiscale stochastic process with parameters that 
can be explicitly computed. These results generalize previous results 
for Gauss-Markov processes, since these processes correspond to a 
degenerate form of the multiscale models, and provide the necessary 
framework for applications such as those mentioned above. 

This paper is organized as follows. In Section I1 we briefly review 
the class of multiscale stochastic models of interest here and the 
scale-recursive estimation algorithm associated with them. In Section 
111 we derive a multiscale model for the smoothing error process. 
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Fig. 1. Multiscale stochastic processes are indexed by a qth-order tree. The 
parent of a node 5 on the tree is denoted s?. and its q offspring are denoted 
.ScyI..'...5cyY. 
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11. MULTISCALE STOCHASTIC MODELING AND OPTIMALESTIMATION 
The models presented in this section describe multiscale Gaussian 

stochastic processes indexed by nodes on a tree. A qth order tree is 
a pyramidal structure of nodes connected such that each node of the 
tree has q offsprhg (see Fig. 1). We denote nodes on the tree with an 
abstract index s, and define an upward (fine-to-coarse) shift operator 
7 such that ST is the parent of node s. We also define a corresponding 
set of downward shift operators el,. . . , mq such that SQI , . . . , say 
are the offspring of node s. In addition, we denote the set of nodes 
on the tree as 7 and the set of nodes that includes node s and a11 
of its descendants as I,, i.e., I, = {ala = s or a is a descendant 
of s}. Also, the complement of 7, is denoted 7;. The statistical 
characterization of the model state s(s )  E 

( 1 )  

under the assumptions that .r(O) N d'd(O,  P(O)) ,ui(s)  N 

AT(0, I ) , A ( s )  and B ( s )  are matrices of appropriate size, and 
s = 0 is the root node at the top of the tree. The driving noise 
w ( s )  E E"' is white, i.e., ~ ( s )  and w ( a )  are independent if 
s # a, and independent of the initial condition ~ ( 0 ) .  The class 
of models (1) has a statistical structure that can be exploited to 
develop efficient signal processing algorithms. In particular, note 
that any given node on the qth-order tree can be viewed as a 
boundary between q + 1 subsets of nodes ( q  corresponding to 
paths leading towards offspring and one corresponding to a path 
leading towards a parent). An important property of the model 
(1) is that, conditioned on the value of the state at any node, the 
values of the state corresponding to the q + 1 subsets of nodes are 
independent. This fact is the basis for the development in [l], [2] 
of an algorithm for computing smoothed estimates of s(s )  based on 
noisy measurements y ( s )  E R' of the form 

(2) 

where ~ ( s )  - .2'(0. I?(.?)), and is independent of both w ( s )  
and ~ ( 0 ) .  The algorithm for computing the smoothed estimates 
of .r(.q) is a generalization to qth-order trees of the well-known 
Rauch-Tung-Striebel algorithm for smoothing 1 -D Gauss-Markov 
processes. We briefly review the multiscale smoothing algorithm next, 
and then derive a model for the error associated with the smoothed 
estimates. 

We denote the set of states defined at nodes in I, as S,, i.e., 
S, = { . r (o- ) I~  E Z}, and similarly I; = { y ( o - ) J a  E 'L}. The 
set of measurements in the subtree strictly below s is denoted Y:, 
i.e., 1-7 = {y(cr)lo is a descendant of s}. We also define i(.s(I') as 
the expected value of .T( s) given measurements in the set I' and the 
corresponding error covariance as P( ~11~). 

The upward sweep of the smoothing algorithm begins with the ini- 
tialization of .?( SI>;+) and P(.qlIL+) at the finest level. In particular, 

is then given by 

.Ifs) = A ( s ) s ( s 7 )  + B(s)zu(s) 

y(s)  = C ( s ) r ( s )  + v ( s )  

for every s at this finest scale we set .?(slli+) to zero and P(s(I;+) 
to the solution at the finest level of the tree of the Lyapunov equation: 

P ( s )  = A ( s ) P ( s ~ ) A T ( x )  + B ( s ) B T ( s )  (3) 

where P ( s )  denotes the covariance of the process s ( s )  at node s. 
Suppose then that we have .?(slIL+) and P(s(I;+) at a given node 
s. This estimate is updated to incorporate the measurement y(.q) 

according to the following: 

.?(S(II,) = .?(SII>+) + I i ( s ) [ y ( s )  - c(.q).?(sI1:+)] 

P(s1IL) = [I - Ii(s)C(s)]P(sp;+) 
(4) 

(5 )  

where I<( s) = P(sII;+)CT(s)[C(s)P( s(I;+)CT(s) + R(s ) ] - ' .  
Suppose next that we have the updated estimates .?(so, l lr,cvt ) at 

all of the immediate descendants of node s. The next step involves 
the use of these estimates to predict .r( s) at the next coarser scale, 
i.e., to compute . ? ( S ~ I ~ ~ ~ ~ ) .  Using the following upward model for 
the multiscale process [l], [21: 

x ( s 7 )  = F ( s ) s ( s )  + C ( s )  (6) 

with the measurement equation again given by (Z), and where 
F ( s )  = P(sT)AT(s)P(s)-' and E[V(s)EiT(s)] = P ( s 7 )  - 
P(s~)A~(s)P(s)-'il(s)P(s?) Q ( s ) ,  we compute the fine-to- 
coarse predicted estimates: 

.? (S lY, ,*)  = F(scr, ).?(sQtlY<kt) (7) 
P(slILe,) = F(scu,)P(s~,II',,,)F~(so,) + Q(scu,). (8) 

The estimates .?( ~ 1 1 : ~ ~  ), i = 1,. . . , q are then merged to obtain 
9 

.?(Sp;+) = P(s(I;+)~P-'(sJI;,,, ).?(slIlo, ) 

P(S(I>+) = (1 - q)P(s)- l  + ~P-1(.51I><J . (10) 

(9) 
, = I  

9 I -I [ L = l  

We assume here that P ( s )  and P(s7lI>) are invertible for all s SO 

that the upward model given by (6) and the merge operation given 
by (9), (10) are well-defined. As discussed at the end of the next 
section, this restriction can be removed. 

The recursion given by the update, predict and merge equations 
proceeds up the tree until one obtains the smoothed estimate of the 
root node, .?(Olkb).  This estimate initializes a downward sweep in 
which .?(slIb) is computed according to 

.? (s lEL)  = .?(sJII,) + J(s)[.?(sqIb) - .?(s7(1',)] 

P(s(ki0) = P(SlI,) + J ( s ) [ P ( s q E b )  - P(sqIJ)]JT(s) (12) 
(1 1) 

(13) 

Note that (12) characterizes the smoothing error covariance at any 
given lattice site s, but does not provide information about the 
correlation structure of the error process. The goal in the next section 
is to provide a multiscale model for the smoothing error process, 
i.e., to show that the error satisfies a recursion of the form (l), and 
to calculate the associated model parameters. This then provides the 
complete statistical characterization of the smoothing error that we 
seek. 

J ( s )  = P ( s p ; ) F T (  s)P- ' (  s7)I;). 

111. MULTISCALE SMOOTHING ERROR MODELS 
Given two nodes s and a E 7,' on the tree, we can represent s( a) 

(14) 

with pc independent of the set of states .r(s?) U S, and the 
corresponding set of measurements y(s7)  U I:. by tracing a path 

in terms of .r(sT) and an additive noise term ye 

.r(a) = am .).\.( s?) + yc .) 

I 
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from n to s’; and using the upward dynamics (6) and downward 
dynamics (1) to eliminate state variables along the way. The state 
transition matrix 3r in this construction is a function of the 
upward and downward prediction matrices A and F along the path, 
whereas pu is a linear function of the upward and downward 
driving noises ti’ and F. Since pc si is independent of the set of 
states s( s7)  U S, and the measurements y( sl;) U E‘, , we have that 
.i.(uIIL) = @u.bi.?(~TII;) which, using (14), implies that 

.?(up73) = au .+(.sqEJ) + pa (15) 

where we have defined the error in .?(s(E‘) as i ( s ( 1 ‘ )  c s ( s )  - 
.?(s lE‘) .  As a result, we see that .? (s l lb)  has the Markov property: 

E{.?(sp;)l.?(np‘,), n E Z I }  

= E{.?(s(I.;)J.?(.sTII‘,), {y?‘ .+ E I:}} 
= E{.?(.slE~)l.?(.sTlE~)} + E{S(.sp;)l{y, .+ E I,‘}} 
= E{.?( sp,)(.?(qp; )}. (16) 

The first equality in (16) follows from (15), the second from the 
orthogonality of pc,s i  to s(sl;)  and EL, and the last from the 
orthogonality of pc si to s ( a )  and I.‘,. Now, using the upward 
dynamics (6), the upward sweep prediction equation (7), and standard 
linear least squares formulas we can write 

(17) .?(Slys) = J(S).?(SsIIL) + a ( S )  

where J (  s) is given by (13) and where, from (16), til( s) is indepen- 
dent of {.?(als)lu E c}, and has covariance: 

P( slys ) - P( slk’, ) F T  (s)P-’ (sT(E‘, ) F (  s ) P (  slEL ). (18) 

Next, note that the independence of t i , ( s )  and {.?(nlE;)ln E r} 
implies that t C ( s )  is also independent of the residual information 
about .r(s)  that is contained in the set of all available measurements 
YO, but not contained in 1;. In particular, at each node in c, a 
residual component vs ( n )  that is orthogonal to the measurements in 
the set I‘, can be defined as 

v s ( 0 )  = d o )  - EIy(o)IIT,} 
= C(a)i(olI‘ , )  + V ( U ) .  (19) 

Denoting vs {v,(a)ln E z}, it is clear that span 
E h  =span{EL. v,}, that v, I EL, and that v, I t i i ( s ) .  Taking the 
expected value of both sides of (17) conditioned on vs, we obtain 

(20) E{ .?( s I 1; ) I Y, } = J (  s )E{  .i. ( STl  I > ) I vs } . 

i(slk’o) = .?(slIJ) + E{.?(sp‘,)lvs} 

.?(s(Iro) = J(s).?(sl;;lEh) + Ii>(S)  

Finally, noting that 

(21) 

and then subtracting (20) from (17) results in 

(22) 

which is a multiscale model for the smoothing error of precisely the 
same form as (1). 

This model is, of course, consistent with the error covariance 
computation in (12). In particular, using the Lyapunov equation for 
(22) we obtain 

P(slEb) = J(s)P(sqIo)JT(s) + P(S1EL) 
- P( slE:)FT ( s ) P - l (  sl;(E‘, ) F (  s ) P (  S l l ‘ J )  

= P(sIIL) + J(s)[P(.sTJE~) - P(s’TJEL)]JT(s). (23) 

In addition, on first-order trees, the model (1) reduces to a standard 
Gauss-Markov model, and hence (22) generalizes to qth-order trees 
the corresponding 1-D time-series result. The derivation here is 

related to, but is in fact substantially simpler than, the derivation 
based on backwards prediction error models in [8]. 

Finally, we note that it is possible to derive a multiscale smoothing 
error model without assuming invertibility of P ( s )  and P(.sTIIr,). 
We refer the reader to Appendix D of [14] for a related derivation 
of a likelihood calculation algorithm for ( I ) ,  (2) that allows for rank 
deficient P( s )  and P( sTlE‘,). A slight variation of the technique used 
in that derivation can be used to show that a multiscale smoothing 
error model allowing for rank deficient P( s) and P( sl;IET, ) can be 
written precisely as in (22) but with the gain J(s) given by 

and the covariance of tii(s) given by 

where the superscript t denotes the Moore-Penrose pseudo- 
inverse [ 151. 
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