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Abstract-Recently, a framework for multiscale stochastic 
modeling was introduced based on coarse-to-fine scale-recur- 
sive dynamics defined on trees. This model class has some at- 
tractive characteristics which lead to extremely efficient, statis- 
tically optimal signal and image processing algorithms. In this 
paper, we show that this model class is also quite rich. In par- 
ticular, we describe how 1-D Markov processes and 2-D Mar- 
kov random fields (MRF’s) can be represented within this 
framework. The recursive structure of 1-D Markov processes 
makes them simple to analyze, and generally leads to compu- 
tationally efficient algorithms for statistical inference. On the 
other hand, 2-D MRF’s are well known to be very difficult to 
analyze due to their noncausal structure, and thus their use 
typically leads to computationally intensive algorithms for 
smoothing and parameter identification. In contrast, our mul- 
tiscale representations are based on scale-recursive models and 
thus lead naturally to scale-recursive algorithms, which can be 
substantially more efficient computationally than those associ- 
ated with MRF models. In 1-D, the multiscale representation 
is a generalization of the midpoint deflection construction of 
Brownian motion. The representation of 2-D MRF’s is based 
on a further generalization to a “midline” deflection construc- 
tion. The exact representations of 2-D MRF’s are used to mo- 
tivate a class of multiscale approximate MRF models based on 
one-dimensional wavelet transforms. We demonstrate the use 
of these latter models in the context of texture representation 
and, in particular, we show how they can be used as approxi- 
mations for or alternatives to well-known MRF texture models. 

I. INTRODUCTION 
this paper, we describe how to use a class of multi- I” scale stochastic models to represent 1-D Markov and 

reciprocal processes and 2-D markov random fields 
(MRF’s). Markov models in one-dimension provide a rich 
framework for modeling a wide variety of biological, 
chemical, electrical, mechanical, and economic phenom- 
ena [7]. Moreover, the Markov structure makes the 
models very simple to analyze, so that they often can be 
easily applied to statistical inference problems (such as 
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detection, parameter identification and state estimation) 
as well as problems in system design (e.g. control and 
queuing systems). 

In two dimensions, MRF’s also have been widely used 
as models for physical systems [3], [4], [23], [39], and 
more recently for images. For example, Gaussian fields 
[45] have been used as image texture models [lo],  [ 171, 
[27], [37], and the more general Gibbs fields have been 
used as prior models in image segmentation, edge detec- 
tion and smoothing problems [ 5 ] ,  [25], [38], [40]. Causal 
subclasses of MRF’s, such as Markov mesh random fields 
[ 11, [2 11 and Nonsymmetric half-plane Markov chains 
[28] lead to two-dimensional versions of Kalman filtering 
algorithms when the fields are Gaussian [46]. In addition, 
efficient fast Fourier transform alogrithms are available 
for stationary Gaussian fields defined on toroidal lattices 
[ l  11, [18], [29]. In general; however, Markov random 
field models lead to computationally intensive algorithms 
(e.g., stochastic relaxation [25]) for estimation problems. 
In addition, parameter identification is difficult for MRF 
models due to the problem of computing the partition 
function [4], [41]. Thus, while Markov random fields 
provide a rich structure for multidimensional modeling, 
they do not generally lead to the simple analysis and com- 
putationally efficient algorithms that 1 -D Markov pro- 
cesses do. 

These computational issues are the most important ob- 
stacle to the application of MRF models to a broader range 
of problems, and are the principal motivations for the in- 
vestigation in this paper of the richness of the class of 
multiscale stochastic processes [8], [9], [13]-[15], and in 
particular of how such multiscale processes can be used 
to exactly and approximately represent Markov random 
fields. These multiscale stochastic processes are de- 
scribed by scale-recursive models, which lead naturally 
to computationally efficient scale-recursive algorithms for 
a variety of estimation problems. For instance, fast 
smoothing algorithms are developed for a class of 
Gaussian processes in [ 131-[15]. Also, Bouman and 
Shapiro demonstrate how a related multiscale discrete 
random field leads to an efficient sequential MAP esti- 
mator [8], [9]. In this paper, we demonstrate how a sim- 
ple generalization of the models in [13]-[15] leads to 
classes of models which can be used to represent all 1-D 
Markov processes and 2-D Markov random fields. The 
significance of this result is that it suggests that this mul- 
tiscale modeling framework may be a decidedly superior 
basis for image and random field modeling and analysis 
than the MRF framework both because of the efficient al- 
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gorithms it admits and because of the rich class of phe- 
nomena it can be used to describe. 

The efficient algorithms to which the multiscale frame- 
work leads and which motivate our work here have al- 
ready lead to interesting and substantial new develop- 
ments in a number of areas. In addition to the work on 
image segmentation described in [8], [9], in [35], we ex- 
ploit the multiscale framework to develop new and effi- 
cient algorithms for estimating optical flow in image se- 
quences. Standard formulations of this problem require 
the computationally intensive solution of an elliptic par- 
tial differential equation which arises from the often used 
‘‘smoothness constraint” type regularization, corre- 
sponding to regularizing the problem with an MRF prior. 
We utilize the interpretation of the smoothness constraint 
as a “fractal prior” to motivate regularization based on 
one of our multiscale models. The result is a slightly dif- 
ferent prior model, which yields comparable root-mean- 
square (rms) error performance to that achieved using the 
standard MRF prior model, but with drastically reduced 
computational load. In particular, in contrast to the iter- 
ative algorithms needed to solve the elliptic equations cor- 
responding to the MRF prior, our multiscale algorithm is 
scale-recursive, yielding the optimal estimate in a finite 
number of steps with constant per pixel computational 
load. Fig. 1, taken from [35], is representative of the re- 
sults. Here, the rms error is plotted for our multiscale 
regularization (MR) algorithm and versus iteration for two 
iterative methods for solving the MRF-based estimation 
problem. Since the multiscale method is nor iterative, its 
rms performance is plotted as a horizontal line. The entire 
multiscale algorithm has a computational load roughly 
equal to 4.2 iterations of the iterative successive over- 
relaxation (SOR) algorithm, indicating a considerable 
computational savings. Moreover, not only does this 
computational savings grow with image size (because of 
the constant per pixel complexity of our approach) but 
also this algorithm yields error covariance information as 
part of its computation, something that is not feasible .in 
the smoothness constraint formulation and that can be used 
to determine the optimal resolution for flow estimation at 
each point in the image frame [35]. Based on this evi- 
dence of its promise in practice, it is natural, then, to ask 
the question of how rich a class of phenomena can this 
multiscale formalism capture? The answer provided in this 
paper is that this class is extremely rich indeed. 

The multiscale representations developed here rely on 
a generalization of the midpoint deflection technique for 
constructing a Brownian motion in one dimension [20], 
[24], [33]. To construct a Brownian motion sample path 
over an interval by midpoint deflection, we start by ran- 
domly choosing values for the process at the midpoint and 
the two boundary points of the interval according to the 
joint probability distribution implied by the Brownian mo- 
tion model. We then use these three values to compute 
the expected values of the Brownian motion at the one- 
fourth and three-fourths points of the interval. The ex- 
pected value at the one-fourth (three-fourths) point cor- 
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Fig. I .  This graph, taken from [35], shows for one example that the mul- 
tiscale regularization (MR) approach and two smoothness constraint based 
iterative approaches to the problem of computing optical flow in an image 
sequence yield comparable rms errors (the rms error corresponding to the 
noniterative MR algorithm is shown as a straight line). This result is typical 
of experiments on several real and synthetic image sequences in [35]. The 
multiscale approach requires total computation equivalent to 4.2 SOR it- 
erations and hence provides a substantial computational gain. 

responds to the average of the initial and midpoint values 
(midpoint and final values) as shown in the upper left of 
Fig. 2. Random values, with appropriate error variances, 
are then added to the predictions at each of these new 
points. The critical observation to be made here is that, 
since the Brownian motion process is a Markov process, 
its value at the one-fourth point, given the values at the 
initial point and midpoint is independent of the process 
values beyond the midpoint, in particular the values at the 
three-fourths and end-points of the interval. Obviously, it 
is also the case that the value at the three-fourths point is 
independent of the values at the initial and one-fourth 
points, given the values at the midpoint and final point. 
Consequently, the random deflection terms used to gen- 
erate the values of the Brownian motion at the one-fourth 
and three-fourths points can be chosen independently. In 
addition, we see that the Markov property of Brownian 
motion allows us to iterate this process, generating values 
at increasingly dense sets of dyadic points in the interval. 

There are several important observations to be made 
about the preceding development. First, by linearly inter- 
polating at each level in this procedure, as illustrated in 
Fig. 2, a sequence of continuous approximations of a 
Brownian motion is constructed, and the statistics of these 
approximations converge to those of a Brownian motion 
[20]. Indeed, this sequence of linear spline approxima- 
tions can be interpreted exactly as a nonorthogonal mul- 
tiscale approximation using as the scaling function the tri- 
angular “hat” function [42] which is the integral of the 
Haar wavelet [24]. Second, as we will see, the structure 
of this midpoint deflection construction fits precisely into 
the multiscale modeling framework developed in [ 131- 
[ 151, and corresponds simply to a particular choice of the 
parameters in the multiscale model. Moreover, this con- 
cept generalizes, allowing us to show that all 1-D recip- 
rocal and Markov processes can be represented by mul- 
tiscale stochastic models in a similar way. Thus, in one 
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Fig. 2. The first two levels of a “midpoint deflection” construction of a 
Brownian motion sample path are shown on the left. The construction gen- 
erates a sequence of approximations based on linear interpolations of sam- 
ples of the Brownian motion at the dyadic points. On the right, the basis 
functions, integrals of the Haar wavelet, in this construction are shown. 

dimension we will show that the class of processes real- 
izable via multiscale, scale-recursive models is at least as 
rich as the class of all Markov and reciprocal processes. 
In fact, as we will illustrate, it is significantly richer than 
that. 

Furthermore, these ideas can be extended to multidi- 
mensional processes. In particular, we show how a gen- 
eralization of the mid-point deflection concept to a “mid- 
line” deflection construction can be used to represent 2-D 
MRF’s with multiscale models. In particular, the key to 
our multiscale representations in one or two dimensions 
is a partitioning of the domain over which the process is 
defined so that the coarse-to-fine construction of the pro- 
cess can proceed independently in each subdomain. Mar- 
kovianity plus knowledge of the process on the bounda- 
ries of the subdomain partition make this possible. The 
fundamental difference, however, between the 1 -D and 
2-D cases is due to the fact that boundaries in a* corre- 
spond to curves or in 2 to sets of connected lattice sites, 
as opposed to pairs of points in one dimension. Because 
of this difference, exact multiscale representations of 
MRF’s defined over a subset of Z 2  have a dimension 
which vanes from scale to scale, and which depends on 
the size of the domain over which the MRF is defined. 

In addition to the exact representations, we will intro- 
duce a family of approximate representations for Gauss- 
ian MRF’s (GMRF’s) based on wavelet transforms. As 
we have indicated, maintaining complete knowledge of a 
process on 2-D boundaries leads to models of scale-vary- 
ing dimension, which can become prohibitively large for 
domains of substantial size. On the other hand, at coarser 
scales, it would seem reasonable to keep only coarse ap- 
proximations to these boundary values, and this leads nat- 
urally to the use of a multiscale change of basis for the 
representation of the values of a 2-D process along each 
1 -D boundary. That is, through our midline deflection 
based models, we are led to the idea of using one-dimen- 
sional wavelet transforms in the representation of the val- 
ues of a two-dimensional GMRF. The result is a family 
of models, ranging from those which keep only the coars- 
est wavelet coefficients along each 1-D boundary to the 
exact model which keeps them all. This family of approx- 
imate representations allows one to tradeoff the complex- 

ity and accuracy of the representations, while also pro- 
viding a framework for the development of extremely 
efficient estimation and likelihood calculation algorithms. 
We demonstrate our framework for wavelet-based ap- 
proximate representation of Gaussian MRF’s in the con- 
text of natural texture representation [ 101, [161, 1171, [291, 
t371. 

This paper is organized as follows: Section I1 describes 
the class of multiscale stochastic models that we use. Sec- 
tion 111 develops the details of the representation of 
Brownian motion discussed above, and generalizes this 
idea to allow the representation of all 1-D Markov and 
reciprocal processes. Section IV , then describes how these 
ideas can be further generalized to provide exact and ap- 
proximate representations of MRF’s. Section V illustrates 
how the approximate models can be used to represent 
GMRF texture models. In our opinion, one of the conclu- 
sions that can be drawn from these results is that this mul- 
tiscale modeling framework holds substantial promise as 
an alternative to the MRF framework as it possesses ad- 
vantages both in terms of the efficient optimal algorithms 
it leads to and in the expressive power it holds. Although 
a number of interesting and substantive problems remain 
to be investigated, practical applications of the framework 
are already emerging and several of these, as well as the 
conclusions of this paper, are discussed in Section VI. 

11. MULTISCALE STOCHASTIC MODELS 
In this section, we describe the classes of multiscale 

stochastic models to be used in this paper. A class of 
models for Gaussian processes is described first, followed 
by a generalization allowing for more general (non- 
Gaussian) processes. For simplicity, in this section we 
introduce the basic structure and form of our models in 
the context of representing 1-D signals and processes. The 
extension of the models to 2-D is conceptually straight- 
forward, adding only notational and graphical complex- 
ity, and thus we defer the introduction of this extension 
until Section IV, where it is needed. 

A .  Gaussian Multiscale Models 
The models presented here and introduced in [13]-[15] 

describe multiscale Gaussian stochastic processes indexed 
by nodes on the dyadic tree in Fig. 3. Different levels of 
the tree correspond to different scales of the process. In 
particular, the 2“‘ - ’ values at the mth level of the tree are 
interpreted as information about the mth scale of the pro- 
cess, where the notion of “information” at this point is 
abstract. For instance, values of the process at level m 
may correspond to averages of pairs of values at level 
m + 1. In this case, one can interpret the values of the 
multiscale process as scaling coeflcients in a Haar wave- 
let representation of the process at the finest scale [42]. 
However, there are many other possible interpretations of 
the information represented at each level in the tree. For 
example, values of the multiscale process at a certain level 
could also correspond to new details of the process not 
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tremely important property of the scale-recursive model 
(1) is that not only is it Markov from scale-to-scale, but, 
conditioned on the value of the state at any node, the val- 
ues of the states defined at the corresponding three subsets 
of nodes are independent. This fact implies that there are 
extremely efficient and highly parallelizable algorithms for 
optimal estimation and likelihood calculation based on 
noisy measurements y ,  E ( R p  of the process of the form: 

m = 2  

Fig. 3 .  The state vectors in multiscale stochastic models are indexed by 
the nodes of a dyadic rree. The tree is a set of connected nodes, in which 
each node has two offspring. The parent of node s is denoted sr and the 
scale, or level, of node s is denoted by m ( s ) .  

present at coarser resolutions. In this case, the process 
values would be interpreted as the wavelet coeflcients in 
a wavelet representation of a 1-D function or sequence. 
Alternatively, the values at different levels may corre- 
spond to decimated versions of the process at the finest 
scale. As we will see, this latter interpretation applies to 
our multiscale representations of reciprocal processes and 
MRF's. 

We denote nodes on the tree with an abstract index s, 
and define an upward shift operator 7 such that s 7  is the 
parent of node s, as illustrated in Fig. 3 .  Also, we define 
the scale of node s, i.e., the level of the node, as ~ ( s x ) .  
The stochastic tree process x, E (R" is then described via 
the following scale-recursive dynamic model: 

x , ~  = A,xSr + B,w, (1) 

under the assumptions' xo - 31. (0, Po) and w, - 31. (0, 
I), where w, E am and A ,  and B, are matrices of appro- 
priate size. The state variable xo at the root node of the 
tree provides an initial condition for the recursion. The 
driving noise w, is white and is independent of the initial 
condition. Interpreting each level as a representation of 
one scale of the process, we see that (1) describes the 
evolution of the process from coarse to fine scales. The 
term AsxSq represents interpolation or prediction down to 
the next level, and B, w, represents new information added 
as the process evolves from one scale to the next. The 
choice of the parameters As and B, and their dependence 
(if any) on the node s, depends upon the particular appli- 
cation and process being modeled [13]-[15], [35]. In the 
context of this paper, as we will see, the parameters of 
the model (1) are determined in a constructive fashion in 
order to represent the reciprocal process or MRF of inter- 
est. 

Note that any given node on the dyadic tree can be 
viewed as a boundary between three subsets of nodes (two 
corresponding to paths leading towards offspring and one 

where U ,  - 31.20, R,J and the matrix C, specifies mea- 
surements taken at different times or spatial locations and 
at different scales [2] [13]-[15], [34]. For example, as 
mentioned in Section I, the extension of one of the opti- 
mal estimation algorithms to 2-D and quadtrees is applied 
in [35] to develop a new scale-recursive approach to 
dense motion-field estimation in image sequences that is 
considerably faster than previously developed algorithms. 
In addition, the likelihood calculation algorithm can be 
used, together with the results presented here, for texture 
identification [34], [36]. An important point about these 
algorithms, which is of particular significance for 2-D 
processing, is that they are recursive and not iterative, 
and in fact have constant complexity per data point or 
pixel. This is in sharp contrast to the usual iterative al- 
gorithms associated with the processing of MRF's [25]. 

B. General Multiscale Models 
As we indicated in the preceding section, a basic prop- 

erty of the model (1) is the Markovianity of the state with 
respect to the ordering structure defined by the dyadic tree. 
More precisely, let Ti, i = 1, 2 ,  3 denote the three subsets 
of states which correspond to viewing node s as a bound- 
ary between the three subsets of nodes corresponding to 
paths leading towards the parent and two offspring nodes.' 
Then, 

By requiring only this property to hold, we obtain a much 
wider class of processes than that given by ( l ) ,  but still 
retain the essential properties leading to the efficient al- 
gorithms mentioned above. In particular, the property (3) 
not only implies that the tree processes are Markov in 
scale, from coarse-to-fine, but also that the conditional 
pdf of the state at node s, given the states at all previous 
scales, depends only on the state at the parent node sy 

~ x , \ x , , m ( o )  < m(s) (Xs I Xo, m (0) < m (SI) 
(4) - 

- Pr,lx,& I XS,). 

'The notation x - X ( m ,  P )  means the random vector x IS normally 'We stress the difference here between subsets of nodes (e.g., {s,, s2, 
distributed with mean vector m and covariance matrix P .  . . .  , } )  subsets of states (e.g.. {xy,,  x,, . . . }). 
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Such tree processes are naturally defined by specifying 
the parent-offspring conditional pdf's, along with a pdf 
for the state at the root node of the tree. A simple example 
of a stochastic process in this general class is the follow- 
ing discrete-state stochastic process x, E (0, 1 ,  - * * , L }  
with parent-offspring conditional probability mass func- 
tions given by 

wherep,,(Xo) = 1/(L + 1) forXo E (0, 1, . . . , L }  and 
Om(,) is a number between 0 and 1 which may vary with 
scale m(s) .  A class of processes with this structure and 
defined on a quadtree has been proposed by Bouman for 
segmentation applications [8], [9]. 

Finally, we stress that while (3) implies that a tree pro- 
cess is Markov in scale, the set of states x m  at scale m, 
viewed as a sequence of length 2"-' is not Markov for 
an arbitrarily chosen set of parent-offspring pdf's. This 
point can be appreciated by, for example, computing the 
joint pdf for the four values at the third level of the mul- 
tiscale process given by (S), and directly checking the 
conditions required for Markovianity of the single level 
~ e q u e n c e . ~  However, as we show in the next section, the 
parent-offspring conditional pdf's can be chosen such that 
the finest level of the tree process can be used to represent 
any 1-D Markov or reciprocal process, with higher levels 
in the tree corresponding to representations of the process 
at coarser resolutions. 

111. REPRESENTATION OF 1 -D RECIPROCAL AND 

MARKOV PROCESSES 
In this section, we describe the basic properties of re- 

ciprocal processes in one dimension, introduce and de- 
velop representations of reciprocal processes in terms of 
multiscale stochastic models, and present several exam- 
ples. 

A .  1-D Reciprocal Processes 
A reciprocal process is a first-order MRF on the real 

line. More precisely, a stochastic process z,, t E CR is 
reciprocal4 if it has the property that the conditional prob- 
ability distribution of a state in any open interval (TI, T2), 
conditioned on the states outside of this interval, depends 
only on the boundary states zTI, zTZ [22], [32]. That is, for 
t E (TI? T2) 

PZ, lZT, ,& IZTI7 Z T J  (6) - - 

where (TI, T2)' denotes the complement of the open in- 
terval ( TI, T2). Reciprocal processes defined on the inte- 
gers 2 satisfy the same property with the continuous in- 

'The process is Markov only if O m , , ,  = I / (L  + 1). In this case, the 
values of the process at any level in the tree are independent of one another. 

4The discussion here refers only to firsf-order reciprocal processes. Ex- 
tension to higher-order processes is straightforward [22]. 

~ 
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terval (TI, T2)  replaced by the discrete interval {TI + 1 ,  

Reciprocal processes are closely related to the class of 
Markov processes. A process z ,  on CR or 2 is Markov if 
past and future values of the state are independent given 
the present. This means that for t2 < t3 

(7) 
As discussed in [ l ] ,  [22], if a process is Markov then it 
is also reciprocal, whereas reciprocal processes are not 
necessarily Markov. 

B. Exact Multiscale Representations of 1-D Reciprocal 
Processes 

In Section I, we described a construction of a Brownian 
motion b, over the unit interval via midpoint deflection. 
As we noted, this corresponds precisely to one of the 
Gaussian multiscale stochastic models described in Sec- 
tion 11. To see this, consider the following multiscale pro- 
cess: At the coarsest level, the initial state xo is a three 
dimensional vector whose pdf is given by the joint pdf for 
the values of a Brownian motion at the initial, middle and 
final points of the unit interval 

TI  + 2 ,  0 . .  9 T2 - 11. 

Pz,,lz,,,t, 5 ,2(Zt, I Zt,, tl 5 t2) = Pz,i/z,?(z,3 I Z,,). 

Po = 0 0.5 0.5 (9) [l 005 1 
where we have used the facts that bo = 0, b, is an inde- 
pendent increments process, and for t l  < t2, b,, - b,, - 

Choosing a value for xo as a sample from this distri- 
bution corresponds to the first step in the midpoint deflec- 
tion construction of the Brownian motion. The second step 
in the midpoint deflection construction is the specification 
of values for the Brownian motion at the one-fourth and 
three-fourths points. In the context of our multiscale 
modeling framework, we define two state vectors at the 
second level of the dyadic tree in Fig. 3 ,  each again a 
3-tuple. The state on the left represents the values of the 
Brownian motion at the initial, one-fourth and middle 
points of the interval, [bo, bo 25, bo and the state on the 
right represents the corresponding values in the right half- 
interval, [bo 5 ,  bo 7 5 ,  b,]. The sample at the quarter point 
is given by linear interpolation of bo and bo5,  plus a 
Gaussian random variable with variance equal to the vari- 
ance of the error in the following prediction: 

X(0, t2 - [I) .  

bo25 = + b05)  + e0253 

eo25 - X(0, 0.125). (10) 

Likewise, bo,, is chosen by averaging the end points of 
the right half-interval, bo and b l ,  and adding in a random 
value, independent of, and identically distributed to, the 
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deflection term used to create the sample at the one-fourth 
point. 

The construction of and in the multiscale 
model is precisely the same as the mid-point deflection 
construction of these values. Values of the process at suc- 
cessively finer sets of dyadic points are generated in the 
same way. At the mth scale, the values of the process at 
t = k / 2 " ,  k = 0,  1, - * , 2"' are represented with 2"- '  
state vectors, each containing the values of the process at 
three points, as shown in Fig. 4. At any level, each state 
is a linear function of its parent, plus an independent noise 
term. Thus, this construction fits precisely into the mul- 
tiscale modeling frame work given by (1) (see Section 
111-C for the precise formulae for A,y and B J .  

Representation of more general 1 -D reciprocal pro- 
cesses via multiscale models is a simple extension of the 
above idea. To construct a multiscale model for a partic- 
ular reciprocal process z,, t E [0, 11, start by choosing the 
state at the coarsest level as a sample from the joint dis- 
tribution pzo,zo s , z ,  (Zo, Zo.s, Z,). This generalizes the choice 
in the construction above in which the state at the top level 
is chosen using the Gaussian distribution corresponding 
to a Brownian motion. The two state vectors at the second 
level are again the three-dimensional vectors [zo, z0.2s, z ~ . ~ ]  
and [ z ~ . ~ ,  zo.7s, zl] ,  where values for the half-interval mid- 
points are chosen as samples from the conditional distri- 
butions 

respectively. Since the process is reciprocal, z0.25 and 
are conditionally independent given the state at the first 
level, and thus the modeling structure fits precisely into 
the more general nonlinear model class described in Sec- 
tion 11-B. 

The construction above assumes that the process is de- 
fined over a continuous interval. In practice, we are typ- 
ically concerned with processes z, on a discrete interval, 
t E (0, 1, * . , T } .  If T = 2N for some integer N ,  then 
we can use essentially the same construction as for the 
continuous case above. Specifically, xo = [zo, zT/2,  ZT] is 
a random vector chosen from the appropriate distribution 
for the process of interest. The states at the second level 
are [ZO, ZT/4, zT/2] and [ z ~ / ~ ,  z3T/4, zTl, with the half-in- 
terval midpoints again chosen using the appropriate dis- 
tribution. Since there are only a finite number of points in 
the discrete process, only a finite number of levels are 
needed to exactly represent it. In particular, with T = 2N,  
N levels are required. 

There are several observations to be made about the 
continuous and discrete-time construction we have just 
described. The first is that there is no fundamental diffi- 
culty in choosing a point other than the midpoint at each 
level in these constructions. For example, in the construc- 
tion of Brownian motion, starting from the initial set of 
points represented in the root node state, we could next 

0 0.25 0.5 075 1 
Scale 

m =  I 

m = 2  $s: 
m = 3  

Fig. 4. The state vectors for the first three levels of a multiscale model 
representing Brownian motion, b,, are illustrated. At the first level, the 
state is the vector [bo, b, S .  b , ] ,  which is indicated by the three points at m 
= I surrounded by an ellipse. The points are placed directly below the 
points t = 0, 0.5 and t = 1 on the graph above to indicate that the state of 
the multiscale process at the first level consists of the values of the Brown- 
ian motion at those three points. Likewise, at lower levels, the states are 
indicated by sets of three points surrounded by ellipses, with the horizontal 
location of the points in correspondence with time indices in the graph at 
the top. At the mth level, there are 2"' ~ I state vectors, each of which con- 
sists of the values of b, at three consecutive dyadic points, and which to- 
gether represent the values of the Brownian motion at 2" + 1 distinct points 
on the interval [O. I ] .  

generate any pair of points on either side of 0.5, e.g., bo.l 
and However, the regular structure implied by the 
choice of mid-points may be of some value for processes 
such as Brownian motion which have stationary incre- 
ments, as they lead to models in which the model param- 
eters, such A,y and B, in ( l) ,  have very simple and regular 
characterizations as a function of node s and scale m(s ) .  
This regularity in turn leads to simplifications in the struc- 
ture of algorithms for estimation and signal processing, 
requiring fewer distinct gains to be calculated and, if par- 
allel implementation is considered, allowing SIMD (sin- 
gle instruction, multiple data) rather than MIMD (multi- 
ple instruction, multiple data) implementations. 

Secondly, in discrete-time, there will always be at least 
some degree of irregularity in the multiscale model if the 
process is defined over t E ( 0 ,  1, . . , T} and Tis  not a 
power of two. In particular, in such a case the structure 
of the tree and/or the state needed in the multiscale rep- 
resentation of this process will need to be modified. For 
example, consider a process defined over t E (0, 1, , 
lo}. In this case, we can develop a model of the type we 
have described in which the tree is of nonuniform depth 
and in which we do not have mid-point deflection at some 
nodes, as indicated in Fig. 5(a) (e.g., in the generation of 
the value at t = 3 given values at 0 and 5 ) .  Alternatively, 
as shown in Fig. 5(b), we may be able to achieve some 
level of (and perhaps complete) symmetry by generating 
more than one new point at some nodes (e.g., in Fig. 5(b) 
we generate values at both t = 2 and t = 3 given values 
at 0 and 5 ) .  

Furthermore, as we have indicated previously, while 
our development has focused on first-order reciprocal pro- 
cesses, the extension to higher-order models is straight- 
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Fig. 5 .  The state vectors are shown for two possible multiscale represen- 
tations for a reciprocal process defined on a discrete interval of the form 
(0, 1, . . . , 10). In (a). a dyadic tree with uniform state dimension, but 
nonuniform depth is used, whereas in (b) a dyadic tree of uniform depth 
but nonuniform state size is used. 

forward. Indeed, a Kth-order model defined on t E { 1, 2, 
. , K(T + l )} ,  where T is a power of 2, can be ac- 
commodated by grouping states at adjacent points into sets 
of size K.  Higher-order models can equivalently be rep- 
resented by simply redefining the state of the process zt to 
be a vector of appropriate dimension. 

The representations we have introduced to this point 
have obvious and substantial levels of redundancy. For 
example, the value of zT12 appears in the state vector at 
both nodes at the second level of the multiscale model we 
have described for discrete-time reciprocal processes. 
More generally, at the mrh level of the model for such a 
process there are 2"' I state vectors containing a total of 
3 X 2" ~ values, only 2"' + 1 of which are distinct. This 
redundancy is actually of minimal consequence for esti- 
mation and likelihood calculation algorithms based on 
these models. However, it is also easy to eliminate the 
redundancy using a simple modification of the construc- 
tion we have described. In particular, we may generate 
two internal points between each pair of points at each 
stage in the level-to-level recursion, yielding a four-di- 
mensional state vector. For example, if the reciprocal 
process is defined over t E { 1, 2 ,  - * . , 161, then we can 
choose the nonredundant set of state vectors illustrated in 
Fig. 6 .  In this case, a first order reciprocal process is rep- 
resented by a process with afour-dimensional state. In 
general, at the mth level of such a representation, there are 

state vectors representing 2"' + distinct values of the 
process. Again, in the situation where Tis  not a power of 
two, some irregularity in the structure will be introduced. 

Once we allow ourselves to consider such variants on 
the original midpoint deflection construction in which 
more than one new point is generated between each pair 
of previously constructed points, we see immediately that 
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m = 3  e&&& 
Fig. 6 .  The state vectors are shown for a nonredundant multiscale repre- 
sentation of a 1-D reciprocal process. These nonredundant representations, 
appropriately generalized for the 2-D case, are useful in the context of 
wavelet-based approximate representations of Gaussian MRF's. 
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m =  1 

m = 2  

m = 3  

Fig. 7. The state vectors are shown for a multiscale representation on a 
third-order tree. 

it is possible to generate multiscale representations on 
trees that are not dyadic. For example, consider a recip- 
rocal process defined on t E ( 0 ,  1, e . - , 3 N } .  This pro- 
cess is most conveniently represented on the regular struc- 
ture of a third-order tree, as shown in Fig. 7. This 
flexibility of the modeling framework allows the possi- 
bility of considering different tradeoffs in terms of level 
of parallelization and computational power of individual 
processors when implementing estimation and likelihood 
calculation algorithms such as those in [2], [13]-[15], 

Finally, it is of interest to note that the construction we 
have described, and its several variants, can be inter- 
preted as a noniterative Gibbs sampler. The Gibbs sam- 
pler introduced in [25] is an iterative algorithm for the 
generation of sample paths of MRF's on a discrete lattice. 
For 1-D discrete-time reciprocal processes, this procedure 
reduces to using the nearest neighbor conditional proba- 
bility functions to construct a Markov chain which has an 
asymptotic distribution equal to the correct distribution of 
the process. Specifically, at each step of the procedure we 
modify the current sample path by replacing the value at 
some point in time, say to with a random value chosen 
according to the conditional distribution for the process at 
that point given the current values of the sample path at 
to - 1 and to + 1. By cycling repeatedly through all of 
the points, the sample path is guaranteed to converge to 
one with the correct statistics. The procedure is concep- 
tually simple but computationally intensive, since the 
Markov chain requires many transitions for the probabil- 
ity function to converge. In contrast, in our construction, 
we successively generate samples at new points (e.g. 
midpoints) conditioned on values at previously generated 
points, which are nor nearest neighbors but rather bound- 
ary points that partition the time interval of interest. For 
this reason, and since we begin at the root node with a 

[34]-[36]. 
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decimated set of values with the correct distribution, we 
are guaranteed that at each stage the decimated process 
that is constructed has exactly the correct distribution. 
Thus, with this structure we visit each time point only 
once and construct a sample path noniteratively . 

n/ I 
' P ( t 3 ,  t2)nr2 ' P ( t 3 7  tl)n/l 
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where i o  - 32.0, no), E {  p r p T }  = Z61-T and E {  F r Z l }  
= 0. Define the state transition matrix as + ( t ,  T) and state 
covariance matrix as n, = E { z , z f )  [20]. Also, let 2 / ~ ~ r l , l j  

denote the conditional expectation zrz given the states z I ,  
and zri, and P,,,,,,,, the corresponding covariance. It is easy 
to show that for r l  < r2 < r3  

In fairness, an important point to note here is that if a 
reciprocal process is specified directly in  terms of a Gibbs 
distribution then the calculation of the nearest neighbor 
pdf's required in the Gibbs sampler is simple [25] .  The 
question then is whether it is also simple to determine the 
conditional pdf's (e.g., the pdf for z T / ?  given zo and zT)  
needed to implement the noniterative, multiscale proce- 
dures we have described. As we have seen for Brownian 
motion and as we illustrate further in the examples below, 
in many cases, including all vector Gauss-Markov pro- 
cesses and L-state Markov chains, closed form expres- 
sions can be derived for the multiscale representations. 
Further 1-D examples corresponding to the Ising model 
are discussed in [34]. 

C. Examples 
In this subsection we discuss several examples of re- 

ciprocal processes and their multiscale representations. 
The first examples describe multiresolution models for 
general vector Gauss-Markov processes specified in state- 
space form and allow us to illustrate the interpretation of 
these multiresolution models as providing approximations 
based on nonorthogonal expansions. In particular, our 
model for Brownian motion corresponds to the use of the 
so-called "hat" function [42] in this expansion, leading 
to linear interpolation between dyadic points, while a 
model for the integral of Brownian motion leads naturally 
to a multiresolution approximation using cubic interpo- 
lation. 

The second part of this subsection presents several dis- 
crete-state examples, the first of which investigates gen- 
eral L-state Markov chains and allows us to make contact 
with the models used in [8], [9] for segmentation appli- 
cations. The second example is a general two-state pro- 
cess, which is used to demonstrate that the class of mul- 
tiscale models is in fact far richer than the class of Markov 
processes. 

I )  Gauss-Markov Processes 

interval [0,  I ]  and given by5: 
Consider a vector Gauss-Markov process defined on the 

z ,  = F,z, + Grp,  (1 1) 

'While we focus here on the construction of multiscale models for con- 
tinuous-time Gauss-Markov processes, an exactly analogous set of calcu- 
lations can he performed for the discrete-time process z ,  + I = F,:, + G,p,.  

Using (12) and (13), we can obtain explicit formulae for 
the parameters A , ,  B, and Po in the multiscale model (1) 
as follows: Let us identify the abstract index s with a pair 
of numbers (m, cp) which denote the scale and horizontal 
shift of the node s, respectively. The horizontal shift cp, 
running from 0 to 2"' ' - 1, indexes the nodes at scale 
m. For instance, the root node is associated with the pair 
(1,  0), and the left and right nodes at the first level are 
associated with (2, 0) and (2, l), respectively. With this 
notation, the state at node s on the tree contains the values 
of the process z,  at the particular three points: 

From the description of the general construction, the form 
of the matrix A, in (1) is clear 

( L o  o I J 

In particular, if cp is even, then the first and third com- 
ponents of the state x ,  in (14) correspond to the Jirst and 
second components of x , ~ .  Thus, the identity matrices in 
( 1  5 )  for cp even simply map the first and second compo- 
nents of xT7 to the first and third components of x,. In 
addition, the midpoint prediction of z ( , ~  + is just a lin- 
ear function of the first two components of the parent 
xT,  which is expressed via the matrices K I  and K2 in the 
second row of (15). The matrix A ,  for cp odd is similar, 
and in fact is just a "shifted" version of A,  for cp even 
(reflecting the fact that the interpolation down to the state 
on the right depends on the last two components of xT7). 

The gain matrices in (1 5 )  can be computed directly from 
(12). Using standard formulae for the inversion of a block 



where rl  = 2p/2", t2 = (2p + 1)/2" and t3 = (2p + 
Likewise, the matrix B, in ( 1 )  has the following block 

2)/2". 

structure: 

L o J  
where K3 is any matrix such that K3KT = P,zl,l,t3 and, 
again, t l  = 2p/2", t2 = (2p + 1)/2" and t3 = (2p + 
2)/2". The matrix B, in (18) reflects the fact that no noise 
is added to the first and third components of the state x,, 
(which are simply copied from the preceding level), while 
noise corresponding to the estimation error (13) is added 
to the second. 

Finally, the initial covariance matrix Po associated with 
the root node state is given by 

Evaluating these at t ,  = 2p/2", t2 = (2p + 1)/2" and 
t3 = (2q + 2)/2", or using (16) and (17), we have K1 = 
K2 = 1/2.  Similarly, from (22) and (18),  K3 = 
1 /2" + 1) /2  . The conditional expectation 2,?1,,, ,~, which 
specifies A,  as just described, also provides us with the 
required formula for interpolating between dyadic sample 
points at any level in our multiscale representation and 
hence we can interpret this representation as providing a 
sequence of multiresolution approximations. For exam- 
ple, Brownian motion provides us with the linear inter- 
polation formula given in (21) and illustrated in Fig. 2. 
This corresponds to a multiresolution linear spline ap- 

proximation or, as also illustrated in Fig. 2, as a nonorth- 
ogonal multiresolution decomposition using the so-called 
"hat" function [42]. 

As a second example, consider the movement of a par- 
ticle whose velocity is given by a Brownian motion. This 
motion can be described using the following Gauss-Mar- 
kov process: 

In (23), the first component of z ,  is the particle position 
and the second component is its velocity. The state tran- 
sition matrix @ ( t ,  T )  and the state covariance matrix II, 
follow by straightforward calculations. Using these, one 
can show that the terms n,,@(t2, t J T  and @ ( r 3 ,  t 2 ) l l r z  in 
the leftmost block matrix on the right side of (12) contain 
only cubic powers of t2. Note also that the block matrix 
in the middle of the right side does not depend on t2. Thus, 
the interpolation of zt2 between r ,  and t3 is a cubic poly- 
nomial in t2 

where from (23), the second component of 2,21,1,,3 is just 
the derivative of the first. It is clear from the definition of 
2,zl,,,,3 that i,,~,,,,, = z,, and i,3,,l.,3 = zr3. These two con- 
straints provide four linear equations in the four unknown 
coefficients in (24), and thus uniquely determine the in- 
terpolating function (24). Note that the interpolating 
polynomial for the first component of the state has a con- 
tinuous derivative at the knot locations t = k/2", k = 0,  
1 ,  . * .  , 2". The interpolation of the first component of 
the state is shown in Fig. 8 for the first two levels of a 
sample path of the multiscale realization. 

2)  Discrete-State Processes 
Next, consider a general finite-state Markov process 

z ,  E { 1 ,  2, * . L }  defined over a discrete interval t E (0, 
1, * . *  , T } .  The probability structure of the process is 
completely determined by the initial condition Pr [ZO = k] 
for k E { 1, 2, . , L }  and by the one-step transition 
probabilities Pl, ,  _= Pr [z,  = i Jz,- = j ] .  We define the 
one-step transition matrix 

. .  I 1 P2.l PT.2 : * * P2,L 
P =  . 
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I 

Time 'o~-'AI Time 

Fig. 8. The first two scales in a multiscale representation of a process which 
is equal to the second integral of white noise are shown. The representation 
consists of samples of the process at dyadic points along with a piecewise- 
cubic interpolation. Compare these curves with the graphs of Fig. 2, which 
depict the piecewise linear interpolation of thefirst integral of white noise. 

Note that the multistep transition probabilities are given 
by powers of the matrix6 P 

Pr[z,+. = i l z ,  = j ]  = [P'li.J. (26) 

Using (26) and Bayes' rule it is straight forward to cal- 
culate that for f ,  < t2 < f 3  

Pr [z,, = j I zrl = i, z,, = kl 
[ p - I Z ]  [ , / ? - / I  

k . j  I / ,  i - - 
[ P t l - f ' ] k . l  

These conditional probabilities, in addition to the proba- 
bility function required for the state at the root node of 
the tree, namely 

Pr [Zo = i, 2 7 / 2  = j ,  Z T  = kl 

= [ P T / 2 ] k , j [ ~ T / 2 ] j , i  Pr [zo = i ]  (28) 

allow us to construct the multiscale representation of the 
process. Note that (27) is the counterpart of the condi- 
tional probability equations for Gauss-Markov processes 
given in (12) and (1 3), and that the pdf for the state at the 
root node (28) is the counterpart of the initial covariance 
matrix (20). 

One special case of this process is the following: 

(29) p . .  = 
1 . 1  c1 

with Pr [zo = i ]  = 1 / L ,  i = 1, 2, - , L. Neighboring 
states of this process tend to be the same, and when the 
process does change state, no particular change is pre- 
ferred. Thus, this model would seem to be a natural one 
to use in segmentation applications and can in fact be 
viewed as an alternative to the 1-D multiscale model (5) 
introduced in [ 8 ] ,  191. As noted in Section 11-B, (5) does 
not in general produce a Markov chain or reciprocal pro- 
cess at the finest level. On the other hand (29) and (30) is 

' [A ] , , ,  stands for the (i, j )  element of the matrix A 

a Markov model, with 

where t9 = ( L p  - 1)/(L - 1).  
Using (27), for this example we can write down the 

transition probabilities for the midpoint deflection model. 
In particular, assuming that T i s  a power of two, we can 
associate the state at node s with the following values of 
the process: 

ZZpT/2"'  

E x(m.p) = [ z ( 2 p T +  T ) / Z m  ] (32) 

z ( 2 p T +  2T) /2 '"  

where, as in (14), the pair of numbers (m ,  p) denote the 
scale and horizontal shift of the node s, respectively. 
Thus, to generate the state at node s, given the state at the 
parent node s r ,  we require the following conditional pdf: 

Pr [ Z ( Z p T +  T) /2" '  = j 1 22pT/2" '  = i, Z ( 2 p T + 2 T ) / 2 m  = k 1  
if i = j = k 

if i # j = k [ , E l / E 2  
{ 1 < l / c ; 2  if i = j  # k (33) 
Elt1/r2 i f i  = k # j  

E ,  / E 2  if i, j ,  k distinct 

where for 1 = 1, 2 5; = (1 + (L - 1)6T/2m- '+ '  ) / L  and 

To gain additional insight concerning the structure of 
the multiscale models, consider the particular example of 
a stationary two-state binary process with one-step tran- 
sition matrix and initial state probabilities equal to 

c;, = (1 - O T / 2 m - ' + ' ) / L .  

(34) 

For this process one can show that 

1 k 1 q + p L ( l - v - p ) k  v - v ( l - v - p ) k  
P =-[ 

v + p  p - p ( l - 7 - p Y  P + v ( l - v - P ) k  

(35) 
and thus using (35) one can build multiscale representa- 
tions for the class of stationary binary Markov processes. 

Moreover, the midpoint deflection structure can also be 
used to generate non-Markov processes on the tree. For 
instance, consider the following binary midpoint "selec- 
tion" process defined over t E ( 0 ,  1, - * * 2N} [43]: 

Pr [zlz = i 1 I/, = j ,  zI, = kl 
i f i  = j  = k v 

r0.5 

= 1 - p i f i  # j a n d j  = k (36) 

i f j  # k 
k ]  = 1/8  for all i , j ,  k ,  with Pr [zo = i, Z2N-  I = j ,  z2\ = 

where i, j ,  k E { 1, 2) and where r l ,  t2, tj comprise any 
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3-tuple of dyadic points corresponding to one of the state 
vectors in the multiscale representation. At the coarsest 
scale of this process, the three components of the state 
vector xo are independent and identically distributed ran- 
dom variables, each equally likely to be 1 or 2. It is easy 
to show that the process resulting from this construction 
is not Markov in general, and thus we can conclude that 
the set of binary stochastic processes which can be con- 
structed within the midpoint deflection framework is 
strictly larger than the class of binary Markov processes 
over intervals. 

In fact, a bit of thought shows that the class of pro- 
cesses realizable by multiscale models is quite a bit larger 
than the class of Markov chains. Indeed, any binary sto- 
chastic process defined over t E (0, 1, . . . , 2N} when 
represented via midpoint deflection has a probability 
structure which is determined by 4(2N - 1) parameters, 
corresponding to the required conditional probability 
functions. In particular, the conditional probabilities Pr 
[z,, = i 1 z,, = j ,  z,, = k]  for specific choices o f t ,  < t2 < 
t3 are uniquely determined by the four parameters AI ,  J ,  ( i ,  
j )  E ((1, 11, (1, 2), (2, I) ,  (2, 2 ) ) ,  where 

Pr [I,? = 1 lz , ,  = i ,  z,, = j l  = h J .  (37) 

Since the process is represented using an N level tree, 
there are 2N - 2 of these conditional densities which must 
be specified, corresponding to each of the nodes except 
the root node. The probability function for the state at the 
root node requires seven parameters, and thus the total 
number of parameters to be specified is 4 (2N - 2) + 7. 
In contrast, a nonstationary binary Markov process de- 
fined over the time interval t E ( 0 ,  1,  * * , 2 N }  requires 
at most I + 2 X 2N parameters (one corresponding to the 
initial probability, and 2 for each transition from t to t + 
1, for f = 0, 1, * . * , 2N - 1). Since each of the param- 
eters in each case is a probability, i.e., a number in the 
interval [0, 11, we see that the set of processes arising 
from N-level multiscale models is in one-to-one corre- 
spondence with the (4(2" - 2) + 7)-dimensional unit 
cube, while the set of nonstationary Markov chains over 
the same length interval corresponds to the (1 + 2 x 2 N ) -  
dimensional unit cube. Thus, for N > 1, Markov pro- 
cesses constitute only a "thin" subset of the entire class 
of binary processes constructed on the tree. 

IV. REPRESENTATION OF 2-D MARKOV RANDOM 
FIELDS 

In this section, we first review a few of the properties 
of MRF's and then describe how they can be represented 
exactly using multiscale models. We then use these exact 
representations to motivate a family of approximate rep- 
resentations for Gaussian MRF's employing 1 -D wavelet 
transforms. 

A .  2-0  Markov Random Fields 
Markov random fields are a multidimensional general- 

ization of 1-D reciprocal processes [4], [22], [25], [29], 

[45]. A continuous space stochastic process z,, t E CR" is 
said to be a Markov random field if the conditional prob- 
ability distribution of the process at a point in the interior' 
Q\F of a closed set Q with boundary r ,  conditioned on 
the values of the process outside of Q\F, depends only on 
the values of the process on the boundary set r. That is, 
for t E Q\r: 

Pz,lz,,T~(n\r)~ (Zt I Z7,  7 E (Q\r)") 
- ~ z , l z , , r E r  (Zr I Z7, 7 E r). (38) 

The definition for MRF's on discrete lattices requires the 
specification of a "boundary" of set in 2" [22], [45]. 
Typically, this is accomplished through the specification 
of a neighborhood system. The idea is that the probability 
distribution of z l ,  conditioned on the values of the process 
on the rest of the lattice, depends only on the values of 
the process in the neighborhood o f t  

- 

(39) - 
- Pz,/z,,  TED,(^, I z7, 7 E 

In this paper, we focus on 2-D MRF's, i.e., where t E 
Z *, and in this context there is a hierarchical sequence of 
neighborhoods frequently used in image processing ap- 
plications [lo].  The $rst order neighborhood of a lattice 
point consists of its four nearest neighbors, and the sec- 
ond-order neighborhood consists of its eight nearest 
neighbors. A given neighborhood system implicitly de- 
termines the boundary set of any particular region. In par- 
ticular, given the neighborhood system D,, t E Z 2 ,  the 
boundary r of a subset Q of Z 2  is given by the set of 
points which are neighbors of elements in Q ,  but not ele- 
ments of Q .  

B. Exact Multiscale Representations of 2 - 0  Markov 
Random Fields 

The representations of 1 -D reciprocal and Markov pro- 
cesses in Section I11 relied on the conditional independ- 
ence of regions inside and outside of a boundary set, and 
we use the same idea here to represent MRF's. The multi- 
scale model is identical to that used in the 1-D case, ex- 
cept that it is defined on a quadtree instead of a dyadic 
tree. That is, we consider multiscale models in which s 
denotes a node on the quadtree depicted in Fig. 9 and 7 
is a four-to-one operator, i .e . ,  each node is the parent of 
four descendant nodes at the next level. 

Consider now a 2-D MRF I, defined on a (2N + 1) X 
(2N + 1) lattice. The construction of reciprocal processes 
in one-dimension started with the values of the process at 
the initial, middle and end points of an interval. In two 
dimensions, the analogous top level description consists 
of the values of the MRF around the outer boundary of 
the lattice and along the vertical and horizontal "mid- 
lines" which divide the lattice into four quadrants of equal 
size. For instance, on a 17 x 17 lattice, the state vector 

'The notation Q\r denotes the set of elements in D which are not in 
(in this case, the interior of Q ) .  
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Fig. 9. The quadtree structure shown is used for the multiscale represen- 
tations of Markov random fields (MRF’s). Each node of the quadtree has 
four offspring, denoted saNW. saNF, sasE, and sasW. Again, the parent of 
node s is denoted s T ,  and in this case 7 is a four-to-une shift operator. 

0 Boundary points 0 Mid-line pomts 

Fig. 10. The state vector at the root node in the MRF multiscale represen- 
tation consists of the MRF values at the boundary and “midline” points, 
shown in the shaded region here for a 17 X 17 lattice. To construct a 
sample path of the MRF using the “midline” deflection construction, we 
start by choosing a sample from the joint distribution of the values in the 
root node state. 

xo at the root node of the quadtree contains the values of 
the MRF at the shaded boundary and midline points shown 
in Fig. 10. The boundary and midline points are denoted 
with 0 and 0 symbols, respectively. In general, the state 
at the root node is a (6 X 2N - 3)-dimensional vector 
(given some ordering of the boundary and midline lattice 
points). To construct a sample path of the MRF, we begin 
by choosing a sample from the joint pdf of the MRF val- 
ues defined on the boundary and midline set. This is the 
2-D counterpart to choosing a sample from the pdf 
pzo,ws,z ,  (&, Zo.s, Z,) when constructing a 1-D reciprocal 
process. 

In the 1-D case, transitions from the first to second level 
consisted of obtaining a sample from the conditional dis- 
tribution of the state at the midpoints of the left and right 
half-intervals. In two dimensions, we predict the set of 
values at the midlines in each of the four quadrants. The 
components of the four state vectors at the second level 
are illustrated in Fig. 11 for the 17 X 17 MRF. The points 
corresponding to the state in the northwest corner are 
shaded, and correspond to a scaled and shifted version of 
the points at the top level. The boundary points of the 
northwest state are denoted with open and blackened dia- 

0 Boundary points at both first and second levels 
Boundary points at the second level and mid-line 
points at the first level 

0 New (second level) mid-line points 

Fig. 1 1 .  The components of the four state vectors at the second level of 
the tree are scaled and shifted versions of the components of the state at 
the root node. For instance, the state corresponding to the north-west cor- 
ner at the second level of a representation for an MRF defined on a 17 X 
17 lattice consists of the values of the process at the shaded points. The 
values of the MRF at the boundary points in these second level states are 
mapped down from the root node state, and the values at the new midlines 
in  each of the four quadrants are chosen independently. In particular, the 
new midline values in any given quadrant are independent of values of the 
MRF outside that quadrant, given the boundary. Thus, in the construction 
of a sample path, we can choose values along each of the four sets of new 
midlines independently and in parallel. This process can then be iterated, 
by defining the states of the multiscale process at lower levels in the quad- 
tree with respect to successively smaller subdomains, and constructing the 
process (along boundary and midline points) independently within each 
subdomain. 

mond symbols and the new midline points are denoted 
with open circles. Note that the four states at the second 
level share the black diamond midline points of the state 
at the first level. This is analogous to the 1-D construction 
in which the mid-point at the first level corresponds to an 
end point in both states at the second level (cf. Fig. 4). 
Each of the states at the second level consists of points 
carried down from the root node (namely the diamond 
boundaries of each of the quadrants in Fig. 11) as well as 
new midline points within each quadrant (the open circles 
in Fig. 11). These midline values are chosen as samples 
from their joint conditional distribution, given the state at 
the root node. The key point here is that given the values 
of the field around the boundary of each quadrant, the 
values of the field along the midlines of that quadrant are 
independent of the values outside this quadrant. Said an- 
other way, the four states at the second level of the tree 
are conditionally independent given the values of the MRF 
on their respective boundaries, i.e., given precisely that 
information captured in the state at the first level. Thus, 
the values along the new midlines at the second level can 
be chosen independently and in parallel, in analogy to the 
way the two mid-points in the 1-D representations are 
chosen. 

Now, we can iterate the construction by defining the 
states at successive levels to be the values of the MRF at 
boundary and midline points of successively smaller 
subregions. Indeed, by subdividing each quadrant in the 
same way as we did in going from the first level to the 
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second, at the mth level the 4”- ’ state vectors each con- 
tain the values of the MRF at 6 >< 2N-m + ’ - 3 boundary 
and midline points. Note that the dimension of the state 
varies from level to level, reflecting the obvious fact that 
the number of points in the boundary of a 2-D region de- 
pends on the size of the region. The multiscale represen- 
tation has N levels, and each of the 4N- ’ states at level N 
represent 9 values in a 3 X 3 square. Because of the Mar- 
kov property, at each level the states are conditionally in- 
dependent, given their parent state at the next higher level. 
Thus, the MRF can be thought of precisely as a multiscale 
stochastic process, and, in the Gaussian case, this leads 
to models exactly as in (1). 

As in the 1-D case, there are several comments to make. 
First, we have described a construction in which the lat- 
tice is square. If the MRF is defined over a nonsquare 
lattice, then the same basic approach will work. In partic- 
ular, all we require is some sequence of subregions whose 
boundaries eventually become dense in the set of lattice 
points. Likewise, while our construction applies to first 
or second order MRF’s, higher-order models can be rep- 
resented by taking as state the values of the process along 
boundaries and mid-lines of “width” greater than one. 
Second, just as our 1-D multiscale model has a natural 
interpretation in terms of decimation (e.g., if the points 
on the finest scale correspond to integers, i.e., to 2 ,  then 
at the next most fine scale they correspond to even inte- 
gers, i.e., 2 2 )  so does our 2-D model, although it differs 
from the usual notion of decimation in 2-D. Specifically, 
if the points on the finest scale correspond to 2’ = 2 x 
2 ,  then the usual notion of decimation would be 2 2  x 
2 2 .  In contrast, the notion of decimation associated with 
our multiscale models yields the set ( 2 2  x 2 )  U(2 x 
2 2 )  at the next scale. 

Indeed, the obvious difference between our multiscale 
MRF representations and those of [26], [27], [30] is that 
these latter representations do correspond to multiscale 
representations using the usual notion of decimation. That 
is, the usual decimation leads to representations of the 
field at coarser levels which correspond roughly to 2-D 
lowpass filtered and subsampled versions of that at the 
finest level. Hence, the interpolating functions which gen- 
erate a process at the finest level from a coarse scale sam- 
ple naturally correspond to 2-D Haar scaling functions or 
more generally to localized interpolation operators such 
as those commonly used for coarse-to-fine grid transfer in 
multigrid applications. In contrast, the interpolation func- 
tions in our representation naturally correspond, in the 
case of Gaussian MRF’s, to the solutions of specific dif- 
ferential (or partial differential) equations determined by 
the covariance structure of the process. To see this more 
clearly, note that the linear spline interpolation formula 
for Brownian motion given values at two points zo = Zo 
and zT = ZT is simply the solution to the second-order 
differential equation 

(40) 
d 2  1 - d t z  Zr lO,T  = 0. 

Similarly, the interpolation of the first component of the 
second-order process (23) corresponds so the solution of 

given zo, io, zT and iT. The 2-D example analogous to the 
linear spline model for Brownian motion is Laplace’s 
equation V 2 i  = 0 given values of z on the boundary of a 
square region, while the counterpart to (4 I ) ,  correspond- 
ing to a second-order model, would be the solution of a 
homogeneous biharmonic equation V 4 i  = 0 given bound- 
ary values and normal derivatives along the boundary (see, 
for example [ 3  11,  [44], for related discussions). 

Finally, note that it may not be possible to explicitly 
calculate the scale-to-scale conditional pdf‘s required to 
represent an MRF which is specified in terms of local (in 
space) conditional pdf‘s. Indeed, even if this were pos- 
sible in general, it is unlikely that the exact representa- 
tions of MRF’s would lead to radically more efficient al- 
gorithms for signal processing, since in this case the scale- 
recursive structure comes at the price of a high dimen- 
sional state. Nevertheless, these exact MRF representa- 
tions provide substantial evidence that the multiscale 
model class is much richer than its simple structure sug- 
gests. Moreover, as we show in the next subsection in the 
context of Gaussian MRF’s, they can be used as a guide 
towards other far more parsimonious multiscale models 
which not only can be used to represent physical pro- 
cesses of interest, but which also lead to efficient algo- 
rithms. 

C. Approximate Multiscale Representations of 2 - 0  
Gaussian Markov Random Fields 

In this subsection we propose a family of approximate 
representations for Gaussian MRF’s that provide low-di- 
mensional alternatives to exact multiscale models. The 
idea behind the approximate representations is to take as 
the state not boundaries of regions, but rather some re- 
duced-order representation of them. Conceptually, we 
would like to retain only those components of the bound- 
ary that are required to maintain nearly complete condi- 
tional independence of regions. In general, exact condi- 
tional independence will be lost unless the entire boundary 
is kept, but as we discuss and illustrate here and in the 
next section, in many cases only a small amount of infor- 
mation needs to be retained in order to obtain adequate 
representations of the important statistical and qualitative 
features of an MRF. 

The basis for our approximation methodology is a 
change of coordinates in representing the values of MRF’s 
along 1-D boundaries. A family of models can then be 
generated by making different choices for the set of CO- 
ordinates to be retained and those to be discarded at each 
level of the multiscale representation. These models range 
from being exact (if all coordinates are retained) to in- 
creasingly approximate and simple as fewer and fewer 
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Fig. 12. The state at the root node in a nonredundant exact multiscale rep- 
resentation of an MRF defined on a 16 X 16 lattice consists of the values 
of the process at the shaded points. The redundancy in the exact represen- 
tation is eliminated by generating the values of the process along two mid- 
lines instead of one. The figure also illustrates the sets r,,,, and the se- 
quences b7,, ,J ( k )  defined in the context of approximate representations in 
Section IV-C. The / 3 7 . , , J ( k )  are 1-D sequences corresponding to values of 
the MRF along boundaries of square subdomains (which, at the first level, 
are the white areas in the figure). These sequences overlap at the comer 
points of boundaries. In the figure, this is represented by putting two sym- 
bols at the same lattice point, e.g., V and D in  the upper left comer. The 
approximate representations take as the state subsets of the coefficients in 
1-D wavelet expansions of the o y , , . , ( k )  sequences. 

coefficients are retained. While one can also imagine us- 
ing a number of different coordinate transformations, such 
as 1 -D Fourier series or Karhunen-Lobe expansions, we 
have chosen here to make a choice consistent with the 
self-similar structure of our multiscale representations. 
That is, we will use the 1-D wavelet transform to repre- 
sent the values of our field along 1-D boundaries. 

The approximate models are derived from a class of 
nonredundant exact representations for MRF’s which are 
the counterpart of those illustrated in Fig. 6 for 1-D Mar- 
kov and reciprocal processes. In particular, the states at 
the first and second levels of this exact representation of 
an MRF defined on a 16 X 16 lattice are shown in Figs. 
12 and 13. In a multiscale representation of an MRF de- 
fined on a 2N X 2N lattice, a state at the mth level repre- 
sents the values of the MRF at 16(2Np” - 1) points. We 
denote this set of points as rs, and we view it as the union 
of four mutually exclusive subsets. In particular, consider 
the 112 points associated with the root node state in Fig. 
12. We can view these as four sets of 28 points, each of 
which corresponds to the boundary of one 8 x 8 quad- 
rant. In general, we can divide rF into four sets of 
4(2N-m(s) - 1) points in a similar fashion, and we denote 
these subsets as rs, i ,  i E { N W ,  N E ,  SE, S W } ,  where the 
subscripts refer to the spatial location of the subset. With 
s = 0 corresponding to the root node, the four subsets 
r0.;, i E { N W ,  NE,  SE, S W }  are illustrated in Fig. 12 with 

Fig. 13.  The four states at the second level of the tree in a nonredundant 
exact multiscale representation are scaled and shifted versions of the state 
at the root node, and are shown here for an MRF defined on a 16 X 16 
lattice. The state in the northwest corner contains the values of the process 
at the shaded points in the northwest 8 x 8 quadrant. With the node s 
corresponding to this northwest comer state, the sets r , , ,  and sequences 
P, ,NW,J are illustrated. Note again that the sequences b,,,,, overlap. 

the symbols 
I’o.NW - V ,  4, D, A, and combinations of these (42) 

~ O , N E  er 0 (43) 

rO,SE - (44) 

r0.sw - O .  (45) 
Next, we interpret the set of values {z , ,  t E rs,,} for 

each of these quadrant boundaries, as four 1-D sequences 
of length 2N-m(s), corresponding to each of the sides of 
the quadrant boundary. Thus, there are a total of 16 1-D 
boundary sequences associated with the set r,, and we 
denote these as: i E { N W ,  NE,  SE, S W } ,  j E {hu, 
hl, vl, vr}, where the latter four subscripts refer to the 
“horizontal, upper,” “horizontal, lower,” “vertical, 
left,” and “vertical, right,” respectively. For instance, 
for the 16 x 16 lattice, the sequences f i O , , , J  are shown in 
Fig. 12. Note there is overlap in the sequences f i s , r , J .  For 
instance, & N W , h u  and f i o , N W , ( , I  both contain the value of 
the process at (O,O), and this fact is reflected in Fig. 12 
by the presence of both V and D at this lattice point. 

Let us now consider the simplest of our approximate 
models. Specifically, we take as the state of the approxi- 
mate representation just the averages of the sequences 
Ps. r .J .  The state at any node then has sixteen components 
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where 

I ,  h l  
(47) 

for i  E {NW,  NE, SE, S W }  and where denotes the 
average of the sequence @ 5 , 1 , , ( k ) .  Given the definition of 
the state (46) and (47) (which will be generalized shortly 
to allow general wavelet transform approximations to the 
sequence os, the conditional parent-offspring pdf‘s 
need to be obtained from the MRF being approximated. 
Instead of using these directly, we make an additional ap- 
proximation. Let us define the downshift operators a,, i E 
{NW,  NE, SE, S W } ,  which are the counterparts of the 
upshift operator 7 defined previously (see Fig. 9). In par- 
ticular, we denote the four offspring of node s as sa,, i E 
{NW,  NE, SE, S W } ,  where the subscript refers to the rel- 
ative spatial location of the offspring. In the exact, non- 
redundant representations, the following relationship 
holds: 

pz , , t ersm, l zT ,r~r ,  (G t E r \ a ,  lzr, 7 E rs) 
- - ~ ~ ~ , ~ ~ r ~ ~ , ~ ; ~ . ~ ~ r ~ , ( Z , ~  t E r s J Z T ~  7 E r5.J (48) 

for i E {NW,  NE, SE,  S W } .  What (48) says is that the 
conditional pdf for the state at node sai depends only on 
a subset of the values making up the state at the parent 
node s. For example, in the case of the NW offspring of 
node, s, the state in the exact representation at node saNw 
(that is, z t ,  t E r,,,,) depends only on the NW component 
of the state at node s (that is, on the values zf, t E r.,,Nw). 
Thus, in the exact representation the state at node saNw is 
independent of the values of the MRF at the points in 
rs,NE, rs,SE and I’s,sw, given the values at r5,NW. In con- 
trast, it is not true in general in the simple approximate 
representations just described that the state x,,~, is inde- 
pendent of x , , , ~ ~ ,  x , , ~ ~  and x,~, Sw, given x , , ~ ~ .  That is, sim- 
ply knowing the average value of a process along each 
side of a square region does not completely decorrelate 
the values of the field inside and outside the region. 
Nevertheless, in our approximate modeling framework we 
will make exactly this assumption. More precisely, our 
approximate modeling methodology yields a sequence of 
models corresponding to differing resolution approxima- 
tions to the boundary processes @ s , l , , ( k ) ,  where (46) and 
(47) corresponds to the coarsest of these. Using the same 
symbols x,,; and x, to denote the state of components and 
state of any of these models, we construct our model by 
making the approximation corresponding to assuming that 
the conditional independence property holds, i .e . ,  that 

~ x s ~ , i x \ ( X s a ,  I Xs) = ~ x ~ ~ , , s , , ,  (Xm, I Xs, i ) .  (49) 

Since the field being approximated is assumed to be 
jointly Gaussian, the conditional density function (49) is 

parameterized by conditional means and covariances as in 
(12) and (13) 

Px,, / X (  l(xs,, I XS.1) = 32 (Xs,,; %a,, PS,,) 

&a, = W x , , ,  I x s ,  I >  

psa, = E{(x,,, - -f“(x,a, - %Y$)Tl. 

(50) 

(51) 

(52) 

One can then derive the matrices A,, B, and Po in the 

(53) 

(54) 

(55) 

(56) 

where 

multiscale representation of the random field 

= LKNw> O> ‘9 ‘1 

A,,,, = 10, KNE, 0 ,  01 

Am, = 10, 0 ,  KSE, 01 

A,,,, = 10, 0,  0,  Kswl 

where 

Kl = % , , ~ S T I >  (%,,c,l})-l. (57) 

Likewise, B,,,BTa, = P,,, and Po = E { x o x l }  The assump- 
tion (49) is directly reflected in (53)-(56). In particular, 
the state x,,, is a function only of the ith component of the 
parent [cf. (46)]. Thus, the assumption in (49) leads to 
relatively simple level-to-level interpolations. Indeed, if 
the MRF is stationary, from symmetry we see that not 
only do the parameters A,, B, depend only on the scale of 
node s, but also, KNw = KNE = KSE = Ksw. Thus, in this 
case, the representations are quite parsimonious, and more 
importantly, this simple structure, in addition to the sub- 
stantially reduced dimensionality of the approximate rep- 
resentations, leads to considerable efficiencies for 
smoothing [ 131, [ 141 and likelihood calculation algo- 
rithms [34], [36]. 

As we have indicated, the generalization of the coarsest 
approximate model, with state given by (46) and (47) cor- 
responds to using wavelet transforms to obtain different 
resolution representations of the sequences p,, !,, (k). We 
utilize the wavelet transform for discrete sequences as de- 
scribed in [6]. The wavelet transform of @,,,,,(k), k E { l ,  
2, . e ,  2N-m(s)} is a set consisting of a single “scaling” 
coefficient and 2N- m ( s )  - 1 “wavelet” coefficients’. 

These are computed recursively according to9 
n = 2 M  

f J - 1  = h n f $  i Zk - 2 (58) 

dJ-’ = g n f i i 2 k - 2  (59) 

n = l  

11 = 2M 

n =  I 

‘To be concrete, we assume that the wavelet transform filter/downsam- 
ple operations are iterated until the sequence of scaling coefficients, i .e.,  
the downsampled output of the lowpass component of the wavelet filter 
bank, is of length one. More generally, one could stop at any point in the 
decomposition. 

’Our notation is slightly different from that in [ 6 ] .  In particular, in [ 6 ] ,  
increasing superscript j corresponds to lower levels in the decomposition 
(i.e.,  fewer wavelet and scaling coefficients), while here it corresponds to 
higher levels. 
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where the scaling coefficients and wavelet coefficients are 
fi and d i  respectively, h,, g, are impulse responses of 
quadrature mirror filters [19] of length 2M, and where 

f f - m ( s )  + = Os,,,, ( k ) .  We say that a pth-order represen- 
tation of the sequence P s , l , J ( k )  is a set consisting of the 
scaling coefficient and the wavelet coefficients up to order 
p in the wavelet expansion, and that a zeroth-order rep- 
resentation is a set consisting of just the scaling coeffi- 
cient. We denote the operator which maps the sequence 

( k )  to its pth-order representation as Wp. Note that if 
p = N - m(s) the representation is complete, since it 
contains the scaling coefficient and all of the wavelet coef- 
ficients. F o r p  > N - m(s) we take Wp = WN-m(s)  (i.e., 
if there are fewer than p scales of wavelet coefficients, we 
keep all of them). 

The generalization of the approximate representation 
based on averages of the 1-D sequences P,, f , J  ( k )  discussed 
previously now just involves a new definition for the state 
variables x,. In particular, we simply replace (47) with 

where Wp/3s,I,J denotes the pth-order representation of the 
sequence PF, l ,J  ( k )  [a vector of length 2p if p I N - m(s) 
and of length 2N-m(s) if . p > N - m(s)]. Thus, the state 
at any given node consists of sixteen components, each a 
pth-order representation of one of the 1-D boundary se- 
quences f i s , l , , (k )  associated with the state x,. Using this 
generalized definition for the state, and making the as- 
sumption in (49), the parameters A,, B, and Po can be 
again computed in the essentially same way as we did for 
the simpler approximate models. 

Several comments are in order. First, note that a simple 
generalization of the above representation would be to al- 
low diferent levels of approximation for different com- 
ponents of the boundary sequences (e.g., one might use 
a p\h-order approximation for “vertical” boundary se- 
quences os, j E { vr, vl } and a p :-order approximation 
for “horizontal” boundary sequences P s , f . J , j  E {hu, h l } ) .  
Examples of such a generalization will be given in the 
next section in the context of approximate representations 
for MRF texture models. 

Second, note that even if all of the wavelet coefficients 
are retained at all levels (i.e.,  if the boundary represen- 
tations are complete), the representation we have just de- 
scribed will be exact only if the GMRF is Markov with 
respect to either a first or second-order neighborhood. As 
we have discussed, higher-order neighborhoods lead to 
thicker boundaries, and this leads naturally to the idea of 
taking wavelet expansions of boundaries of width two or 
more, and utilizing these as the state. With this expanded 
family, the approximate representations can be made ex- 
act for any GMRF by keeping complete wavelet expan- 
sions of all boundary sequences /3s, f ,J  ( k )  at all scales. 

Third, not only has dimensionality been reduced in 
going from the exact to the approximate representations, 
but it has, in fact, been made constant at the first N - p 
levels of the quadtree, where p is the order of the approx- 
imation and the MRF is defined on a 2N X 2N lattice. In 
particular, the dimension of the state at node s is equal to 
16 X 2p, for m(s)  I N - p .  When m = N - p ,  the 
boundary sequence representations are complete and the 
dimension of the state drops by a factor of 2 at each level 
thereafter. 

Finally, the order of the approximations required to 
achieve a desired level of fidelity in the approximate 
model depends, of course, on the statistical structure of 
the specific GMRF under study. In the next section we 
present examples which illustrate this for a particular 
GMRF and a number of different approximate represen- 
tations. 

V .  EXAMPLES OF APPROXIMATE 2-D GAUSSIAN MRF 
REPRESENTATIONS 

In this section, we present examples of multiscale ap- 
proximate representations of a particular Gaussian MRF. 
GMRF’s have been widely used in the context of texture 
representation [lo], [ 121, 1161, [ 171, [37] and correspond 
to the following 2-D autoregressive model [ l l ] ,  [29]: 

(61) 

where hk./ = hPk , - / ,  D is the neighborhood [22] around 
the origin (0, 0), the Gaussian driving noise e, , ,  is a lo- 
cally correlated sequence of random variables, and (i, j )  
E ( 0 ,  1, * * * , TI - l }  X (0, 1 ,  * , T2 - l}.  In 
addition, as in [lo], [ l l ] ,  we interpret the lattice as a to- 
roid, i.e., the independent variables ( i ,  j )  in (61) are in- 
terpreted modulo (TI, T 2 ) .  For instance, the first-order 
neighborhood of lattice site (0, 0) is given by the set { (1, 
O), (0, l ) ,  (0, T, - l ) ,  (TI - 1, O)}. Finally, the corre- 
lation structure of the driving noise is given by 

i f k = l = O  ro if ( k ,  I )  + D 

E{e,,Je,Pk,,-l} = -a2hk./ if ( k ,  1 )  E D (62) 

and has the property that E(e,, ,zk, /}  = ~ ~ 6 , , ~ 6 , , / .  Using 
this latter property, along with the fact that the random 
field is Gaussian, one can prove that the autoregressive 
model above does imply that z,,, is an MRF [45]. We refer 
to (61) as an nth-order MRF model if the set D corre- 
sponds to the nth-order neighborhood. 

The specific statistics and correlations [as in (53)-(56)] 
required to construct our multiscale models can be com- 
puted efficiently using 2-D FFT’s because of the fact that 
correlation matrices for these random fields, assuming 
lexicographic ordering, are block circulant with circulant 
blocks and hence these random fields are whitened by the 
2-D Fourier transform [29]. Indeed, as described in 1341, 
the structure of the approximate representations and the 
stationarity of the GMRF allow us to compute the re- 
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Fig. 14. A sample path of a Gaussian MRF representing the "wood" texture of [ 121 is shown in (a). Parts (b)-(d) illustrate 
sample paths of approximate representations of  the MRF based on the Haar wavelet. The structure of the MRF suggests using 
approximations which use relatively low order representations of vertical boundaries. The approximate representations used to 
generate (b)-(d) used zeroth-order representations of  the vertical boundaries. and second. fourth and sixth-order representations 
for the horizontal boundaries. respectively. 

quired correlations with only 2p 1-D Fourier transform 
operations per level of the representation, where p is the 
order of the approximation. Furthermore, these calcula- 
tions need only be performed once, since they are used 
simply to determine the parameters in the multiscale ap- 
proximate model. 

Fig. 14(a) illustrates a sample path of a fourth order 
GMRF corresponding to a "wood" texture [121, and three 
approximations of this MRF based on the Haar wavelet 
are shown in Fig. 14(b)-(d). This texture clearly has a 
very asymmetric correlation structure, and thus we rep- 
resent the vertical and horizontal boundary with different 
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levels of approximation. In Fig. 14(b), the horizontal and 
vertical boundaries are represented with second and zer- 
oth-order approximations respectively. The boundary ef- 
fects apparent in Fig. 14(b) are a direct result of the fact 
that (48) does not hold for the approximate representa- 
tions, i.e., values of the MRF in distinct quadrants are 
not independent given incomplete information about the 
boundary and mid-line values. In Fig. 14(c) and (d), the 
horizontal boundaries are represented with fourth and 
sixth-order approximations, respectively, whereas the 
vertical boundary is again represented with a zeroth-order 
approximation. As the complexity of the representation 
increases, the sample paths of the approximate random 
fields have fewer boundary effects. The approximate rep- 
resentations used to generate Fig. 14(c) and (d) appear to 
accurately represent the qualitative and statistical features 
of the MRF. An interesting point here is that the level of 
representation only needs to be increased in one direction 
to obtain an excellent representation of the field. Also, the 
neighborhood of this MRF is fourth-order and thus double 
width boundaries would be needed in an exact represen- 
tation. The fields shown in Fig. 14(b)-(d), however, use 
only the thinner boundaries in forming states. Several ex- 
periments were done in which we used the double width 
boundaries in forming states for models analogous to those 
in Fig. 14(b)-(d). It was found, however, that there were 
no visual differences between the single and double width 
approximate representations. Likewise, approximations of 
the “wood” texture based on the Daubechies 8 wavelet 
[ 191 were also visually identical to their Haar-represen- 
tation counterparts. That is, at least for this example, and 
for the others we have examined, the critical issue in 
model fidelity appears to be model order rather than the 
particular choice of the wavelet used. Furthermore, as 
these examples indicate, we can achieve quite high qual- 
ity results with low-order models, which in turn lead to 
extremely efficient algorithms as in [13]-[15], [34]-[36]. 

VI. DISCUSSION AND CONCLUSIONS 
In this paper, we have shown how to represent recip- 

rocal and Markov processes in one dimension and Markov 
random fields in two dimensions with a class of multiscale 
stochastic models. This modeling structure provides a 
framework for the development of efficient, scale-recur- 
sive algorithms for a variety of statistical signal process- 
ing problems. The representations in 1-D rely on a gen- 
eralization of the mid-point deflection construction of 
Brownian motion. In 2-D, we introduced a “midline” 
construction which leads to a class of models with scale- 
varying dimension. In addition, we also introduced a class 
of multiscale approximate MRF representations based on 
1-D wavelet transforms. This family allows one to 
tradeoff complexity and accuracy of the models, and pro- 
vides a framework for the development of efficient esti- 
mation and likelihood calculation algorithms. An exam- 
ple demonstrated that for relatively low-order models, an 
approximate model which retains most of the qualitative 

and statistical features of the original MRF can be ob- 
tained. 

We feel that the results presented in the preceding sec- 
tion, together with the substantial flexibility of the mul- 
tiscale modeling framework, demonstrate the promise of 
this framework for image and multidimensional signal 
processing. Indeed, practical applications of this frame- 
work are already emerging, as in the segmentation and 
image sequence processing applications described in [8], 
[9], [35]. In addition, in [34], [36] we demonstrate the 
superior performance of likelihood-based texture identi- 
fication methods using low-order versions of the models 
introduced in Section IV, where by “superior” we mean 
that the algorithm based on our multiscale models has sig- 
nificantly better probability of error characteristics than 
well-known minimum-distance classifiers, and achieves 
virtually the same performance as the truly optimal 
GMRF-based likelihood ratio test, which, except in spe- 
cial cases, is prohibitively complex computationally in 
problems of even moderate size. 
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