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Abstract-We describe and demonstrate a hierarchical recon- 
struction algorithm for use in noisy and limited-angle or sparse- 
angle tomography. The algorithm estimates an object's mass, 
center of mass, and convex hull from the available projections, 
and uses this information, along with fundamental mathematical 
constraints, to estimate a full set of smoothed projections. The 
mass and center of mass estimates are made using a least 
squares estimator derived from the principles of consistency of 
the Radon transform. The convex hull estimate is produced by 
first estimating the positions of support lines of the object from 
each available projection and then estimating the overall convex 
hull using prior shape information. Estimating the position of 
two support lines from a single projection is accomplished using 
a generalized likelihood ratio technique for estimating jumps in 
linear systems. We show results for simulated objects in a variety 
of measurement situations and discuss several possible extensions 
to the work 

I. INTRODUCTION 
OMPUTED tomography (CT), the practice of recon- C structing images of cross sections from measurements 

of their projections, has become an important tool in many 
areas of application, including nondestructive evaluation, sonar 
imaging, synthetic aperture imaging, and medical imaging. It 
is well known that in the full-data problem, where one is 
given enough high-quality projections over a 180" angular 
range, images of outstanding quality may be obtained. In many 
important practical cases, however, there is not enough data 
to obtain high-quality images using the usual techniques. In 
particular, the limited-angle problem occurs when projections 
are available over an angular range less than 180", and the 
sparse-angle problem occurs when only a small number of 
angles evenly spaced over 180" are available 

The algorithm described in this paper uses a hierarchical 
approach to process the available measured projections in 
order to generate an estimate of the full set of projections, 
an image of which is called a sinogram. The estimated 
sinogram satisfies the two lowest-order constraints, which we 
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call the mass and center of mass constraints, specified by 
the Ludwig-Helgason consistency conditions of the Radon 
transform [l], [2]. It is also consistent with an estimate of 
the convex support of the object derived directly from the 
measurements, in that its values are nearly zero for lines that 
miss the estimated convex support. Finally, it is smoothed by 
incorporating prior probabilistic knowledge using a Markov 
random field, optimally removing the contributions of noise. 
The object estimate is then produced using convolution back- 
projection applied to this estimated sinogram. 

Limited-angle and sparse-angle problems occur often in 
practice, For example, a limited-angle problem occurs in 
cardiac CT imaging, where the carriage containing the X-ray 
emitters and detectors can only travel part of the way through 
the full angular range before significant heart motion occurs 
[ 3 ] .  In combustion analysis, the time and energy constraints 
are often so severe that acquiring a sparse data set is una- 
voidable [4]. Noise is another problem that arises in different 
ways, depending on the application. For example, in X-ray 
applications a low dose or high sample attenuation will cause 
the measurements to be dominated by the photon statistics of 
the X-rays [5]. In synthetic aperture radar problems, receiver 
noise, clutter, and jamming all contribute to the overall noise 
that obscures the desired signal [6]. 

Many researchers have proposed solutions to the limited- 
angle and sparse-angle problems, although few have also 
dealt explicitly with noise. Solutions tend to fall into two 
categories: transform techniques that incorporate little a priori 
information and finite series expansion methods that may 
incorporate a priori information as constraints or probabili- 
ties. The transform techniques are usually single-pass direct 
reconstructions while the finite series expansion methods are 
usually iterative. Among the transform techniques are the 
pseudoinverse of the 2-D Radon transform [7], [SI, angle- 
dependent rho-filters [9], analytic continuation in the Fourier 
plane [lo], and the method of squashing [ l l ] .  The finite 
series expansion methods include linear minimum variance 
methods [12], [13], projection onto convex sets (POCS) [14], 
[15], the Gerchberg-Papoulis algorithm [16], [17], iterative 
pseudo-inverse methods [ 151, [ 181, and Bayesian methods 
[19], [20]. POCS in particular has shown great flexibility 
in dealing with known geometric constraints and with noise. 
The basic principle of POCS is that each piece of a priori 
knowledge must be represented by a convex set onto which 
the current image (or sinogram) estimate can be projected. 
It has been shown that if the intersection of these convex 
sets is nonempty then the sequence of cyclic projections will 
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converge weakly to a point in this intersection [21]. In addition 
to these two general approaches there are other approaches 
that depend upon severely restricting the class of objects 
to be reconstructed. For example, Rossi and Willsky [22] 
use hierarchical maximum-likelihood methods to estimate the 
position, radius, and eccentricity of objects with a known unit 
profile such as the unit disk. Soumekh [23], Chang and Shelton 
[24], and Fishburn et al. [25] have investigated reconstruction 
of binary objects from a small number of projections. 

The hierarchical algorithm described in this paper was 
designed to address several problems common to many of 
the existing algorithms mentioned above. For example, one of 
the major problems in methods that iterate between the object 
and projection spaces is reprojection error [26]. This problem 
is particularly bad when noise is present in the measurements 
[13]. One elegant way to avoid this problem proposed by Kim, 
Kwak, and Park [27], [28], is to iterate entirely in projection- 
space, incorporating certain object constraints mathematically, 
without reprojection. Our method is also a projection-space 
method, although it is not a POCS method as in [27] and [28]. 

Another problem with many, but not all, of the existing 
limited-angle algorithms is that they do not account for noise 
in an optimal sense. Although it is possible to modify POCS 
to account for noise processes [29], it does not make optimal 
(in a Bayesian sense) use of known noise statistics together 
with a priori knowledge. Minimum variance and Bayesian 
methods do take noise processes into account, but rarely have 
the capability to account for additional geometric knowledge 
as is done in POCS and our method. Parts of our method 
are Bayesian also, using the maximum a posteriori criterion, 
which specifies optimum solutions accounting for both the 
noise process and a priori knowledge. 

Finally, a vital part of many POCS algorithms, the 
Gerchberg-Papoulis algorithm, and some iterative pseudoin- 
verse approaches is the necessity of having known convex 
constraints, and in particular, having knowledge of the object 
support or convex support. Medoff [15] notes that one way 
to acquire this information is to have “a radiologist determine 
the outer boundary of the object.” Aside from the fact that this 
is a potentially time-consuming process for a busy radiologist, 
the image that the radiologist uses to generate this boundary 
must be created before any correction has taken place, and 
therefore can be expected to be rife with artifacts from 
both noise and limited-angle measurement geometry. One 
has therefore introduced a potential source of error in this 
seemingly innocuous step. Our method instead estimates the 
convex support of the object directly from the projection 
measurements using prior probabilistic knowledge of the 
general shape to be expected. We then use this estimate to 
assist in a projection-space reconstruction algorithm. 

Fig. 1. The geometry of the 2-D Radon transform. 

T where w = [cos8 sin81 , 8 is the angle measured counter- 
clockwise from the horizontal-axis, s(.) is the Dirac delta func- 
tion, and f(z) is a function of the two-dimensional vector z. 
For this paper, we assume f ( z )  to be a real function defined 
on the disk of radius T centered at the origin. For a particular 
6’ the function g ( t ,  8) is a function of t and is called aparallel 
ray projection or just a projection. A sinogram is an image of 
the 2-D Radon transform, where t and 8 form the vertical 
and horizontal axes, respectively, of a Cartesian coordinate 
system. Because of the periodicity of the 2-D Radon transform 
and because of the assumed domain of f (s) ,  the sinogram 
is completely characterized by knowledge of g ( t ,  8) over 
the domain 

Two objects and their sinograms are displayed in Fig. 2. 
Note that the columns of the sinograms are projections, with 
the left-most projection arising from horizontal line integrals. 
In most real problems, we expect to have a discrete version 
of a sinogram, sampled for many values o f t  and 8. We define 
a finest-grain sinogram to be one that is known over the 
rectilinear lattice of n d  (odd) uniformly spaced points in the 
t-direction and n, uniformly spaced points in the &direction. 
Our observations, both limited-angle and sparse-angle, consist 
of measured (and therefore possibly noisy) sinogram values 
over a subset yo of this finest-grain lattice. More precisely, 
we assume that the observations are subject to noise and are 
given by 

Y ( t % .  0,) = g(&,  8,) + 4 t Z ,  8,) ( 3 )  

where the indices i E (1,. . . . n d }  and j E J c (1.. . . , n,} 
index points on the regular rectangular lattice in the domain 
YT.  The set J contains J indices of the angular positions of 
the observed projections. The noise samples ” ( t i ,  8 j )  are zero- 
mean white Gaussian random variables. indeDendent between 

11. OVERVIEW OF HIERARCHICAL APPROACH 
I 1  

Referring to the geometry of Fig. 1, we define the 2-D lattice sites. Our goal is to reconstruct a good representation 
of f ( z )  given these measured values. 

In [31] we presented an algorithm that restores a finest- 
grain sinogram given measurements on Yo. The method 
assumes knowledge of the convex support of the object to 

Radon transform by [30] 

(1) g ( t . O )  = 

i n  
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Fig. 2. (a) The MIT-ellipse object and (b) its sinogram. (c) The two-disk object and (d) its sinogram 

be reconstructed and assumes that the object is centered at the 
origin and has unit mass. It then specifies a Markov random 
field description of sinograms which incorporates this prior 
geometric knowledge and allows optimal recovery of the full 
sinogram using Bayesian techniques. The object itself is then 
reconstructed using convolution backprojection. The need for 
this detailed prior geometric information, however, precludes 
its use as a stand-alone procedure for processing raw projection 
data. This paper addresses this problem by presenting methods 
to estimate the mass, center of mass, and convex support 
directly from the available projection data, thus providing a 
complete hierarchical reconstruction algorithm. 

An object generally is not centered at the origin and 
generally does not have unit mass. If the mass and center of 
mass are known, however, the raw projections can be easily 
modified to appear to have been acquired from such an object. 
In Section I1 we present methods to estimate the mass and 
center of mass from the available data and to scale and shift 
the projections to correspond to a unit mass object centered at 
the origin. The mass and center of mass estimation methods 
are based on the principle of least squares estimation. 

In Section I11 we describe an approach that estimates those 
values of t within each projection that prescribe the support 
lines of the object as viewed from the angle of the projection 
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(see Fig. 1). These values are called support values, and if 
measured perfectly for all angles 0 they can be used to 
define the true convex support of the object. There are two 
problems, however: 1) because of noise, support values cannot 
be measured perfectly, and 2) projections are not available at 
all angles. The first problem can lead to inconsistent support 
value measurements for which there is no convex support 
that corresponds to the measured support values. The second 
problem implies that the convex support of the object (up 
to the resolution of the finest-grain sinogram) is not uniquely 
determined from the measured support values. These problems 
were addressed in [32] and [33], which presented methods 
to estimate the convex support from noisy and incomplete 
measurements of the support values of an object. In [32], the 
nature of support value inconsistency was demonstrated, and 
a maximum-likelihood method to estimate consistent support 
values given complete observations was presented. Extension 
was made to incomplete data in [33], where prior knowledge 
of the shape of the convex support was used in a maximum 
a posteriori formulation. The resultant collection of consistent 
support values is called a support vector. The largest convex 
set having support values determined by the support vector is 
then used as an estimate of the convex support of the object. 

Given this background, it is easy to see how a hierarchical 
reconstruction algorithm can be put together. In the first phase, 
the mass and center of mass are calculated from the raw 
projection data. The center of mass is then used to adjust 
the sinogram data to correspond to an object centered at the 
origin; the measured projections are divided by the estimated 
mass to form a unit mass object. In the second phase, the 
support values are estimated from the available (adjusted) 
projections. These support values are used to produce a support 
vector which immediately gives an estimate of the object's 
support. The third phase restores the finest-grain sinogram 
using this derived geometric information, and the fourth phase 
reconstructs the object using convolution backprojection. The 
following three sections give a more detailed presentation of 
the ingredients comprising the hierarchical algorithm. 

111. MASS AND CENTER OF MASS ESTIMATION 

A. Mass and Center of Mass 

Conventional tomographic reconstruction algorithms, such 
as convolution backprojection (CBP) [ 5 ] ,  which attempt to 
invert the Radon transform, require the availability of a 
complete set of projection data in order for the inversion to be 
possible. Consequently, their use in limited-angle or sparse- 
angle situations requires that some accommodation be made 
for the missing data. The simplest approach is in essence to set 
the missing measurement values to zero by applying the inver- 
sion operator only over the available measurement set. Such 
an approach is well known to produce a severely distorted 
reconstruction, and while other simple schemes typically lead 
to some improvement, serious degradations are still present. 
Similarly, the presence of significant measurement errors in the 
projection data can lead to pronounced distortions or artifacts 
in the resulting reconstructions [34]. One of the reasons for 
the presence and level of severity of degradations in each of 

these cases is that the inversion operation is being applied 
to a data set that could not be the Radon transform of any 
object. Specifically, a function g ( t ,  0) that is a valid 2-D Radon 
transform and satisfies certain mild regularity conditions must 
also satisfy the Ludwig-Helgason consistency conditions [l], 
[2], which specify an infinite set of constraints on certain 
moments of g ( t , 0 ) .  

It is possible to use a large number of Ludwig-Helgason 
moment constraints in a reconstruction strategy (cf. [8], [35]), 
but in this paper we concentrate on just the two lowest order 
constraints. These constraints give rise to the mass and center 
of mass sinogram constraints, which are given by 

(4) 

and 

where 

(6) 

and 

(7) 
1 

c = [c1 C2IT = m LER2 z f ( z )  d z .  

The sinogram restoration algorithm, which comprises a part 
of the overall hierarchical algorithm, uses these two con- 
straints in order to guarantee a consistent sinogram estimate, 
which significantly reduces the degradations and artifacts 
caused by noisy andlor missing data. These constraints also 
have simple geometric interpretations, and m and c can be 
easily and reliably estimated from the available projections, as 
described below. 

B. Mass and Center of Mass Estimation 

The mass and center of mass of the object are estimated 
directly from the projections using least squares. We assume 
that the mass constraint given by (4) may be approximated by 
the summation 

Substituting the observed projections y(ti, 0j) for the true 
projections g ( t i ,  0j) yields a system of equations that may 
be solved for m using least squares. Accordingly, the mass 
estimate is 

(9) 

which is proportional to the average of all the observed line 
integrals. 

To estimate the center of mass, we first approximate the 
integral in (5 )  by the summation 

1 2 T  nd 

nd i=l 
cj = -- C t i g ( t i , e j )  

I l l  
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Substituting the mass estimate T?L for m, the observed projec- 
tions y ( t z .  0,) for g( tZ ,  0 3 ) ,  and c . w3 for cJ yields a system 
of linear equations with unknown c, the center of mass of the 
object. This system may also be solved using least squares, 
yielding the center of mass estimate 

; = (ATA)-~AQ 

where 

A =  

and 

cosI9l sin& 

c o s d ~  sin OJ 
; 1 ,  b =  

C. Object Centering and Mass Normalization 

Using the mass and center of mass estimates, the measured 
projections are shifted and scaled so that the center of mass of 
the object is at the origin and the mass is unity. The modified 
projections are given by 

1 
g(t, e )  = 7 y ( t  - 2 .  w ,  0) 

m, 

This processing is done so that the convex support estimation 
stage and sinogram estimation stage may assume the object 
to have unit mass and to be centered at the origin. After the 
sinogram processing, the full set of estimated projections are 
shifted back using a similar equation. 

IV. SUPPORT VALUE MEASUREMENT 

The convex support of an object is estimated in two 
stages. The first stage measures two support values from each 
available projection, and the second stage estimates a 
complete, consistent collection of support values. In this 
section we present an algorithm for support value measurement 
based on detection of jumps in linear systems. A method to 
adaptively estimate the error in these measurements is also 
presented, and simulation results are presented. The second 
stage, outlined in Section V, estimates a complete feasible 
support vector from these support value measurements using 
the methods of [32] or [33]. We begin with a more precise 
discussion of what is meant by convex support. 

A. Convex Support 

One very useful way in which to interpret the Radon 
transform consistency constraints is that they provide prior 
information that in essence reduces the number of degrees of 
freedom that must be recovered from the measurement data. A 
second piece of prior information which can be of significant 
value for the same reason is knowledge about the support 
7 of the function f ( z )  to be reconstructed, i.e., the set of 
points where f ( z )  may be nonzero. In particular, our algorithm 
makes use of information about the convex support of f ( z ) ,  
i.e., the convex hull of 3, 3c = Iiul(3). For any set S, the 

Fig. 3. A projection modeled as a linear spline with knots. 

support value of S at angle I9 is the maximum projection of 
points in S onto the w-axis, i.e., 

h(I9) = sup zTw. (13) 
ZES 

Treated as a function of 0, h(8) is known as the support 
function of S. 

As shown in Fig. 1 we see that for a fixed 8, the projection 
g( t ,  19) has support confined to the interval between the two 
points t+(I9) and t-(I9), which are related to the support 
function as follows: 

This collection of support values, or equivalently the support 
function, segment a sinogram into a region of support G for 
g( t ,  19) and its complement, c, where 

G = ( ( 4  0) € YTlt-(B) I t I t+(O)).  (15) 

Therefore, for a given object support set 3, we think of 
6 as the matching region of support in Radon space. This 
region is readily identified in Fig. 2(b) as the region that is 
not black-i.e., where the sinogram values are nonzero. If, 
however, the support of f(z) is not a connected set, as in 
Fig. 2(c), it is possible for sinogram values within G to be 
zero, as in Fig. 2(d). Therefore, G is not necessarily the actual 
support of g ( t ,  e ) ,  but it does contain all the points ( t ,  0) for 
which g ( t ,  0) is nonzero. Although 3 uniquely determines 6, 
it is clear from the geometry (see Fig. 1) that 4 uniquely 
determines only hu1(3), not 3 itself. This is why in this 
paper we are primarily concerned with the convex support 
of f(z), since this is what may be determined directly from 
knowledge of 6, which may in turn be estimated directly from 
the projections. 

B. Knot-Location Method 
In this section we model a projection g ( t )  as a continuous 

piecewise-linear waveform as shown in Fig. 3. Such a function 
is called a linear spline; it is composed of a set of linear 
functions that connect a series of points called knots, so that 
the resultant function is continuous but its slope has an abrupt 
change at each of the knots. Two support values for this 
projection are determined by estimating the positions, t- and 
t+, of the two outer knots. 

Our knot-location method is based on the generalized likeli- 
hood ratio (GLR) techniques developed by Willsky and Jones 
[36] for detecting abrupt changes in dynamic systems, and later 
applied to spline estimation by Mier-Muth and Willsky [37]. 
(It is worth noting that other computationally efficient methods 

1 
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for maximum likelihood estimation of knots exist [38], [39].) 
Our approach is to run a Kalman filter, starting at t = -T, 
assuming an underlying signal model corresponding to a linear 
rump waveform (initialized with slope = 0). The innovations of 
the Kalman filter, which should be a zero-mean white Gaussian 
sequence, provide the basis for estimating the point at which 
the true signal deviates from the assumed model-i.e., the 
point at which the slope changes suddenly. The first such point 
yields the point t - .  The point t+ is found by running the filter 
backwards starting at t = T and finding the first knot in the 
backwards direction. 

As discussed in [37], a linear spline with a single knot can 
be described by the following two-dimensional discrete state 

with certainty the initial spline parameters and thus initialize 
the Kalman filter as follows: 

[:I 
[:: ::I 

k(Ol0) = k ( l l 0 )  = 

P(OI0) = P(110) = 

In order to determine whether a jump has occurred we 
examine the innovations sequence which will deviate from 
the statistics given above if a jump takes place. In particular, 
given our single jump model of (16) it can be shown that the 
true innovations sequence takes the form [40] 

$2) = G(i, k )  f cr + +( i )  , (20) 
equation 

where +(i)  is the zero-mean, white, and Gaussian innovations 
if there is no jump and G(i, k )  is the jump signature matrix 
given by 

z( i  + 1) = Qz(i) + aS(i + 1 - k )  f (16) 

where S(.) is the discrete impulse function, a is the height 
of the discontinuity, k is the discrete position of the knot G(i, k )  = hT [QZ-' - QF(i - 1, k ) ]  (219 
(1 5 IC 5 n d ) ,  and F( i ,  k )  = K(i)G(i, k )  + QF(i - 1, k )  (21b) 

1 2T/nd 1 1 .  f = [ : ] .  

The problem of fitting such a linear spline to an observed 
data sequence y ( i )  corresponds to estimating the parameters 
of (16)-namely the initial conditions and slope, and the knot 
location k and jump height a-assuming that the data are 
noisy measurement of the spline, i.e., 

y(2) = hTz(i) + v ( i )  (17) 

where hT = [l 01, and w ( i )  are zero-mean white jointly Gauss- 
ian random variables with variance R = 02. In our problem 
the y(i)  represent the projection measurements y ( t i ,  0,) as a 
function of i for each fixed 0j .  

The first step in the knot location algorithm is to run the 
following Kalman filter on the data: 

k(ili - 1) = Qk(i - lli - 1) (184 
(18b) 
(184  

k( i l i )  = k(il2 - 1) + K ( i ) y ( i )  
$2) = y ( i )  - hTk(ili - 1) 

where k(il I )  is the best estimate of z ( i )  given y ( l ) ,  . . . , y(l), 
y ( i )  is the innovations sequence, and K ( i )  is the Kalman filter 
gain. Assuming that there is no jump (slope discontinuity), the 
innovations sequence is a zero-mean, white, jointly Gaussian 
random sequence whose variance V ( i )  is given by 

V ( i )  = hTP(ili - 1)h + R 

where the error covariance P(ili - 1) may be computed 
together with the Kalman gain K( i )  using the following 
recursive algorithm: 

P(ili) = [I - K(i)hT]P(ilz - 1) (19a) 

K ( i )  = P(ili - l )hV-l( i )  (19b) 
( 19c) P(2 + 112) = QP(ili)QT. 

Because a projection is zero outside the disk of radius T and 
since we may take T to be as large as necessary, we know 

where G(i, k )  and F(i ,  k )  are both 0 for i < k and F( i ,  i )  = 
K (  i )  hT. 

Equation (20) is the key to the GLR knot-location method. 
Through this equation, we see how to form the ML estimate 
of a, assuming a jump occurred at time k in the filter's 
past for each current time index of i of the Kalman filter. 
Actually, to reduce the required computation, at each point i 
we look for possible jumps only over a trailing window 
W ( i )  = { i  - 1, i - 2 , .  . . , i - N }  of length N in the filter's 
past. Then using the ML estimate of a for each k E W ( i ) ,  
we form the GLR for the hypothesis that a jump actually 
occurred at k .  If the GLR exceeds a preset threshold then 
a jump is deemed to have occurred. The above calculations 
are given by the following equations each evaluated for all 
IC E W ( i )  [37] 

2 

C(i, k )  = GT(j ,  k)V-'(j)G(j, k )  (22a) 
j=1 

a 

4 i ,  k )  = GT(j ,  k )V- l ( j )y ( j )  (22b) 
j = k  

where &(i ,  k )  is the ML estimate of a assuming that a 
jump occurred at time I C ,  and l ( i , k )  is the logarithm of the 
generalized likelihood ratio for this event. The best estimate 
of the locution of a jump is then given by 

& ( i )  = argmaxl(i, k )  . (23) 
k € W ( i )  

Then, to decide whether a jump has actually taken place we 
use the following threshold rule 
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C. Jump Threshold 

Specification of the GLR threshold E is an important consid- 
eration since if too low, noise will often produce an inaccurate 
knot estimate, and if too high, it is possible that no knot 
will be found in the entire projection. We now describe an 
adaptive method to choose this threshold that has worked well 
in practice. 

Since the mass of each projection is the same, we might 
expect that a projection with a small support width would rise 
rapidly at the support values in order to include the required 
mass, and this would correspond to a large value of N and a 
corresponding large value of l(z .  k ( z ) ) .  In contrast, a projection 
with a larger support width might riseA less rapidly, and would 
correspond to a smaller value of l ( i .  k ( i ) ) .  A simple estimate 
of the width of a projection is given by the approximate 
second moment of a normalized (to unit mass), shift-corrected 
projection as follows 

The max{ } function is included since it possible that elements 
of ?/ are negative, and therefore that m,(O) might otherwise 
be negative. 

The second moment in (25) is roughly equivalent to a 
variance calculation, and the quantity 

is analogous to a standard deviation, which serves as an 
approximate measure of the width of the projection. If p is 
large, then the projection is wide and the slope change at 
the support value is probably small. Therefore, we want to 
specify a GLR threshold E that is relatively small. Using 
similar reasoning we conclude that for small p ,  the threshold E 

should be large. After some experimentation we have chosen 
the function ~ ( p )  depicted in Fig. 4. Since p is a measure of the 
width of the entire projection, E is used as the threshold value 
for both the forward and backward stages of the knot-location 
algorithm (i.e., for measuring both t -  and t+.) 

D. Performance 

It is important in our hierarchical approach to be able to 
assess the performance of the support value measurement 
method so that this information may be used by the subsequent 
support vector estimation stage. The accuracy of the support 
value measurements clearly depends not only on the variance 
of the additive noise but also on the characteristics of the 
underlying projection, particularly at or around the true support 
value. Indeed if these characteristics were summarized, say 
in a template model, one could compute a Cramer-Rao 
bound specifying these dependencies in a quantitative manner. 
Unfortunately, these characteristics can vary widely from 
projection to projection even for the same object. Thus it is 
essential that we have a method for determining the quality 
of our support measurements directly from the projection 
data. In this section we present a method to obtain such 

F 0-2.0 

10-3.0 

0.0 0.2 0.4 0.6 0.8 1.0 

Support-Width Estimate, p 

Fig. 4. Generalized likelihood ratio threshold selection curve. 

an estimate of the error variance arising from the knot- 
location algorithm described above. In doing this we do 
not assume any prior shape information at this stage, so 
our estimate is made completely on the basis of statistics 
available during processing, and, in particular, on the shape 
of the log-likelihood function. If the log-likelihood function 
is sharply peaked at its maximum then we presume that it 
is a good estimate; if it has a shallow maximum then we 
presume that the estimate is not as good. Follow@g this 
principle, we fit a downturned quadratic centered at k to the 
log-likelihood function that was evaluated over the window 
W ( i ) ,  and the coefficient of the quadratic term yields our error 
variance estimate. It is worth noting that this quadratic fitting 
method can be viewed as a signal-adaptive estimate of the 
Cramer-Rao bound. 

Let IC E W ( i )  be our estimate of the knot location, made 
when the Kalman filter has progressed to the zth index. We 
wish to fit a downturned quadratic of the form 

C(k) = -a(k - f ) 2  + (3 

to the data l ( i ,  k )  so that, in particular, we may determine a. 
To make this fit, we minimize 

N N 

C(i(k) - l ( i , k ) ) 2  = C ( - a ( k - ~ ) 2 + c - l ( z , k ) ) 2  
k = l  k = l  

with respect to a and c, yielding 

a= gz'=, (c - l(i. k ) ) ( k  - f ) 2  

- f )4  
1 

c = l(2. I C )  

Our estimate of error variance 0," for the support estimate is 

1 
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Fig. 5. Head-on projections of an ellipse with noise standard deviations 
(a) n = 0.1430 and (b) U = 0.324.:. Broadside projections of an ellipse with 
noise standard deviations (c) o = 0.1450 and (d) U = 0.3245. Knot-location 
support value estimates are shown using diamond markers; the true support 
values are shown using vertical dotted lines. 

then given by 

E. Simulations 

Fig. 5 shows simulation results in which the knot-location 
algorithm is used to measure support values. All four panels 
show noisy projections of an ellipse centered at the origin, 
with major semiaxis radius of 0.806 and minor semiaxis radius 
of 0.242-these are the same dimensions as the MIT-ellipse 
shown in Fig. 2(a). Figs. 5(a) and 5(b) show the narrowest 
projection-the support values are -0.242 and 0.242-with 
noise standard deviations 0.1450 and 0.3245, respectively. 
These noise levels represent the amount of noise required 
to achieve a signal-to-noise ratio (SNR) of 10 dB and 3 dB, 
respectively, with respect to the full sinogram, where SNR 
is defined in Section VI. Figs. 5(c) and 5(d) show the widest 
projection- the support values are -0.806 and 0.806-also 
with noise standard deviations of 0.1450 and 0.3245. The 
positions of the true support values are indicated by the vertical 
dotted lines in each of the panels. The same underlying unit 
variance noise sequence was used for all four projections in 
each figure, which accounts for the similarity in the noise 
structure. 

Support value measurements are indicated by diamond 
markers in each of the panels in Fig. 5. The error bar centered 

directly above each of these symbols has a length of two (error) 
standard deviations. In most cases, the estimated values are 
within three standard deviations of the true values; but, as 
one would expect, the size of the error increases as the noise 
variance grows. Also, the error bars are longer in Figs. 5(c) 
and 5(d) than those in 5(a) and 5(b). This agrees with our 
intuitive reasoning that it should be more difficult to detect the 
onset of a projection of the broadside of the ellipse versus 
the head-on projection, given the same noise variance (since 
the broadside projection has a more gradual rise than the 
head-on projection). 

In Section I1 we noted that a collection of support value 
measurements may not be self-consistent. Fig. 6 shows two 
noisy MIT-ellipse sinograms together with the full set of 
knot-location support value measurements shown using thin 
white curves. The SNR of the underlying sinograms, using 
the definition of SNR given in Section VI, are given by (a) 
10.0 dB and (b) 3.0 dB. The thick white curves represent 
the collection of support values prescribed by the support 
vector-i.e., the consistent set of support values-that is 
closest to the measured values. These curves also correspond 
to the constrained maximum likelihood (ML) support vector 
estimate [32]. Clearly, the thick curves are different than 
the underlying thin curves, which means that the measured 
support values are inconsistent in each panel of this figure. 
The set defined between the top and bottom thick white 
lines constitutes 8, which should ideally contain all pixels 
with nonzero values. The performance of the knot-location 
algorithm is noticeably worse in Fig. 6(b), but the constrained 
ML support vector estimate does not show the same qualitative 
degradation. Since the constrained ML algorithm does not use 
any prior geometric information, this shows that utilization of 
support vector consistency alone adds considerable robustness 
to errors in the knot-location measurement process. 

V. HIERARCHICAL ALGORITHM 

A block diagram of our hierarchical algorithm is shown in 
Fig. 7. Each block represents a significant stage which either 
estimates a new parameter or set of parameters or transforms 
the data in some fashion; blocks that correspond to prior work 
are shaded. Where required, an estimate of the reliability of 
the information is also passed between the blocks. In this 
way, poor estimates are not viewed as perfect by subsequent 
processing stages, and extremely good estimates are given 
greater weight in subsequent blocks. 

As shown in Fig. 7, the overall processing is divided 
into four stages: (a) sinogram preconditioning, (b) sinogram 
restoration, (c) sinogram postconditioning, and (d) object 
reconstruction. In (a) the mass and center of mass are es- 
timated directly from the available measured projections as 
described in Section 111. These quantities are used to center the 
coordinate system by shifting each projection to correspond 
to an unit mass object centered at the origin, yielding 6. 
Stage (b) forms the bulk of the processing, with support 
vector estimation and sinogram restoration-two methods 
reported in previous work-and two new steps required to 
support these procedures. Here, the block labeled support 

' a  
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(a) (b) 

Fig. 6. (a) 10.0 dB and (b )  3.0 dB noisy MIT-ellipse sinograms overlayed with the knot-location support value measurement (thin white curves) and the 
constrained maximum likelihood support vector estimate (thick white curves). 
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Fig. 7. Block diagram of the hierarchical reconstruction algorithm. 

vector estimation estimates a support vector h, which is used 
to define a corresponding segmentation of the sinogram. This 
segmentation is used by the block labeled sinogram restoration 
to estimate a full sinogram. Support value estimates, required 
for support vector estimation are provided by the new block 
labeled support value estimation, as described in Section IV. 
The knot-location threshold is determined adaptively in the 
block labeled threshold estimation. Stage (c) takes the restored 
sinogram as input and rescales its mass to the estimated mass 
and restores the coordinate system to the estimated center of 
mass. Finally, stage (d) performs convolution backprojection 
on the restored sinogram to reconstruct an object estimate f .  

The hierarchical algorithm requires several user inputs (see 
Fig. 7): y, p, 7, and K .  The parameters y and ,l? specify 
sinogram horizontal and vertical smoothness, respectively, 
as described below. Currently, these parameters must be 
fixed a priori, although in principle they could be estimated 
hierarchically using any one of several parameter estimation 
schemes [41], [42]. The parameter T symbolizes prior shape in- 
formation which is required for support vector estimation from 
incomplete data; it includes both the choice of a method and 
one or more parameters associated with the chosen method. 
The parameter K specifies a measure of confidence in the 
support vector estimate. A large K indicates great confidence 
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in $; a small K indicates little confidence in 8. The overall per- 
formance of the hierarchical algorithm is affected by how well 
the parameters we use represent the truth; in our experiments 
they are empirically adjusted to match the class of objects and 
imaging geometry used in the experiments. (See [32] and [33] 
for detailed discussions of the effects of parameter selection 
on the MAP sinogram estimation algorithm and the support 
vector estimation algorithm, respectively.) 

For completeness we now provide a brief description of 
two of the blocks that are derived from other works: sinogram 
restoration and support vector estimation. 

A. Sinogram Restoration [31/ 

that minimizes 
We take the restored sinogram to be the function g ( t ,  0) 

subject to the condition that each projection has unit mass 
and center of mass at the origin, and subject to the boundary 
conditions g(T. 0) = g ( - T .  19) = 0 and g ( t ,  0) = g ( - t .  T ) .  

Here, n, 0, and are positive constants. The first term in I ,  
which integrates over the set yo, represents a penalty that 
seeks to keep the estimate close to the observations. The 
second term integrates over the complement of the estimated 
region of support to attempt to keep sinogram values outside 
the region of support small. The final integral contains two 
terms involving the square of the two partial derivatives of 
g ,  which provides a smoothing effect in both the t and 0 
directions. The boundary conditions indicate that line integrals 
are expected to be zero outside a disk of radius T centered at 
the origin, and that the sinogram is periodic as prescribed in 
the Ludwig-Helgason consistency conditions. The numerical 
solution to this variational problem was shown in [31] to 
be equivalent to the maximum a posteriori solution of a 
probabilistic formulation in which the sinogram is modeled 
as a certain Markov random field. 

It was shown in [31] that the restored sinogram g(t ,  0) must 
satisfy the original constraints and boundary conditions and the 
following second order partial differential equation (PDE) 

where X G  and Xlr are indicator functions of the sets 
and YO, respectively. The solution must also satisfy the 
additional boundary condition a g ( t ,  O ) / a k  = a g (  -t, T ) / & .  

Equation (29) contains three unknown functions: g ( t ,  0) and 
two Lagrange multiplier functions Xl(I9) and A,(0), one for 
each constraint. If the Lagrange multiplier functions were 
known then the restored sinogram would simply be the solu- 
tion of the PDE (29), which may be solved by any of several 
well known numerical methods. Although these functions are 
not known in general, good initial estimates of these Lagrange 

multipliers often exist [43]. Primal-dual optimization methods 
can then be used to iteratively converge to the solution, as 
described in [31]. 

B. Support Vector Estimation 1.121, [33] 

Since there are n, projections in the finest-grain sinogram 
and two support values per projection, each full sinogram 
determines M = 271, support values which represent samples 
of the support function of an object at angles 0, = 
~ T ( L  - l) /M, i = 1,. . . , M .  A support vector h is a vector 
made by organizing the values of a support function h(0) 
sampled at these angles, yielding 

h = [h(B1) h ( 8 2 )  * . . ~ ( B M ) ] ’ .  (30) 

In [32] i t  was shown that a support vector must belong 
to a particular convex cone C c Rhf.  Therefore, not all 
vectors constructed from the support values measured from an 
observed sinogram can be expected to be support vectors: they 
may be inconsistent. Furthermore, incomplete data problems 
yield only measurements of a subset of the elements of h. 

The formulations in [32] and [33] reconstruct an M -  
dimensional support vector h based on K 5 M noisy 
measurements. The measurements are modeled as 

z = S h + u  (31) 

where U is a zero-mean jointly Gaussian vector with co- 
variance diag[(a%),] and S is a K x M “selection” matrix 
specifying the elements of h that are measured. The log- 
likelihood I (  h) is readily formed from this observation model; 
however, it has a unique maximum only if S = I ,  i.e., 
complete observations. In this case, the maximum likelihood 
(ML) estimate is defined as the support vector in C that 
maximizes l(h),  which we call the constrained ML estimate. In 
the special case where the noise covariance is a scalar multiple 
of the identity matrix then the constrained ML estimate is 
exactly the vector in C that is closest to the measurement 
Z. If S # 1 then the observations are incomplete-e.g., the 
data are sparse-angle or limited-angle. In this case, a unique 
solution can be found using the maximum a posteriori (MAP) 
criterion, which requires the specification of a prior probability 
on support vectors. Several such choices are explored in [33]. 

In the examples of Section VI we use the joint ellipse 
(JE) algorithm to estimate support vectors from support value 
measurements [33]. This algorithm assumes that the true 
support vector is near that of an ellipse, but the parameters 
of the ellipse-i.e., position U ,  orientation (6, eccentricity E ,  

and size t-are unknown. The JE algorithm jointly estimates 
the ellipse parameters and the support vector by solving 

minimize allSh - Z(I2 + (1 - a ) ( J h  - e(v ,  t ,  E ,  4)112 

subject to t 3 0, 0 5 E 5 I, and h E C. Here e(v,t.E.d) 
is the support vector of the ellipse with the given parameters 
and (Y is a constant in the interval [0,1]. Thus the optimal h 
represents a vector that is close to the available observations, 
but is also near the support vector of some ellipse. A tradeoff 
between how well each condition is matched is provided by 
0, which we set to 0.5 in all of our experiments below. 

h,V, t ,E ,h  
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Fig. 8. Objects reconstructed from the 10.0 dB MIT-ellipse sinogram using ART followed by a 3 x 3 averaging filter using only (a) the left-most 
40 projections, (b) the right-most 40 projections, (c) 15 sparse projections, and (d) 10 sparse projections. 

VI. EXPERIMENTAL RESULTS 

The MIT-ellipse shown in Fig. 2(a) was chosen for experi- 
mentation because the loss of data over different angular 
regions affects the reconstructions in different ways. For 
example, the absence of line integrals parallel to the long 
axis of the ellipse causes a lack of information related to the 
narrow dimension of the ellipse, but retains information about 
the letters inside the ellipse. In contrast, the absence of line 
integrals parallel to the short axis of the ellipse obscures the 
letters, but reveals the narrowness of the ellipse. To synthesize 

noisy observations we add independent samples of zero-mean 
Gaussian noise with variance 0' to each element of the true 
sinogram. The resulting sinogram has SNR defined as 

where g ( t i ,  e j )  is the true sinogram. For example, 10 dB and 
3 dB sinograms of the MIT-ellipse are shown in Figs. 6(a) 
and 6( b), respectively. 
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Fig. 9. Sinograms restored using the hierarchical algorithm applied to (a) the left-most 40 projections, (b) the right-most 40 projections, (c) 15 sparse 
projections, and (d) 10 sparse projections. 

Two limited-angle and two sparse-angle cases are consid- 
ered, both using selected projections from the 10 dB noisy 
MIT sinogram shown in Fig. 6(a). One limited-angle case 
observes the left-most 40 (out of 60) projections and the 
other observes the right-most 40 projections. These cases 
are generally considered to be severe limited-angle problems 
since even missing as little as 1% of the data can produce 
severe artifacts [ 151. One sparse-angle case observes every 
4th projection starting with the left column for a total of 
15 projections. The second sparse-angle case observes every 

6th projection for a total of 10 projections. All projections have 
81 samples and all reconstructed images are 81 x 81 pixels. 

Applying convolution backprojection (CBP) to the available 
noisy projections yields unacceptable reconstructions: they are 
very noisy and full of streak artifacts. ART, the algebraic 
reconstruction technique, yields only slightly better results, 
but can be improved by postfiltering each image with a 
3 x 3 pixel averaging filter, as shown in Fig. 8. Similar 
results can be obtained using quadratic optimization and 
Bayesian methods [5]. The limited-angle reconstruction shown 
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Fig. 10. Objects reconstructed from restored sinograms in corresponding panels of Figure 9 

in Fig. 8(a) shows the most readable letters but loses the 
narrow dimension of the ellipse. In contrast, the limited-angle 
case of Fig. 8( b) captures the overall shape of the ellipse quite 
well, but the letters in the interior are illegible. The two sparse- 
angle cases show degradation of both the overall shape and 
legibility of the interior letters. 

Figs. 9 and 10 show the results of applying the hierarchical 
algorithm to the same data. Fig. 9 shows restored sinograms 
with the estimated segmentation superposed. It is apparent 
from these images that the missing projection data are now 
filled in. Furthermore, all the sinogram data has been mod- 

ified during restoration in order to remove the effects of 
noise, impose consistency, and reduce the amplitude outside 
the estimated region of support. Fig. 10 shows the objects 
reconstructed (using CBP) from the restored sinograms of 
Fig. 9 with outlines of the estimated convex support sets 
superposed. These images show dramatic improvement in 
contrast between the object and its background over those 
in Fig. 8. Also, the estimates of convex support are nearly 
perfect, even in the two severely limited-angle cases, and 
the letters in the interior are generally more legible. The one 
exception is Fig. 10(a), where the letters are less well defined 
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Fig. 11. Reconstructions from limited-angle observations of a 10.0 dB two-disk object: (a) ART from the left 40 projections; (b) ART from the right 
40 projections; (c) hierarchical algorithm from the left 40 projections; and (d) hierarchical algorithm from the right 40 projections. 

than those in Fig. 8(a), although they do have higher contrast. 
It should be noted that the application of a post-filter to the 
original ART reconstructions removes noise at the expense of 
greater blurring, which reduces legibility. Different filtering 
or alternate methods can improve legibility, but invariably 
allow greater noise and reduce the contrast between object 
and background. 

Because the JE support vector estimation algorithm was 
used in the preceding experiments, all the reconstructed objects 
have nearly elliptical shape. It could therefore be argued 

that the success of the hierarchical algorithm is strongly 
dependent on the accuracy of this knowledge. To get a sense 
of the true degree of this effect we considered two limited- 
angle, noisy (SNR = 10.0 dB) observations of the two-disk 
sinogram shown in Fig. 2(d). Figs. 1 l(a) and 11( b) show ART 
reconstructions, again followed by a 3 x 3 pixel averaging 
filter, given observations of the left-most and right-most 40 
noisy projections, respectively. Artifacts similar to the MIT- 
ellipse reconstructions of Figs. 8(a) and 8(b) are apparent, 
including streaks and low contrast. 

1 n -  
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The hierarchical algorithm produces the reconstructions and 
convex support estimates shown in Figs. l l ( c )  and l l(d).  
As in the previous cases, these results show dramatic im- 
provement in contrast between the object and background, 
and the streak artifacts and background noise are largely 
removed. The two convex support estimates are quite dif- 
ferent, however. In Fig. l l (c)  the available projections do 
not provide views of the narrowest dimension; therefore, 
the JE algorithm makes the object shape more like that 
of an ellipse while approximately maintaining the support 
values measured from the observed projections. In Fig. l l (d) ,  
the observed projections contain information on both the 
narrow and wide dimensions, allowing a more accurate convex 
support reconstruction. Here, the convex support does not look 
elliptical because the available support value measurements 
do not agree with that of an ellipse. This is an important 
demonstration of the fact that prior shape knowledge is used 
primarily to remove nonuniqueness in the convex support 
estimation. 

VII. DISCUSSION 

We have demonstrated a method to estimate and hierar- 
chically incorporate geometric information in a reconstruction 
algorithm designed for noisy and limited-angle or sparse- 
angle tomography. The method is based on estimation 
principles, incorporating prior probabilistic information and 
consistency conditions to overcome problems resulting from 
insufficient data. 

Many variations of the basic algorithm may be considered, 
and several are discussed in [43]. One variation is to incorpo- 
rate more specific information about the shape of the objects’ 
convex hull. For example, with the additional knowledge that 
the object is an ellipse, but without knowing the size, orienta- 
tion, or position or the ellipse, the algorithm produces nearly 
perfect support estimation in the experimental geometries and 
SNR used in Section VI. Another variation is to incorporate 
more than just the two consistency conditions given by the 
mass and center of mass constraints. One approach, which 
eliminates the requirement to specifically estimate the mass 
and center of mass and yet produce consistent sinograms, is 
presented in [35]. 

Another potential area of future research concerns the 
coefficient IE., which is used in the sinogram restoration al- 
gorithm to indicate the confidence in the given sinogram 
segmentation. A larger value indicates a higher degree of 
confidence, so a very large value of K could be used if 
the true segmentation were known and a smaller value for 
estimated segmentations. It may be reasonable to let IC vary 
spatially to account for our varying degrees of confidence 
in the sinogram segmentation. In particular where there was 
significant interpolation, we would expect to make ~f. smaller. 
Also, one might want IC to be small near the estimated support 
value and increase with increasing t .  The rate of increase might 
be related to the performance measure of the support value 
estimation algorithm. A heuristic approach has been reported 
in [44]. 

Finally, another area of future research would consider the 
possibility of spatially varying coefficients p andy. These coef- 
ficients specify the expected spatial smoothness of sinograms, 
which one might expect to be related to the spatial smoothness 
and shape of objects. Some results along these lines have been 
reported [45]. 

REFERENCES 

D. Ludwig, “The Radon transform on Euclidean space,” Comm. Pure 
Appl. Math., vol. 19, pp. 49-81, 1966. 
S. Helgason, The Radon Transform. Boston, MA: Birkhauser, 1980. 
G. S. H a d ,  D.F. Guthaner, R. S. Breiman, C. C. Morehouse, E. J. 
Seppi, W. H. Marshall, and L. Wexler, “Stop-action cardiac computed 
tomography,” Radiology, vol. 123, pp. 515-517, 1977. 
C. K. Zoltani, K. J. White, and R. P. Kruger, “Results of feasibility study 
on computer assisted tomography for ballistic applications,” U.S. Army 
Ballistic Research Laboratory, ARBRL-TR-02513, 1983. 
G. T. Herman, Image Reconstruction from Projections. New York: Aca- 
demic, 1980. 
D. R. Wehner, High Resolution Radar. Nonvood, MA: Artech House, 
Inc., 1987. 
M. Ein-Gal, The Shadow Transformation: An Approach to Cross- 
Sectional Imaging, Ph.D. dissertation, Stanford University, Dept. of 
Electr. Engr., 1974. 
A. K. Louis, “Picture reconstruction from projections in restricted range,” 
Math. Meth. Appl. Sci., vol. 2,  pp. 209-220, 1980. 
M. E. Davison and F. A. Grunbaum, “Tomographic reconstructions with 
arbitrary directions,” Comm. Pure Appl. Math, vol. 34, pp. 77-119, 
1979. 
T. Inoye, “Image reconstruction with limited angle projection data,” 
IEEE Trans. Nucl. Sci., NS-26(2):2666-2669, 1979. 
J. A. Reeds and L. A. Shepp, “Limited angle reconstruction in tomogra- 
phy via squashing,” IEEE Trans. Med. Imaging, vol. MI-6, pp. 89-97, 
June 1987. 
S.L. Wood, A. Macovski, and M. Morf, “Reconstruction with limited 
data using estimation theory,” In Computer Aided Tomography and 
Ultrasonics in Medicine, Raviv, et al., Ed. New York: North-Holland 
Publishing Co., pp. 219-233, 1979. 
M. H. Buonocore, Fast Minimum Variance Estimators for Limited 
Angle Computed Tomography Image Reconstruction. Ph.D. dissertation, 
Stanford University, 1981. 
M. I. Sezan and H. Stark, “Tomographic image reconstruction from in- 
complete view data by convex projections and direct Fourier inversion,’’ 
IEEE Trans. Med. Imag., vol. MI-3, pp. 91-98, 1984. 
B. P. Medoff, “Image reconstruction from limited data: theory and 
applications in computerized tomography,” In Image Recovery: Theory 
and Application, H. Stark, Ed., chap. 9, Orlando: Academic, 1987, 

R. W. Gerchberg, “Super-resolution through error energy reduction,” 
Opt. Acta., vol. 21, no. 9, pp. 709-720, 1974. 
A. Papoulis, “A new algorithm in spectral analysis and band-limited 
extrapolation,” IEEE Trans. Circuits. Syst., CAS-22, pp. 735 -742, 1975. 
J.L.C. Sanz and T.S. Huang, “Unified Hilbert space approach to 
iterative least squares linear signal restoration,”J. Opt. Soc. Am., vol. 73, 
no. 11, pp. 1455-1465, 1983. 
K. M. Hanson and G. W. Wecksung, “Bayesian approach to limited- 
angle reconstruction in computed tomography,” Appl. Optics, vol. 24, 
pp. 4028-4039, Dec. 1980. 
S. Geman and D. E. McClure, “Bayesian image analysis: and application 
to single photon emission tomography,” Brown Univ., 1985, Tech. Rep., 
Proc. Amer. Stat. Assoc. Statistical Computing. 
D. C. Youla, “Mathematical theory of image restoration by the method 
of convex projections,” In Image Recovery: Theory and Application, 
H. Stark, Ed., Orlando: Academic, 1987, chap. 2, pp. 29-78. 
D. J. Rossi and A. S. Willsky, “Reconstruction from projections based 
on detection and estimation of objects-parts I and 11: Performance 
analysis and robustness analysis,” IEEE Trans. Acoust. Speech, Signal 
Processing, ASSP-32, pp. 886-906, 1984. 
M. Soumekh, “Binary image reconstruction from four projections,” In 
Proc. 1988 Int. Conf. Acoust., Speech., Sig., Proc., Apr. 1988, vol. 2, 
pp. 1280-1283. 
S. K. Chang and G. L. Shelton, “Two algorithms for multiple-view binary 
pattern reconstruction,” IEEE Trans. Sys. Man. and Cyber., vol. SMC-I, 
pp. 90-94, Jan. 1971. 

pp. 321 -368. 



416 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 2, NO. 3, JULY 1993 

[25] P.C. Fishburn, J .C. Lagarias, J.A. Reeds, and L.A. Shepp, “Sets 
uniquely determined by projections on axes I .  continuous case.” SIAM 
J .  Applied Math., vol. 50, no. I, pp. 288-306, Feb. 1990. 

[26] H. J. Trussell, H. Orun-Ozturk, and M. R. Civanlar, “Errors in reprojec- 
tion methods in computerized tomography,” I€€€ Trans. Med. Imag., 

[27] J .  H. Park, K. Y. Kwak, and S. B. Park, “Iteractive reconstruction- 
reproduction in  projection space,” Proc. I€€€,  vol. 73, pp. 1140-1141, 
June 1985. 

[28] J. H. Kim, K.Y. Kwak, S. B. Park, and Z. H. Cho, “Projection space 
iteration reconstruction-reprojection,” IE€€ Trans. Med. Imag., vol. MI- 
4, pp. 139-143, Sept. 1985. 

[29] M. I. Sezan and H. Stark, “Image restoration by convex projections in 
the presence of noise,”App. Opt., vol. 22, no. 18, pp. 2781-2789, 1983. 

1301 S. R. Deans, The Radon Transform and Some of Its Applications. New 
York: John Wiley and Sons, 1983. 

[31] J. L. Prince and A. S. Willsky, “A geometric projection-space recon- 
struction algorithm,” in Linear Algebra and its Applications, vol. 130, 
pp. 151-191, 1990; Special Issue on Linear Algebra in computed 
Tomography, G. T. Herman, Ed. 

[32] J. L. Prince and A. S. Willsky, “Reconstructing convex sets from support 
line measurements,” IEEE Trans. Putt. Anal. Mach. Intell., vol. 12, 
pp. 377-389, Apr. 1990. 

[33] J. L. Prince and A. S. Willsky, “Convex set reconstruction using prior 
geometric information,” CVGIP: Graphical Models and Image Process- 
ing, vol. 53, no. 5, pp. 413-427, 1991. 

[34] A.C. Kak and M. Slaney, Principles of Computerized Tomographic 
Imaging, New York: IEEE Press, 1988. 

[35] J. L. Prince and A. S. Willsky, “Constrained sinogram restoration for 
limited-angle tomography,” Opt. Eng., pp. 535 -544, May 1990. 

[36] A. S. Willsky and H. L. Jones, “A generalized likelihood ratio approach 
to the detection and estimation of jumps in linear systems,’’ IEEE Trans. 
Auto. Contr., pp. 108-112, Feb. 1976. 

[37] A. M. Mier-Muth and A. S. Willsky, “A sequential method for spline ap- 
proximation with variable knots,” M.I.T. Electronic Systems Laboratory, 
Tech. Rep. ESL-P-759, 1977. 

[38] A. Blake, “Comparison of the efficiency of deterministic and stochastic 
algorithms for visual reconstruction,” I€€€ Trans. Putt. and Anal. Mach. 
Infell., vol. 11, pp. 2-12, Jan. 1989. 

[39] S. F. Yau and Y. Bresler, “Image restoration by complexity regular- 
ization via dynamic programming,” In IEEE Proc. ICASSP, vol. 3, 
pp. 305-308, 1992. 

[40] A. S. Willsky and H. L. Jones, “A generalized likelihood ratio approach 
to state estimation in linear systems subject to abrupt changes,” M.I.T. 
Laboratory for Information and Decision Syst., Tech. Rep. LIDS-P-538, 
1974. 

[41] G. Wahba, Spline Models for Observational Data in SIAM, Philadelphia, 
PA, 1990. 

[42] L. Younes, “Parametric inference for imperfectly observed Gibbsian 
fields,” Probability Theory and Related Fields, vol. 82, pp. 625-645, 
1989. 

[43] J .  L. Prince, Geometric Model-Based Estimation From Projections. PhD 
dissertation, M.I.T., Cambridge, MA, 1988. 

[44] J .  L. Prince, “Consistency and convexity in object reconstruction from 
projections,” In Proc. IEEE Int. Conj Syst. Eng., Pittsburgh, PA, Aug. 
1990, pp. 543-546. IEEE Catalog Number: 90CH2872-9 

[45] J. L. Prince, “An iterative approach to sinogram restoration,” In Proc. 
1990 IEEE Int. Conf Eng. in Medicine and Biology, 1990. 

vol. MI-6, pp. 220-227, Sept. 1987. 

Jerry L. Prince (S’78-M’83) received the B.S. 
degree from the University of Connecticut in 1979 
and the S.M., E.E., and Ph.D. degrees in 1982, 1986, 
and 1988, respectively, from M.I.T., all in electrical 
engineering. 

From 1982 to 1983, he was employed at the 
Brigham and Women’s Hospital in Boston, MA, 
where he developed instrumentation and reconstruc- 
tion algorithms for ultrasonic imaging in medicine. 
From 1983 to 1988, he held both teaching and re- 
search assistantships at M.I.T., where he conducted 

research on geometric reconstruction methods in computed tomography. In 
1988, he joined the technical staff at The Analytic Sciences Corp. (TASC) 
in Reading, MA, where he contributed to the design of an automated vision 
system for synthetic aperture radar imaging. He joined the faculty at the Johns 
Hopkins University in 1989, where he is currently an Assistant Professor in 
the Department of Electrical and Computer Engineering and holds a joint 
appointment in the Department of Radiology. His current research interests 
are in image processing and computer vision with primary application to 
medical imaging. 

Dr. Prince is a member of IEEE and Sigma Xi professional societies and 
Tau Beta Pi, Eta Kappa Nu, and Phi Kappa Phi honor societies. He is currently 
an Associate Editor of IEEE Transactions on Image Processing. 

Alan S. Willsky (S’70-M’73-SM’82-F’86) re- 
ceived both the S.B. degree and the Ph.D. degree 
from M.I.T. in 1969 and 1973, respectively. 

He joined the M.I.T. faculty in 1973 and his 
present position is Professor of Electrical Engi- 
neering. From 1974 to 1981, Dr. Willsky served 
as Assistant Director of the M.I.T. Laboratory for 
Information and Decision Systems. He has been 
an associate editor of several journals, including 
the IE€€ Transactions on Automatic Control, has 
served as a member of the Board of Governors and ~~~ 

Vice President for Technical Affairs of the IEEE Control Systems Society, 
was program chairman for the 1981 Bilateral Seminar on Control Systems 
held in the People’s Republic of China, and was special guest editor of 
the 1992 special issue of the IE€€ Transactions on Information Theory on 
wavelet transforms and multiresolution signal analysis. Dr. Willsky is the 
author of the research monograph Digital Signal Processing and Control 
Estimation Theory and is co-author of the undergraduate text Signals and 
Systems. Dr. Willsky’s present research interests are in problems involving 
multidimensional and multiresolution estimation and imaging, discrete-event 
systems, and the asymptotic analysis of control and estimation systems. 

He is a founder and member of the board of directors of Alphatech, Inc. In 
1975, he received the Donald P. Eckman Award from the American Automatic 
Control Council. 

In 1988 he was made a Distinguished Member of the IEEE Control Systems 
Society. He was awarded the 1979 Alfred Noble Prize by the ASCE and the 
1980 Browder J. Thompson Memorial Prize Award by the IEEE for a paper 
excerpted from his monograph. 


