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Absfruet-A new approach to regularization methods for image 
processing is introduced and developed using as a vehicle the 
problem of computing dense optical flow fields in an image 
sequence. Standard formulations of this problem require the com- 
putationally intensive solution of an elliptic partial differential 
equation that arises from the often used “smoothness constraint” 
’yl”. regularization. The interpretation of the smoothness con- 
straint is utilized as a “fractal prior” to motivate regularization 
based on a recently introduced class of multiscale stochastic 
models. The solution of the new problem formulation is computed 
with an efficient multiscale algorithm. Experiments on several 
image sequences demonstrate the substantial computational sav- 
ings that can be achieved due to the fact that the algorithm is 
noniterative and in fact has a per pixel computational complexity 
that is independent of image size. The new approach also has a 
number of other important advantages. Specifically, multiresolu- 
tion flow field estimates are available, allowing great flexibility 
in dealing with the tradeoff between resolution and accuracy. 
Multiscale error covariance information is also available, which 
is of considerable use in assessing the accuracy of the estimates. 
In particular, these error statistics can be used as the basis for a 
rational procedure for determining the spatially-varying optimal 
reconstruction resolution. Furthermore, if there are compelling 
reasons to insist upon a standard smoothness constraint, our 
algorithm provides an excellent initialization for the iterative 
algorithms associated with the smoothness constraint problem 
formulation. Finally, the usefulness of our approach should ex- 
tend to a wide variety of ill-posed inverse problems in which 
variational techniques seeking a “smooth” solution are generally 
Used. 

I. INTRODUCTION 
N this paper we introduce and develop a new multiscale I approach to regularization problems in image processing, 

using the computation of dense optical flow fields as the 
vehicle for our development. Regularization is, of course, a 
widely-known and used concept in image analysis. In some 
cases the introduction of a regularizing term is necessitated 
by ill-posedness (also referred to as the “aperture problem” 
in computer vision), i.e., by the insufficient information pro- 
vided solely by the available data, or by a desire to reduce 
noise. In other problems the so-called regularizing term repre- 
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sents substantive prior information arising, for example, from 
physical constraints or laws or from information extracted 
from previous image frames. The family of optical flow 
reconstruction algorithms stemming from the work of Hom 
and Schunck [19], which forms the specific context for our 
development and which has found success in a number of 
applications such as [33], is one example of a formulation 
typically introduced to deal with ill-posedness. However, very 
similar formulations arise in other contexts ranging from the 
problem of the temporal tracking of optical flow [8] to large 
scale oceanographic data assimilation problems [37]. Thus, 
while we use the problem of estimating optical flow at a single 
point in time as the focus for our development, it is our strong 
belief that the ideas developed here have a far broader range 
of applicability. 

Optical flow, the apparent velocity vector field correspond- 
ing to the observed motion of brightness patterns in suc- 
cessive image frames, is an important quantity in a variety 
of problems. For example, in MIU imaging of the heart 
[31], [33] this vector field provides diagnostic information 
concerning cardiac muscle motion and differential strain. In 
oceanographic data processing such information can be of use, 
for example, in tracking the meandering motion of the Gulf 
Stream [26]. Also, in computational vision, optical flow is an 
important input into higher level vision algorithms performing 
tasks such as segmentation, tracking, object detection, robot 
guidance and recovery of shape information [l], [28], [34], 
[38], [44]. In addition, methods for computing optical flow 
are an essential part of motion compensated coding schemes 
121, [511. 

As we have indicated, our approach to optical flow es- 
timation is motivated by, and represents an altemative to, 
regularization methods such as that of Hom and Schunck 
[19] which employs the often used “smoothness constraint” 
regularization term. In particular, the starting point for this 
and many other approaches to optical flow estimation is the 
use of a brightness constraint, i.e., the assumption that changes 
in image brightness are due only to motion in the image frame. 
This leads to the so called brighfness consrraint equation’ [ 191 

‘More generally, it is straightforward to adapt (1) to cases in which E has 
a known temporal variation. See [33] for an example in the context of MRI 
imaging. 
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where E(z1, z ~ ,  t) is the image intensity as a function of time t 
and space (z1,zz). z ( z l , z ~ , t )  is the optical flow vector field, 
and 

The brightness constraint (l), however, does not completely 
specify the flow field z(zl,z~,t) since it provides only one 
linear constraint for the two unknowns at each point. Thus, 
(1) by itself represents an under-determined or ill-posed set 
of constraints on optical flow. In addition, in practice, only 
noisy measurements of the temporal and spatial intensity 
derivatives will be available. For both of these reasons one 
must regularize the problem of reconstructing z(z1, zz ,  t ) ,  and 
one commonly used way to do this is to assume some type 
of spatial coherence in the optical flow field, for instance by 
assuming that z ( z l , z 2 ,  t )  is constant over spatial patches or by 
other methods for imposing coherence and achieving spatial 
noise averaging. 

In particular, Horn and Schunck‘s approach [19], often 
referred to as imposing a smoothness consrruinr, consists of 
constructing the optical flow field estimate as the solution of 
the following optimization problem 

The smoothness constraint is captured by the second term, 
which penalizes large gradients in the optical flow. The con- 
stant R allows one to tradeoff between the relative importance 
in the cost function of the brightness and smoothness constraint 
terms. For example, in some situations R-’ is taken to be 
quite large to force the solution to match the constraints (l), 
and in such a case the smoothness constraint serves merely to 
regularize the problem, i.e., to ensure that (4) has a unique 
solution. In other cases, however, one might use a more 
moderate value of R-’ either to account for the fact that the 
constraint (1) is noisy or to reflect the fact that the smoothness 
constraint penalty represents a useful source of information 
itself. For example, in [8] the smoothness constraint is replaced 
by an analogous term reflecting both smoothness and prior 
information gleaned from preceding image frames. We refer to 
the optical flow estimate obtained from (4) as the smoothness 
constraint (SC) solution to the problem of computing optical 
flow. 

One of the major problems associated with the formulation 
in (4) and with analogous formulations for other regularized 
image processing problems is that they lead to computationally 
intensive algorithms. Specifically, one can show that the 
solution of (4) satisfies an elliptic partial differential equation 
(PDE) [19]. Discretization of this PDE leads to a sparse 
but extremely large set of linear equations that are typically 
solved using iterative approaches. One of the first iterative 
approaches used was the Gauss-Seidel relaxation algorithm 
[19], [41] that is extremely simple, but which converges 
very slowly. Terzopoulos [46] proposed the use of multigrid 

Fig. I .  Depiction of three fields equally favored by the smoothness con- 
straint illustrating bow this penalty provides a fractal prior model for optical 
flow. 

approaches and reported a factor of 7 reduction in computation 
over the Gauss-Seidel approach. Successive over-relaxation 
(SOR) algorithms [21] also provide significant computational 
improvement over GS approaches and have been successfully 
used in [33], [35], [36]. However, whatever numerical method 
is employed, computational complexity per pixel typically 
grows with image size, a fact that can make real-time or in 
some cases even off-line implementation prohibitively com- 
plex. For example, while computational complexity for such 
a problem may be severe for 512 x 512 images, especially if 
real-time processing of image sequences is required, the com- 
putational demands in other contexts, such as oceanographic 
data processing where one may consider problems as large 
as 1OOOOOOOO voxels (3-D pixels), are more than a serious 
problem: they are, in fact, the major problem. 

One of the principal motivations for the method in this paper 
is to introduce an alternative regularization formulation in 
order to address the computational challenge discussed above. 
To do this, we need to analyze the smoothness constraint in 
more detail. Note in particular that the penalty associated with 
the smoothness constraint term in (4) is equal to the integral 
of the squared norm of the field gradient over the image 
plane. In a one-dimensional context, such a constraint would 
penalize each of the (one-dimensional) fields in Fig. 1 equally. 
Intuitively, the smoothness constraint has a fractal nature, and 
in fact is often referred to as a “fractal prior” [45]. 

Moreover, as discussed in [35], [36] and as described in 
more detail in the next section, the optical flow problem 
formulation in (4) has an equivalent formulation and pre- 
cise interpretation in an estimation-theoretic context. Roughly 
speaking, the optimization problem (4) corresponds to a sta- 
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tistical model in which the noise or error in the brighmess 
constraint is assumed to be spatially white and in which 
the two components of the optical flow are modeled as 
independent random fields, each of which has a zero mean, 
spatially white gradient. That is, as discussed in [8], [35], [36], 
the smoothness constraint essentially corresponds to modeling 
each component of optical flow as a spatial Brownian motion, 
i.e., as a statistically self-similar, fractal process with a l/lf1* 
generalized spectrum [45]. 

Given that the smoothness constraint corresponds precisely 
to a prior model with fractal characteristics, a natural idea is 
that of using altemate prior statistical models-corresponding 
to altemate penalty terms to that in (4)-that possess the same 
type of fractal characteristics but that lead to computationally 
more attractive problem formulations. In this paper, we do 
just that as we introduce an approach based on substituting 
a fractal-like class of prior models recently introduced in [9], 
[lo], [ll], [I31 for the smoothness constraint prior. The key 
idea behind this approach is that instead of the Brownian 
motion fractal prior that describes the optical flow field as one 
that has independent increments in space, we use a statistical 
model for optical flow that has independent increments in 
scale. That is, as described in the next section, we make 
use of a new class of statistical models for random fields 
that describe these fields in a scale-recursive manner, with 
detail added as we move from coarse-to-fine scales. The model 
can be interpreted as a smoothness constraint that provides 
individual penalties on each scale of detail or as providing a 
multiscale probabilistic model in which the variances of the 
detail components vary from scale to scale in a fractal, self- 
similar fashion. For this reason, we say that our formulation 
corresponds to a multiscale regularization (MR) of the optical 
flow problem, and we refer below to the MR algorithm and 
solution. 

One of the most important consequences of this altemate 
smoothness constraint is that it allows us to make use of the ex- 
tremely efficient scale-recursive optimal estimation algorithm 
that this statistical model admits [9]-[ll]. In particular, the 
resulting algorithm is not iterative and in fact requires a fixed 
number of floating point operations per pixel independent oj 
image size. Thus, since methods for solving the smoothness 
constraint problem formulation have per pixel computational 
complexities that typically grow with image size, the compu- 
tational savings associated with the new approach increase as 
the image size grows and, as we will see, can be considerable 
even for modest-sized problems. 

Moreover, while computational efficiency did serve as the 
original motivation for this new formulation and in many 
problems may be its most important asset, there are several 
other potential advantages that the new approach has. First, 
the scale-recursive nature of our algorithm directly yields 
estimates of the optical flow field at multiple resolutions, 
providing us with considerable flexibility in dealing with the 
tradeoff between accuracy and resolution. Specifically, one can 
expect to obtain higher accuracy at coarser resolutions, and 
thus one can imagine trading off resolution versus accuracy in 
a data-adaptive way. For example, in regions with substantial 
local intensity variations one would expect to be able to 

estimate optical flow at a finer spatial resolution than in regions 
in which intensity varies more smoothly and contrast is low. 
The question, of course, is how such an intuitive concept 
can be realized in an algorithm. As we will demonstrate, our 
multiscale algorithm provides us with all of the information 
required to do this with essentially no additional computation, 
leading to the designation of the preferred resolution for 
estimating optical flow at every point in the image frame. 

Secondly, an important consequence of employing an 
estimation-theoretic interpretation is that it offers the pos- 
sibility of evaluating a quantitative measure of the quality 
of our optical flow estimate, namely the estimation error 
covariance. This idea, of course, also applies to the original 
smoothness constraint formulation (4). However, in that case, 
the computation of the error covariance must be done in 
addition to solving the partial differential equations for the 
optimal flow estimates, and in fact, the computation of these 
error statistics has complexity at least as great as that for 
calculating the estimates. In contrast, for our formulation, error 
covariances can be calculated with essentially no increase 
in computational complexity. Furthermore, our algorithm 
provides error covariance statistics at multiple resolutions, 
providing information that is essential to addressing the 
tradeoff between resolution and accuracy as discussed in 
the previous paragraph, and that may also be useful to higher 
level vision algorithms that need to combine information in a 
rational way from a variety of sources [39]. 

As we have indicated, the new algorithm we develop is 
based on a formulation that is similar but not identical to that 
given by (4), and there are several implications of this fact. The 
first is that while the estimates produced by our algorithms are 
not identical to those based on (4). they are similar and have 
comparable root-mean-square (rms) error characteristics, as 
the experimental evidence in Section I11 illustrates. Moreover, 
these results also show that the difference between the SC and 
MR flow estimates consists of mostly high spatial frequency 
components, which are precisely the components that can 
be quickly removed by the iterative algorithms computing 
a smoothness constraint solution. Thus, even in situations in 
which a solution to the original smoothness constraint formu- 
lation is required (for instance, if the smoothness constraint 
corresponds to physically-based prior information) there may 
be considerable computational advantage in using the MR 
solution as an initial estimate of the optical flow, i.e., as 
an initial estimate for an iterative algorithm that computes 
the solution of the partial differential equation characterizing 
(4). Indeed, given the promise suggested by results presented 
here, we conjecture that another potential application of the 
approach we introduce is in providing easily computed, ac- 
curate initial conditions for the solution of partial differential 
equations arising in contexts other than image processing. 

There is another implication of the relationship of our 
approach to the formulation in (4). Specifically, them are 
of course, problems of practical importance in which the 
basic assumptions underlying the Horn and Schunck formalism 
are violated, for instance if there is substantial temporal 
aliasing (so that the data implied by (1) are not available), 
if there are discontinuities in the motion field due to object 
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boundaries and occlusion or if there are multiple motions. 
In such cases, the Hom and Schunck formulation may fail 
to give adequate results, and, due to the similarity of the 
approaches, our method would likely fail as well. In such 
contexts algorithms developed to deal explicitly with such 
issues, such as those in [15], [18], may be more appro- 
priate. On the other hand, for the not insignificant class 
of problems for which the Hom and Schunck formulation 
is well-suited, such as [33] and the many ill-posed and 
variational problems arising in fields ranging from image 
processing and tomography to meteorology, seismology and 
oceanography [5], [22], [27], [32], [47], [481, our method will 
also work well and also provides the advantages described 
previously: computational efficiency, multiresolution estimates 
and multiscale error covariance information. Moreover, even 
in cases in which Hom and Schunck-type global smoothness 
constraints are inappropriate, there are reasons to believe that 
algorithms based on our formulation may provide the basis 
for promising new solutions. While it is beyond the scope 
of this paper to develop such methods in detail, we provide 
an example suggesting this promise and also indicate how the 
statistical interpretation and flexible structure of our formalism 
might be used to advantage. 

This paper is organized as follows. In Section I1 we discuss 
in more detail an estimation-theoretic interpretation of the 
optical flow formulation in (4) and develop our new approach 
to the computation of optical flow. Section 111 presents exper- 
imental results on several real and synthetic image sequences. 
Section IV provides further discussion and conclusions. 

II. MULTISCALE REGULARIZATION 
In the first part of this section we develop a discrete 

formulation of the optical flow problem, and discuss in more 
detail the estimation-theoretic interpretation of it. We then 
illustrate precisely how the smoothness constraint can be 
interpreted as a prior model for the flow field, and how it 
can be replaced by another, similar prior model that leads to 
a more computationally attractive problem formulation. The 
general class of prior models we use is then introduced along 
with an algorithm for finding the solution of the new optical 
flow problem formulation. 

A. An Estimation-Theoretic Interpretation of the Optical 
Flow Problem 

Estimation-theoretic formulations and interpretations of op- 
tical flow problems have been introduced and studied by a 
number of authors. For instance, in [20], [50] Markov random 
field (MRF) models are proposed along with a maximum a 
posteriori criterion for estimating optical flow. MRF models 
are also used in [18] to address problems of occlusion and 
flow field discontinuity. Kalman filtering approaches that allow 
for temporal as well as spatial smoothness constraints have 
been discussed in [8], [17], [40], [43]. In addition, in [39] 
a Bayesian formulation that provides optical flow estimates 
and confidence measures based on a local window of data is 
proposed. In addition there is the interpretation by Rougte et 
al. [35], [36] of the Hom and Schunck smoothness constraint 

formulation (4) as an equivalent estimation problem with 
a Brownian motion, fractal prior for the flow field. The 
distinguishing feature of the Brownian motion model implied 
by (4), the Markov random field models, and the spatio- 
temporal models used in the Kalman filtering approaches, is 
that they all provide models in terms of local relationships 
(typically nearest neighbor) of the flow field components at 
a single, finest level of resolution. This leads naturally to 
spatially local, iterative algorithms for computing the optimal 
optical flow estimates (such as those needed to solve the partial 
differential equation resulting from (4) or simulated annealing 
algorithms for MRF models). In contrast, the probabilistic 
model for optical flow proposed in this paper describes the 
flow field in terms of probabilistic variations from scale 
to scale and leads naturally to the efficient scale recursive 
algorithms described in [9]-[11], [23] .  

As we have indicated, our approach is motivated by the 
probabilistic interpretations of Hom and Schunck’s formula- 
tion, which we now discuss briefly. The reader is referred to 
[71, [8], [35], [36] for a more extensive discussion of this 
and related probabilistic models. We start by introducing the 
following notation. Define 

The brightness constraint (1) can then be written 

Y(Zl,ZZ) = C(Z1,ZZ) ‘Z(Z1,ZZ) (7) 

where the time dependence of the equations has been sup- 
pressed. 

In practice, brightness measurements are only available over 
a discrete set of points in space and time. Thus, the temporal 
and spatial derivative terms in the brightness constraint (7) 
must be approximated by a finite difference scheme in time 
and space, and the optical flow is only estimated on a discrete 
space-time grid. There are a number of important issues that 
arise due to the discretization, such as the use of spatial 
and/or temporal smoothing prior to discretization, the use of 
more than two image frames in the computation of temporal 
derivatives, etc., and we refer the reader to [31, [7], [15] for 
further discussion. We assume here that the optical flow is 
to be estimated on the set ((ZI,ZZ)~Z~ = ih, zz = j h ; i , j  E 
(1, . . . , 2 M } }  where h is the grid spacing and M is an integer. 
The assumption that the lattice is square and that the number 
of rows is equal to a power of two simplifies the notation 
in the subsequent development, but is not essential as we 
discuss in the appendix. In order to simplify the notation 
further, welety(i , j) ,z(i , j) ,andC(i, j)  denotethemeasured 
temporal brightness derivative, the optical flow, and the spatial 
gradient of the image brightness, respectively, at grid point 
( ih , jh) .  The brightness constraints at all grid points can then 
be grouped into one large set of linear equations to capture 
the optical flow information contained in the image sequence. 
Defining x as the vector of optical flow vectors ~ ( i , j )  at 
all grid points (using, say, a lexicographic ordering), C as 
the matrix containing the corresponding spatial gradient terms 
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C ( i , j ) ,  and y as the vector of temporal gradients y ( i , j ) ,  we 
can write 

y = c x .  (8) 

Then, the discrete counterpart of (4) is 

2sc argmin IIy - C X ~ ~ L - ~  + ~ ~ L x ~ ~ ~  
I 

= argmin(y - C X ) ~ R - ' ( ~  - Cx) + xTLTLx (9) 
I 

where the matrix L is a discrete approximation of the gradient 
operator in (4) and R = RI, where I is the identity matrix. The 
regularization term xTLTLx makes the optimization problem 
(9) well-posed. In particular, the solution of (13) satisfies the 
so-called normal equations [42] 

(CTR-'C + LTL)2sc = CTR-ly (10) 

and the invertibility of (CTR-'C + LTL) guarantees that 
2 s ~  is unique. The normal equations (IO) are the discrete 
counterpart of the partial differential equation that arises from 
14). 

An estimation-theoretic formulation of the optimization 
problem in (9) can now be developed. Specifically, suppose 
that we wish to estimate x based on the measurements 

y = c x + v  
O = L x + w  

where v and w are uncorrelated random vectors with' v N 

.U(O,R) and w - N(0,I). Then the measurement vector 
y [y'IOIT is conditionally Gaussian, and the maximum 
likelihood estimate [49] of x is 

%L = arg m a x 4 Y l x )  
= arg minx - logp(ylx) 
= arg minx(y - C X ) ~ R - ' ( ~  - Cx) + xTLTLx (13) 
= x s c .  

Thus, the maximum likelihood problem formulation results 
in the same solution as the smoothness constraint formula- 
tion when L is used to define an additional set of noisy 
measurements. 

The main point here is that by formulating the problem 
in this estimation-theoretic framework, we can use (12) to 
interpret the smoothness constraint as a prior probabilistic 
model for the flow field. Specifically, we can rewrite (12) as 

Lx = -w. (14) 

Recalling that L is an approximation to the gradient operator, 
we see that (14) is nothing more than a spatial difference 
equation model for x driven by the spatial white noise field w. 

To some extent the precise form of this prior model is 
arbitrary, and thus we are led to the idea of introducing a 
new prior model that is similar in nature, but which leads to a 
computationally more attractive problem formulation. That is, 
we want to change the smoothness constraint term xTLTLx 
in (13) to something similar, say, xTSx % xTLTLx (where 

2The notation e - N(m,A) means that e has a Gaussian distribution, 
with mean m and variance A,  

S is a symmetric positive semi-definite matrix) such that the 
resulting optimization problem is easy to solve. If we factor 
S as S = LTL then we can interpret the new constraint as a 
prior probabilistic model just as we did with the smoothness 
constraint. In addition, there is a precise interpretation of what 
we have done as a Bayesian estimation problem. Specifically, 
if S is invertible, then the use of this new constraint in place of 
the smoothness constraint is equivalent to modeling the flow 
field probabilistically as x - N(0, S-'), since in this case the 
Bayes' least squares estimate of the flow field x,  given this 
prior model and the measurements in (1 1) is given by 

a,,,, = arg min,(y - C X ) ~ R - ' ( ~  - Cx) + xTSx (15) 

which corresponds to (13) with a different prior model term. 
The normal equations corresponding to (15) are given by 

(CTR-'C + S)?,,SE = CTR-ly. (16) 

Comparison of the problem formulations (9) and (15), or 
of the normal equations (IO) and (16), makes it apparent 
how the two problem formulations are related. Note that an 
analogous Bayesian interpretation can apparently be given 
to the smoothness constraint formulation (9), (IO), with the 
corresponding prior model for optical flow given by x - 
N(0 ,  (LTL)-l). Recall, however, that L is an approximation 
to the spatial gradient operator and thus is not invertible 
since operating on constants with this operator yields zero. 
The probabilistic interpretation of this is that the model (14) 
places probabilistic constraints on the spatial differences of 
the optical flow, but not on its DC value. Indeed, it is not 
difficult to check that if we model optical flow instead as 
x N N(0,  (LTL + €I)- ' ) ,  where r is any arbitrarily small 
positive number, then LTL+d is indeed invertible and the DC 
value of x has a prior covariance Po on the order of l / r ,  so that 
PO + w as E + 0. Thus, the original smoothness constraint 
formulation in essence assumes an infinite prior covariance on 
the DC value of optical flow. The altemate model developed 
in the next section has a similar parameter, PO, representing 
the DC variance, which can similarly be set to CO. 

Finally, it is important to emphasize that what we have 
done here is to interpret the smoothness constraint formulation 
and its extension (15) as optimal estimation problems. The 
point is that we are not assuming statistics for x and v but 
rather are identifying the assumptions that are intrinsic to the 
smoothness constraint formulation. That is, in (15) 
is the Bayes' least squares estimate if x - N(0,S-')  and 
v N N(0,  R). More generally, if x and v are simply modeled 
as zero-mean uncorrelated random vectors with covariances 
S-' and R, respectively, and with no further specification of 
their distributions, then (15) is the linear least squares estimate, 
i.e., the best linear estimate of x. 

The choice of the new prior model is now clearly at the 
heart of the problem. Recalling that the smoothness constraint 
has the interpretation as a "fractal prior", we choose a prior 
model that also has fractal-like characteristics. A natural way 
to specify such models is to explicitly represent the optical 
flow field at multiple scales so that the self-similar fractal 
characteristics of the field can be introduced explicitly. A 
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Fig. 2. The structure of a multiscale optical flow field is depicted. The 
components of the field are denoted xm(d,j) where m refers to the scale 
and the pair ( i ,  j) denotes a particular grid location at a given scale. At the 
coarsest scale, there is a single flow vector and, more generally, at the mth 
scale there are 4"' vectors. 

stochastic modeling framework that allows us to do this, and 
that also leads to efficient algorithms for solving (15), (16), is 
described in the next section. 

E. A Class of Multiscale Models 

The models we utilize to replace the smoothness constraint 
prior model were recently introduced in [9]-[ll], 131. The 
models represent the flow field at multiple scales, i.e., for a 
set of scales m = 0,. . . , M, with m = 0 being the coarsest 
scale and m = M the finest scale, we define a set of optical 
flow fields indexed by scale and space, namely z,,,(i,j). At the 
inth scale, the field consists of 4m flow vectors, as illustrated 
in Fig. 2, capturing features of the optical flow field discemible 
at that scale (i.e., finer resolution features of the field appear 
only in finer scale representations). Thus, the coarsest version 
of the flow field consists of just a single vector corresponding 
to the coarse, aggregate value of the optical flow over the entire 
spatial domain of interest, and successively finer versions 
consist of a geometrically increasing number of vectors. At 
the finest level, the flow field is represented on a grid with the 
same resolution as the image brightness data. In particular, 
z ~ ( i , j )  corresponds to the optical flow vector z ( i , j ) .  

The multiscale optical flow field is defined on the quadtree 
structure illustrated in Fig. 3. Pyramidal data structures such as 
the quadtree naturally arise in image processing algorithms that 
have a multiresolution component. For instance, successive 
filtering and decimation operations lead to images defined on 
such a hierarchy of grids in the Laplacian pyramid coding 
algorithm of Burt and Adelson [6] and in the closely related 
wavelet transform decomposition of images [24]. Also, the 
multigrid approaches to low level vision problems discussed 
by Terzopoulos [46] involve relaxation on a similar sequence 
of grids. It is important to emphasize here, however that in 
contrast to approaches such as these, in our case we are using 
the quadtree structure to model a spatially-distributed random 
field rather than to analyze or decompose a given field. As 
we will see, this model does, in fact, lead to processing 
algorithms operating on the quadtree, but these algorithms 

Fig. 3. Quadtree structure on which the multiscale processes are defined. 
The abstract index s refers to a node in the quadtree; s? refers to the parent 
of node s. 

are optimal estimation procedures and thus are completely 
different in form, nature, and intent from standard pyramidal 
decomposition procedures. 
Our quadtree model for the optical flow field z ( i , j )  = 

z ~ ( i , j )  is constructed by adding detail from one scale to 
the next (i.e., from coarse to fine). Just as the smoothness 
constraint prior model (14) describes probabilistic constraints 
among values of the optical flow at different spatial locations, 
our multiscale model describes such constraints among values 
at different scales. For notational convenience in describing 
such models, we denote nodes on the quadtree with a single 
abstract index s that is associated with the 3-tuple (m,i , j )  
where, again, m is the scale and ( i , j )  is a spatial location in 
the grid at the mth scale (see Fig. 2). It is also useful to define 
an upward sh@ operator 7. In particular, the parent of node 
s is denoted sFy (see Fig. 3). For instance, if s corresponds 
to any of the nodes in the upper left quadrant of the second 
level grid (see Fig. 2), i.e., nodes (2,1,l), (2,2,1), (2,1,2) or 
(2,2,2), then sFy corresponds to their parent on the first level, 
namely node (1.1,l). With this notation, our scale-recursive 
model takes the form 

z(s) = A ( s ) z ( s T )  + B ( s ) w ( s )  (17) 

under the following assumptions 

z o  - N(0, Po) (18) 
w(s)  " ( 0 , I ) .  (19) 

The vectors z and w are referred to as the state and driving 
noise terms. The state variable z o  at the root node of the tree 
provides an initial condition for the recursion. The driving 
noise is white in both space and scale, and is uncorrelated with 
the initial condition. Interpreting each level as a representation 
of a two-dimensional field, we see that (17) describes the 
evolution of the process from coarse to fine scales. The term 
A(s)z(s'y) represents interpolation down to the next level, 
and B ( s ) w ( s )  represents higher resolution detail added as the 
process evolves from one scale to the next. In the application 
of interest here, z(s) = zm(z,j), where s = ( m , i , j ) ,  and 
thus A, B E R Z x 2 .  Such a model corresponds in essence to a 
first-order recursion in scale for optical flow? 

3More generally, higher-order recursions in scale can be captured, just as 
in standard state space models, by increasing the order of the model, i.e., 
the dimension of x(s). In this case the actual optical flow at node s would 
correspond to a subset of the components of x ( s ) ,  with the remainder of x ( s )  
devoted to capturing the memory in the multiscale recursion. In this paper, 
however, we restrict ourselves to the simple first order recursion. 



47 LUETTGEN et ai.: EFFICIENT MULTISCALE REGULARIZATION WITH APPLICATIONS M THE COMPUTATION OF OPTlCAL FLOW 

Measurements of the finest level optical flow field are 
available from the brightness constraint. In particular, at a 
particular point (i,j) at the finest level M, we have the 
measurement equation 

y ( i , j )  = c ( i , j ) z M ( i > j )  + w ( i , j )  (20) 
d i ,A  - N(0, R) (21) 

where C(i,j) E ‘R’x2 and the white Gaussian observation 
noise is assumed to be independent of the initial condition ZIJ 

and the driving noise w in (17H19). Of course, we can group 
the state variables z(s) at the finest level into a vector XM 
as well as the corresponding measurements y(s) and spatial 
gradient terms C(s) in the same way as we did to get (8) 

We now have exactly the framework that led to the statement 
of (15) as a generalization of the smoothness constraint for- 
mulation (13). In particular, the modeling equations (17H19) 
indicate that at the finest level of the quadtree, the flow field 
vectors will be a set of jointly Gaussian random variables 
XM N N(0,  A), where A is implicitly given by the parameters 
in (17) - (19), and a set of noisy measurements given by 
(22). The Bayes’ least squares estimate of XM given the 
measurements in (22) and the prior model (17)-(19) is 

2, = arg min,, (y - C x ~ ) ~ R - l ( y  - CXM) 
+ xLA-’xM. (24) 

The multiscale modeling framework thus provides an alter- 
native to the smoothness constraint formulation of (9) or 
( 13). Furthermore, if we drop the assumption of Gaussianity 
for ZIJ,W(S), and w ( i , j ) ,  the optimal estimate 2~ has the 
interpretation as the linear least squares estimate of x. 

What remains to be done are (1) to specify a model within 
this class that has characteristics similar to those of the 
smoothness constraint prior model, and (2) to demonstrate why 
the use of this alternate multiresolution formulati 

on is of any interest. We defer the latter of these to the 
next section and focus here on the former. In particular, 
for our multiscale model based on (17H19) to approximate 
the smoothness constraint prior we would like to choose 
our model parameters so that we have A-’ % LTL. The 
observation that the prior model implied by the operator L in 
(13) corresponds to a Brownian motion “fractal prior” suggests 
one approach to choosing the model parameters. In particular, 
the one-dimensional Brownian motion has a 1/ f 2  generalized 
spectrum [25]. It has been demonstrated that such processes 
are well approximated by multiscale models such as ours in 
one dimension if geometrically decreasing powers of noise are 
added at each level m of the process [lo], [53]. This motivates 
the choice of B(s)  = b4-(’’m(s))/21 in (17), where I is the 
2 x 2 identity matrix, and where b and p are scalar constants. 
The constant b directly controls the overall noise power in the 
process. Also, as discussed in [53], the choice of p controls 
the power law dependence of the generalized spectrum of the 
process at the finest resolution as well as the fractal dimension 

of its sample paths. Specifically, this spectrum has a l/f” 
dependence and the choice of p = 2 would correspond to a 
Brownian-like fractal process. Thus, our model for the optical 
flow field can be interpreted as providing individual penalties 
on each scale of detail, with penalty weights that vary from 
scale-to-scale in essentially the same way as the smoothness 
constraint’s. 

To achieve greater flexibility in both the modeling and 
estimation, we allow p to be a parameter that can be varied. In 
addition, recall that in the smoothness constraint formulation, 
LTL was not invertible because of the implicit assumption of 
infinite prior variance on the DC value of the optical flow field. 
In our multiscale regularization context, this would correspond 
to setting Pa equal to infinity in (18). This can be done without 
difficulty in the estimation algorithms described next, but we 
have found that it is generally sufficient simply to choose PIJ 
to be a large multiple of the identity. 

C. The Multiscale Regularization Algorithm 

We have now specified a class of models that will allow us 
to approximate the smoothness constraint prior model. The 
simple multiscale structure of these models leads to very 
efficient algorithms for computing the optimal estimate of the 
state given a set of measurements. One of these algorithms, 
which we refer to as the Multiscale Regularization (MR) 
algorithm, was developed in [9]-[ 121 for one-dimensional 
signals, and its extension to images is described here. 

The MR algorithm computes the Bayes’ least squares es- 
timate of the state vectors (17) given the measurements (20) 
in two steps. The first step is an upward or fine-to-coarse 
sweep on the quadtree, which propagates the measurement 
information in parallel, level by level, from the fine scale nodes 
up to the root node. The second step is a downward or coarse- 
to-fine sweep that propagates the measurement information 
back down, and throughout the tree. The result is the least 
squares estimate of the state z(s) at each node based on all 
of the data. The details of the upward and downward sweeps 
are given below and are discussed in much greater detail in 
[lo], Wl. 

To begin, note first that the measurement model (20) can be 
written in the following form, allowing for the possibility of 
spatially varying noise intensity 

Y(S) = G(s)z(s) + 4.1 (25) 
4 s )  - N(0, Ns)). (26) 

In the context of the optical flow estimation problem, mea- 
surements are taken only on the finest level, corresponding to 
C(s) = 0 unless s is a node at the finest level. However, in 
the more general modeling framework discussed in [lo], [12], 
the measurements may be available at any node, and the noise 
variance may vary with node as in (26). We present here this 
more general algorithm in which, in addition, z, y and ‘w may 
be of arbitrary dimension. 

The model given by (17H19), (25)-(26) is a downward 
model in the sense that the recursion starts from the root node 
and propagates down the quadtree from coarse-to-fine scales. 
In order to describe the upward sweep of the MR algorithm, 
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we need a corresponding upward model. This upward model is 
equivalent to the downward model in the sense that the joint 
second order statistics of the sates z(s) and measurements 
y(s) are the same. The upward model is given by4 [9], [lo] 

z ( s F ~ )  = F ( s ) ~ ( s )  - A-’(s)B(s)O(S) (27) 
Y(S) = C(s)z(s) + 4.) (28) 

where 

or fewer offspring for each node. The updated estimates at the 
offspring nodes are then predicted back up to the next level 

F(slsa,) = F(sa,)F(sa,lsa,) (44) 
P(s l sa , )  = F ( s , , ) P ( s a , l s a ~ ) F T ( s a , )  + Q ( s a t )  (45) 

Q ( S W )  = A-  (sa, ) B ( S C P ,  )Q(sw ) B ~ ( ~ . , ) ( A - ’  (sa, I ) ~ .  (46) 

The predicted estimates from the q offspring are then merged 
9 

3(sls+) = P(sls+) P-’(slsa,)4(slsal) (47) 
t=l 

= Q ( s )  (32) 

and where P, = E [ z ( s ) z T ( s ) ]  is the variance of the state at 
node s and evolves according to the Lyapanov equation 

P, = A ( ~ ) P . ? A ~ ( ~ )  + B ( ~ ) B ~ ( . ) .  (33) 

To proceed further we need to define some new notation. 

Y, = {y(s’)ls’ = s or s’ is a descendant of s} (34) 

3(s’js) = E[z(s’)IY,] (36) 
Y,+ = Ys\{s) (35) 

P(s’~s+) = E[z(s’)(Y:] (37) 
B(s’~s) = E[(z(s‘)  - Z(s’ls))(z(s’) - ? ( S ’ ~ S ) ) ~ ]  (38) 

p(s’ls+) = E[(z(s’)  - ~(S’~S+))(Z(S’) - ?(~’ls+))’] (39) 

where the notation Ys\{s} means the node s is not included 
in the set Y:. The upward sweep of the MR algorithm begins 
with the initialization of 3(sls+) and the corresponding error 
covariance P(s(s+) at the finest level, i.e., for s of the form 
( M ,  i, j )  where M is the finest scale. The initial conditions 
at this scale reflect the prior statistics of z(s) at scale M ,  
as we have not yet incorporated data. Thus, for every s at 
this finest scale we set Z?(sls+) to zero (which is the prior 
mean of ~ ( s ) )  and similarly set P(sls+) to the corresponding 
covariance, namely the solution of the Lyapanov equation (33) 
at the finest level. The upward sweep of the MR algorithm 
then proceeds recursively. Specifically, suppose that we have 
3(sls+) and P(sls+) at a given node s. Then this estimate 
is updated to incorporate the measurement y(s) (if there is a 
measurement at this node) according to the following 

~ ( s I s )  = ~(s(s+) + K(s ) [Y( s )  - C ( S ) ~ ( S ~ S + ) ]  (40) 
P ( s ( s )  = [I  - K(s)C(s)]P(sls+) (41) 

K(s) = P(sls+)CT(s)V-l(s) (42) 
V ( s )  = C(s)P(sls+)CT(s) + R(s). (43) 

Denote the offspring of z(s) as z(sai) ,  i = 1 , .  . . , q. For the 
quadtree model, of course, p = 4, but there is no increase in 
complexity here if we allow the possibility that there are more 

‘We use E[x] to denote the expected value of the random variable x and 
E[xly] to denote the expected value of x given y. 

The upward sweep given by the update, predict and merge 
equations proceeds recursively up the quadtree. At the top of 
the tree (corresponding to the root node s = 0), one obtains 
the smoothed estimate of the root node, that is, an estimate 
based on all of the data. The estimate and its error covariance 
are given by 

P(0) = 3(O10) (49) 
PS(0) = P(OI0) (50) 

where the superscript s denotes the fact that these are smoothed 
estimates. The smoothed estimate and associated error covari- 
ance at the root node provide initialization for the downward 
sweep, which is given by the following coarse-to-fine recursion 

P ( s )  = 3(sls) + J(s)[P(sFy) - 3(sFyls)] 

J ( s )  = P(sls)FT(s)P-l(sy(s). (53) 

(51) 
P”(s) = P(s1s) + J(s)[PS(sy) - P(sFyls)]JT(s) (52) 

The estimates P(s) at the finest level of the quadtree provide 
the solution to (24). The form of the algorithm we have 
specified here, which generalizes standard Kalman filtering 
and smoothing algorithms to the multiscale context, obviously 
assumes that the state covariance P, is well defined and finite, 
and it is not difficult to see from (33) that this will be the case 
if Po is finite. There is, however, an alternate form of this 
algorithm presented in [lo], [12] which generalizes so-called 
information form algorithms for standard state space models 
and which propagates inverses of covariances. In this alternate 
form it is straightforward to accommodate the setting of Po 
to infinity (which corresponds to P;’ = 0), and we refer the 
reader to [lo], [12] for details. As mentioned previously, we 
have found that setting PO to a large but finite multiple of the 
identity, and then using (40H48), (51)-(53), yields excellent 
results. 

111. EXPEFUMENTAL RESULTS 

A. Specijication of the Multiscale Model 

ing parameterization of the model (17)-(19), (25H26) 
To specify the MR algorithm completely we use the follow- 
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@) 

Fig. 4. (a) First frame of the “rotation” sequence. (b) Rotation sequence true 
optical flow. 

where I is a 2 x 2 identity matrix. From (54) and (56) we 
see that the two components of the optical flow field are 
modeled as independent sets of random variables, and that 
each has a fractal-like characteristic due to the form of the 
driving noise gain B(s). The independence of the flow field 
components is motivated by the fact that the smoothness 
constraint formulation implicitly makes this assumption as 
well [35], [36]. We view j~ and 6 as free model parameters that 
can he varied to control the degree and type of regularization 
in much the same way that the parameter R in the smoothness 
constraint formulation (4) is used to tradeoff between the 
data dependent and regularization terms in the optimization 

functional. However, we have found in our experiments that 
the choice 6 = j~ = 1 typically works well, and we have used 
these values in all of the experiments below. 

As discussed previously, the measurements y(s) and mea- 
surement matrix C( s) come directly from the image temporal 
and spatial gradients, which are available at the finest level 
of the quadtree. In the experiments described below, we 
smoothed the images with the 7 x 7 filter given by 

0.25 0.25 0.25 0.25 0.25 0.25 
[,.E 0.251 * [ o . ~  0.251 * ..’ * [0.25 0.251 (59) 

(where * denotes the 2-D convolution) and then calculated 
spatial gradients with a central difference approximation. The 
temporal gradient was computed as the difference of two 
smoothed images. Temporal smoothing (in addition to the spa- 
tial smoothing) has been shown to reduce estimation errors in 
several methods, including the smoothness constraint approach 
[3] and thus would be of value for the multiscale regularization 
method as well. For our purposes here, however, namely to 
demonstrate comparative computational efficiency relative to 
the smoothness constraint formulation and to illustrate the use 
and value of both multiresolution estimates and covariance 
information, the simple two frame difference is sufficient. 

The additive noise variance is given by R(s). We have found 
empirically that the choice R(s) = ma~(llC(s)11~, 10) worked 
well in all cases. This choice effectively penalizes large spatial 
gradients, which are points at which the hrighmess constraint 
equation is likely to have large errors [39] (due, for example, 
to noise, aliasing or occlusion). The parameter p in the prior 
covariance (58) of the MR model root node was set t op  = 100. 

We compare our approach computationally and visually to 
the Gauss-Seidel (GS) and successive over-relaxation (SOR) 
algorithms, which can he used to compute the solution of 
the smoothness constraint formulation given by (9) or (13) 
(see, for example, [191, [21], [331, 13.51, [36], [41]. In our 
experiments, we have found that SOR typically provides a 
factor of 10 to 100 performance improvement of Gauss-Seidel, 
and hence is computationally equal to or better than multigrid 
approaches [14], [46]. The parameter R in the Hom and 
Schunck formulation (4) was chosen in to yield good visual 
and quantitative results. In particular, R was set to 100 in the 
first example below, and 2500 in the subsequent examples. 
Several possibilities for choosing this parameter based on the 
image data have been proposed in the literature [ 5 ] ,  [29], 
although there is no universally agreed upon method; our 
choice is comparable to those in [3], [7], [16]. 

Straightforward analysis shows that the GS and SOR al- 
gorithms require 14 and 18 floating point operations (flops) 
per pixel per iteration, respectively. The number of iterations 
required for convergence of the iterative algorithms grows with 
image size [21]. For reasonable size images (say, 512 x 512), 
SOR may require on the order of hundreds of iterations to 
converge, so that the total computation per pixel can be on the 
order of lo3 to lo4 flops. On the other hand, the MR algorithm 
requires 76 flops per pixel (see Appendix 11). Note further that 
the MR algorithm is nor iterative. Thus, as we will now see, 
the computational gain associated with the MR algorithm can 
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Fig. 5. Rotation sequence flow estimates. (a) Smoothness constraint estimates computed using 50 iterations of SOR. (b) Multiscale 
Regularization (MR) estimates. (c) Post-filtered MR estimates. (d) Estimates produced by using MR estimates as initial condition 
for SOR algorithm. 

be on the order of one to two orders of magnitude for problems 
of this size and substantially greater for problems defined over 
much larger spatial regions. 

B. Rotation Sequence 

We begin with a comparatively small synthetic example of 
rotational motion in order to illustrate the basic features of 
our approach. Specifically, this first example is a synthetic 
sequence of Gaussian images modulated by a spatial sinewave 
with the first frame brightness pattern given by 

E(z l , z2 ,  t l )  = sin(atan(zl - 23, z2 - 28)) 

exp ( - ; . z ~ . ~ - l z )  

z =  [:: I;:] 
z= [ 0 5001 

1000 0 

where atan(zl,z2) is a 237 arctangent (atan(0,l) = 0, atan(l.0) 
= -T), h = 1 and M = 6 (i.e., the image lattice is 64 x 64, cf. 
the discussion about discretization at the beginning of Section 
11-A). The second frame is equal to the first, rotated by 1' 
about pixel (23, 28). The first frame and actual optical flow 
are illustrated in Fig. 4. Therms value of this flow field is 0.49. 

The first point we wish to examine is the visual appearance 
of the estimates produced. Fig. 5 shows four different estimates 
of the optical flow. The first of these (a) is the SC estimate 
produced using the original smoothness constraint formulation 

and performing 50 iterations of the SOR algorithm5; (b) is the 
finest scale of the MR estimates produced by the MR algorithm 
with the parameters set as b = p = 1; (c), which we refer to 
as MR-PF, is a post-filtered version of the MR estimates in 
(b) to be described; and (d), which we refer to as MR-SOR, 
is the estimate produced by performing 5 iterations of the 
SOR algorithm used in (a) but using the MR estimates in (b) 
as an initial condition. All four estimates clearly display the 
rotational nature of the true flow with quality that is roughly 
comparable. In particular, while rms error is not necessarily an 
appropriate measure of absolute estimate quality, it is of value 
in assessing the relative quality of these four methods, and for 
this example the rms errors for the estimates in Fig. 5 are: 
(SC) 0.24 
(MR) 0.22 
(MR-PF) 0.22 
(MR-SOR) 0.20 

which indicates that the MR method and its variations in (c) 
and (d) yield estimates of quantitative accuracy comparable to 
the SC-based method. 

Despite this fact, the MR estimate in (b) has visual char- 
acteristics that may be somewhat distracting to the viewer: 
namely, the apparent blockiness of the estimates. As the nns 
errors indicate, and as we argue further in a moment, this 
visual artifact is not quantitatively significant. However, its 
nature and the reason for its presence motivate the computa- 
tionally simple post-processing procedures illustrated in parts 

51n this and subsequent examples. the iterative algorithms computing the 
solution of (4) were initialized with zero. 
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Fig. 6. Rms error comparison of MR, MR-PF, MR-SOR. and Gauss-Seidel 
(GS) algorithm flow estimates for the rotation sequence. 

(c) and (d) of Fig. 5. The first of these is motivated by 
the interpretation of our MR algorithm in terms of wavelet 
transforms and multiresolution analysis [6], [24]. Specifically, 
a natural interpretation of our model is that of providing 
multiresolution approximations of an image or random field; 
i.e., the values of a quadtree process at a given scale can 
be thought of as the so-called “scaling coefficients” [24] of 
particular basis functions used in the approximation at that 
scale. In that sense, the flow field estimate in (b) corresponds 
to the Haar approximation in which the basis functions are 
piecewise constant over squares of size corresponding to the 
scale being represented. The blockiness in (b) is thus due to 
the “staircase” nature of the Haar approximation. On the other 
hand, there are far smoother choices for basis functions and 
multiresolution approximations, each of which corresponds in 
essence to convolving the 2-D array of quadtree estimates 
at the finest scale with particular FIR filters. The MR-PF 
estimates in Fig. 5(c) corresponds to using the FIR filter given 
by (59) together with the MR estimate in (b). 

The estimate in (d) is motivated by the observation that the 
visual artifacts in the estimate (b) are local and high-frequency 
in nature. Indeed, it is precisely these high frequency artifacts 
that are quickly and easily removed by SOR or GS algorithms 
computing the smoothness constraint solution. This is clearly 
demonstrated in the MR-SOR estimates in (d) in which only 
5 SOR iterations have been used to post-process (b). 

Let us now turn to the question of computational complex- 
ity. Fig. 6 illustrates the rms error in the flow estimates as a 
function of iteration for the SOR and GS algorithms. The rms 
error in the MR flow estimate of Fig. 5(b) as well as those of 
MR-PF and MR-SOR in (c) and (d) are also indicated in the 
figure. The procedures used to generate the MR, MR-PF and 
MR-SOR estimates are nor iterative and thus the associated 
rms errors are shown simply as straight lines. Note first that, as 
expected, the SOR algorithm is significantly faster than the GS 
algorithm (they will converge to the same result since they are 
solving the same partial differential equation). However, the 
SOR algorithm itself has a substantial computational burden. 
For example, while the SOR algorithm has not converged after 
50 iterations, the estimates in Fig. 5(a) are not bad, but even at 
this point and even for this small example, SOR requires far 
more computation than the MR based estimate. In particular, 
as we indicated previously, the computational load of the MR 

MR-iniSillirsd SOR 
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0.3 i 

Fig. 7. Rms difference comparison illustrates how the MR-initialized SOR, 
SOR, and GS algorithms converge to the smoothness consmint solution 
for the Rotation sequence. The plots show the rms difference between the 
smoothness constraint solution and the estimates as a function of iteration. 
All will eventually converge, but the MR-initialized SOR algorithm converges 
much faster than SOR or GS. 
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Fig, 8. Multiscale Regularization flow estimates at the (a) first, (h) second, 

algorithm equals 4.2 SOR iterations, while producing the MR- 
PF and MR-SOR estimates requires computation equivalent 
to 5.6 and 9.2 SOR iterations, respectively6. Thus, for this 
small example, the algorithms corresponding to Figs. 5(b&(d) 
offer computational savings over SOR of factors of 50/4.2 
= 11.9, 50/5.6 = 8.9 and 50/9.2 = 5.4 respectively. As an 
aside, note that these results also suggest that if one insists 

6With respect to the MR-PF estimates (c). straightforward convolution of 
the two components of the optical flow in (b) with a separable 7 x 7 filter 
requires 26 flops per pixel (equivalent to 1.4 SOR iterations) and could, of 
course. be reduced further with FFI algorithms. 
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(C) (d) 

Fig. 9. Multiscale Regularization error covariance at the (a) second, (h) third, ( c )  fourth, and (d) sixth scales 

upon solving the partial differential equation corresponding to 
the SC formulation, then using the MR estimate as an initial 
condition is a computationally attractive way in which to do 
this. Specifically, Fig. 7 illustrates the rms difference between 
the smoothness constraint solution7 and the intermediate values 
of the GS, SOR and MR-initialized SOR estimates as a 
function of iteration. The error plot for the MR-initialized SOR 
algorithm begins at 4.2 iterations to take into account the initial 
computation associated with the MR algorithm. The figure 
demonstrates that the MR-initialized SOR approach provides 
a substantial reduction in computational burden even for this 
small size problem. This in fact suggests that MR algorithms 

'The smoothness constraint solution is approximated as the SOR algorithm 
optical flow estimates after 500 iterations. 

may be of more general use in the efficient solution of partial 
differential equations in other applications as well. 

As we have emphasized, the MR algorithm has other attrac- 
tive features beyond its computational efficiency, including the 
fact that it directly provides estimates at multiple resolutions. 
Fig. 8 depicts these estimates at scales m = 1 , 2  and 3 (where 
the finest scale m = 6 estimates are in Fig. 5(b)). These coarser 
estimates also obviously capture the rotational motion and 
may, in some cases, be preferable representations of perceived 
motion because of their comparative parsimony compared to 
Fig. 5(b). Indeed in many applications one is interested in 
fairly aggregate measures of motion which these estimates 
provide directly. Furthermore, as we describe next, the MR 
algorithm in fact directly provides a precise way in which 
to determine the optimal resolution for characterizing optical 
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Fig. 10. Map showing the optimal resolution for optical flow reconstruction 
for the rotation image sequence optical flow. At points near the focus of 
rotation the flow is represented at fine scales, while at points near the edge 
of the image (where little gradient information is available) the optical flow 
is represented at a coarser level of the quadtree. 

flow in different regions of the image, the basis of which is 
the multiscale covariance information computed by the MR 
algorithm. 

Fig. 9 illustrates the trace of the 2 x 2 estimation error 
covariance in (52) at each point in the quadtree at different 
scales. Bright areas correspond to regions of lower covariance 
(higher confidence). Note that around the border of the image, 
where the Gaussian has tapered off and the gradients are 
relatively small, the error covariance is relatively large, as 
compared to the region around the point of rotation. One use 
of this covariance information is to provide information that 
may be useful to higher level vision algorithms which use the 
optical flow field in conjunction with information from other 
sources, and need to combine this information in a rational 
way. Moreover, as we have suggested, this information can 
also be used in the context of addressing the problem of 
resolution versus accuracy in the estimates. The idea is that 
we would expect to estimate rather well the coarse resolution 
features in the optical flow field and that finer resolution 
features could be estimated with decreasing fidelity depending 
on the quality and characteristics of the available data (e.g., 
on the presence or absence of fine scale image intensity 
fluctuations). Thus, what we would like is a rational procedure 
for determining the estimate resolution supported by the data. 

There are several ways in which the flow estimate co- 
variance information can be used to approach this problem. 
One possibility, which has a precise statistical interpretation, 
is as follows. To each node at the finest scale, we can 
trace a path up to the root node, where nodes in the path 
correspond to the parent, grandparent, great-grandparent, etc., 
of the node at the finest level. The optical flow estimates at 
each of these resolutions can be thought of as successively 
coarser representations of the optical flow estimate at the 
finest scale. Associated with that same path is a sequence of 
smoothing error covariance matrices computed via (52). At 
each pixel location we can choose the optimal resolution at 
which to represent the field by choosing the scale at which 
this error covariance is minimum. In Fig. IO the scale of 
the minimum of the trace of the smoothed error covariance 
along this path is plotted for each lattice site. Note that in 
regions near the border, where the Gaussian has tapered off and 

Fig. 11.  Multiscale regularization rms error sensitivity to the parameters b 
and p (rotation sequence). 

not much gradient information is available, a lower resolution 
representation for the flow field is given. On the other hand, 
near the point of rotation, where there is gradient information, 
the resolution is at a higher (i.e., finer) level. It is interesting 
to note that the areas in which the finest level MR estimate 
of Fig. 5(b) has the most visually obvious blocky behavior 
are also areas in which one has no business estimating optical 
flow at such a fine scale to begin with. Said another way, one 
interpretation of Fig. 10 is that any estimate of optical flow at 
such a fine scale in such regions is a visual axtifact! 

Finally, let us briefly comment on the choice of the parame- 
ters b and p in the MR algorithm. In particular, we have found 
through experimentation that the rms error in the estimates and 
their qualitative appearance is relatively insensitive to b and 
p.  Fig. 11 depicts the rms errors in the MR flow estimates 
for the rotation example as a function of b and p, displaying 
characteristically flat behavior over a very large range of 
values. 

C. Yosemite Sequence 

The second example is a synthetic image sequence which 
simulates the view from a plane flying through the Yosemite 
Valley*. The first image in the sequence and the corresponding 
optical flow are shown in Fig. 12. The rms value of the flow 
field is 1.86. 

Fig. 13 illustrates four estimates of the optical flow corre- 
sponding to (a) the SC formulation after 100 iterations of the 
SOR algorithm, (b) the finest scale of estimates produced by 
the MR algorithm with parameters b = p = 1, (c) the MR-PF 
estimates derived as described previously and (d) the MR-SOR 
estimates produced by post-processing the MR estimates with 
10 iterations of SOR. The estimates are qualitatively similar, 
each indicating the fly-through nature of the sequence. The 
estimates are also quantitatively similar as indicated by the 
rms errors for the four estimates: 
(SC) 0.76 
(MR) 0.79 

'This sequence was synthesized by Lyn Quam of SRI International. 
The original sequence is 252 x 312. As discussed in Appendix I, it is 
straightforward to adapt our approach to trees other than regular quadtrees, i.e., 
to trees with varying numbers of branches. However, for simplicity, in these 
experiments we have coded our algorithms for quadtrees. For this example, 
then, we extracted a 252 x 256 portion of the sequence (the left side) so that 
processing could be done on a quadtree with 256 x 256 lattice sites at the 
finest level. The measurement matrix C ( s )  defined at the unneeded four rows 
of the quadtree smcture was set to zero, reflecting the fact that we have no 
information about the (nonexistent) optical flow field in that region. 



54 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 3. NO. I ,  JANUARY 1994 

c . c 

c , , 
, 

(a) (b) 

Fig. 12. (a) First frame of Yosemite sequence. (b) Yosemite sequence m e  optical flow. 
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Fig. 13. Yosemite sequence flow estimates. (a) Smoothness constraint estimates computed using 100 iterations of SOR. (b) 
Multiscale regularization (MR) estimates. (c) Post-filtered MR estimates. (d) Estimates produced by using MR estimates as initial 
condition for SOR algorithm. 

(MR-PF) 0.79 
(MR-SOR) 0.78 various approaches based on the MR algorithm. 

The rms errors as a function of iteration are shown in 
Fig. 14. Note that the SC estimates (a) have actually not yet 
converged after 100 iterations and that when they do, the rms 

error of the SC estimate is slightly higher than those for the 

Again, there is some hlockiness in the MR optical flow 
estimates, and, as seen in Figs. 13(c) and (d), some of this 
effect can be eliminated by post-processing the estimates with 
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Fig. 14. R m s  Error Comparison of MR, MR-PF, MR-SOR, and Gauss- 
Seidel (GS) algorithm flow estimates for the Yosemite sequence. 

an FIR filter as in the previous example. There is still some 
blockiness apparent, but comparison with (a) shows that this is 
also apparent in the SC solution. Hence, the residual blockiness 
in the smoothed estimates is not due to the quadtree structure, 
but rather to the nature of the image sequence data itself. 

An examination of computational complexity again shows 
the gains achievable using MR-based methods. The SC flow 
estimates shown in Fig. 13(a) required 100 SOR iterations in 
this example, representing a factor of 100/4.2 = 23.8 more 
computation than the MR estimates. Likewise, the MR-PF 
and MR-SOR (c) and (d) represent factors of 100/7.7 = 13 
and 100/14.2 = 7.0 computational improvement. In general, 
the number of iterations required for convergence of the SOR 
algorithm for the SC formulation depends on several things, 
including the parameter R, the image gradient characteristics 
and the image size. Analysis in [21] shows that the SOR 
algorithm requires on the order of N iterations for an N x N 
image. Thus, we expect substantially more computational 
savings as the image size increases. 

Furthermore, as before one would expect to be able to 
quickly obtain the SC solution by using the MR solution as 
an initial condition. Fig. 15 illustrates how the GS, SOR and 
MR-initialized SOR algorithms converge to the smoothness 
constraint solution. Note that visually, there is almost no 
difference between the MR-initialized SOR estimates Fig. 
13(d) and the SC estimates shown in Fig. 13(a). Indeed, the 
rms difference between the MR estimates and the smoothness 
constraint solution is 0.178, while the rms difference between 
the estimates in Fig. 13(a) and the smoothness constraint 
solution is 0.181. More generally, Fig. 15 shows that for any 
given number of iterations, the MR-initialized SOR estimates 
are substantially closer to the final solution than the GS or 
SOR estimates. 

Estimates of the optical flow at scales m = 1 , 2 , 3  computed 
via the MR algorithm are shown in Fig. 16 and multiscale error 
covariance images, again, corresponding to the traces of the 
smoothing error covariance matrices at individual lattice sites, 
are shown in Fig. 17. The coarser versions of the flow are 
intuitively reasonable given the estimates at the finest level 
and, as expected, the covariance images are relatively dark 
(high covariance) in the top portion of the image where there 
is no gradient information available. 

1.4- 

00 

Fig. 15. Rms Difference Comparison illustrates how the MR-initialized 
SOR, SOR, and GS algorithms converge to the smoothness consuiant solution 
(Yosemite sequence). 

Fig. 18 depicts a map of the optimum resolution for flow 
estimation at each pixel location computed as the minimum of 
the trace of the smoothed error covariance matrix along paths 
from nodes at the finest level to the root node. We see, not 
surprisingly, that the level of resolution chosen for the region 
with no intensity information is quite low. In addition, the 
resolution along the face of the mountain in the foreground is 
slightly reduced due to the relative lack of gradient information 
in the direction of the striations. 

Finally, Fig. 19 illustrates the variations in the rms error 
in the optical flow estimates to variations in the parameters 
b and p. The figure shows that the estimates are relatively 
insensitive to the parameter b, and are also insensitive to 
p for values ranging from slightly less than 1 upward. The 
degradation in performance as p decreases toward zero is 
not uncommon or unexpected. In particular, as discussed in 
[9]-[12], [53] decreasing p leads to significant decreases in 
spatial correlation in the model and to far noisier sample 
paths. Thus, the estimates for small values of p correspond 
to imposing virtually no smoothness constraint, resulting in 
estimated fields with noise-like characteristics. On the other 
hand, choosing any value of p 2 1 yields results of comparable 
quality to each other and to the SC solution. 

D. Moving Vehicle Sequence 

The third example is based on a real’ image sequence which 
depicts the view from a car driving down a road. The first 
image in the sequence is illustrated in Fig. 20 and Fig. 21 
illustrates four estimates of the optical flow corresponding 
to (a) the SC formulation and 200 iterations of the SOR 
algorithm, (b) the finest scale of estimates produced by the MR 
algorithm with parameters b = p = 1, (c) the MR-PF estimate 
and (d) the MR-SOR estimate produced by post-processing 
the MR estimates (b) with 30 iterations of SOR. 

Since the true optical flow is not available (as it was in 
the previous simulated examples), an alternate performance 
metric is needed. In particular, we will use a reconstruction 
error metric, which is often used in contexts in which one 
is interested in using optical flow for motion-compensated 
coding. This metric measures the mean square difference 

’The sequence is courtesy of Saab-Scania. 
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Fig. 16. Multiscale Regularization flow estimates at the (a) first, @) second, and (c) third scales. 

between the current image in a sequence and an estimate of it 
based on the computed optical flow, the previous image, and a 
bilinear interpolation scheme [30]. The optical flow used is that 
associated with the current image. Essentially, one estimates 
the brightness at any given point by using the optical flow 
to project that point back to the previous image. In general, 
that point will not be on the image plane, and the bilinear 
interpolation is required. 

Fig. 22 provides a comparison of reconstruction error per- 
formance for the approaches as a function of iteration (where 
once again the results for the non-iterative MR, MR-PF 
and MR-SOR approaches are depicted as horizontal lines). 
In this example, the SC solution was slightly better than 
the MR and MR-PF methods, achieving a slightly greater 
rms error reduction from the value obtained without motion 
compensation (is.,  straightforward frame difference given by 
the zero-iteration starting point for SOR). However, this slight 
increase in performance is achieved at the cost of significantly 
greater computation. In particular, the computational gains 
are 200/4.2 = 47.6, 200/6.98 = 28.7 for the MR-PF and 
MR-SOR approaches, respectively. Furthermore, as is also 
illustrated in Fig. 22, the modest performance gain of SC 
over MR can be recouped with far less computation using 
the MR-SOR procedure that has a factor of 200/34.2 = 5.8 
computational speedup. Indeed, as Fig. 23 shows, the MR- 
SOR solution of Fig. 21(d) is closer to the SC solution than 

the result in Fig. 2l(a), which required 200 iterations of SOR 
to obtain. 

As in the previous examples, multiresolution flow estimates 
and error covariance information is available at all levels of 
the quadtree, and an image of the error covariance information 
at the finest level lattice points is shown in Fig. 24(a). Note 
in this case that the error covariance is relatively high (dark 
regions in the image) along the road where the image gradient 
is relatively low. Also, Fig. 24(b) depicts the optimal resolution 
at which to recover the optical flow field computed using this 
error covariance information. 

Finally, the sensitivity of the optical flow estimates in this 
example to parameter choice is shown in Fig. 25. The figure 
shows that the reconstruction error is stable for p 2 1 as in the 
Yosemite example, and is insensitive to variations in b over a 
significant range of values. 

E. Chopper Sequence 

The first frame of the real “chopper” sequencelo is shown 
in Fig. 26. Fig. 27 illustrates four estimates of the optical flow 
corresponding to (a) the SC formulation and 200 iterations of 
the SOR algorithm, (b) the finest scale of estimates produced 

“The 480 x 480 image lanice was centered on the finest level of a 
10 level (512 x 512 at the finest scale) quadtree. Again, as discussed in 
Appendix I, adapting our approach to deal directly with arbitrary size lattices 
is straightforward. 
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( 4  (d) 
Fig. 17. Multiscale Regularization error covariance at the (a) second, (b) fourth, (c) sixth, and (d) finest scales. 

by the MR algorithm with parameters b = p = 1, (c) the 
MR-PF estimate and (d) the MR-SOR estimate produced by 
post-processing the MR estimates (b) with 80 iterations of 
SOR. 

As in the previous example, rms reconstruction error is the 
metric we use for comparison since the true flow is not known. 
Fig. 28 provides a comparison of the reconstruction error per- 
formance of the approaches as a function of iteration. Note that 
in this example all four methods yield essentially identical rms 
performance, but once again the MR-based algorithms have 
significant computational advantage. Computational gains for 
the MR, MR-PF, and MR-SOR approaches are 200/4.2 = 47.6, 
200/6.53 = 30.6 and 200/84.2 = 2.38. 

Also, as in the previous examples, the performance of the 
MR algorithm is stable over a wide range of values of the 
parameters b and p, as is illustrated in Fig. 29. In addition, 
multiresolution estimates and error covariance information are, 

of course, available. For the sake of brevity, we illustrate only 
map of the optimum resolution information constructed from 
the multiscale error covariance information in Fig. 30. Note in 
this case that the resolution level is relatively uniform over the 
image and is at a scale far coarser than the finest scale level 
(level 10). That is, the image spatial intensity variations in 
this image sequence are not particularly strong so that fine 
resolution flow estimation can only be achieved with high 
levels of uncertainty. 

On the other hand, there is an important fine-level velocity 
feature of some significance in this image sequence, namely a 
helicopter, located near the center of the image frame, which 
is movingrelative to the background. While the local image 
contrast in the image is not sufficiently strong to allow very 
accurate estimation of what is in essence a discontinuity in 
the optical flow field, it is reasonable to expect that there 
would be some useful, quantitative information in the image 
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Fig. 18. Map depicting the optimal resolution for representing the optical 
flow field as a function of lattice site. Note that the optical flow field is 
represented at a coarser level in the quadtree in regions where there is no 
gradient information (at the top). It is also represented at a coarser level along 
the face of the mountain, where there is little gradient information parallel 
to the strations. 

Fig. 19. Multiscale Regularization rms error sensitivity to the parameters b 
and p (Yosemite sequence). 

Fig. 21. Moving vehicle sequence Row estimates. (a) Smoothness constraint 
estimates computed using 300 iterations of SOR. (b) Multiscale Regularization 
(MR) estimates. (c) Post-filtered MR estimates. (d) Estimates produced by 
using MR estimates as initial condition for SOR algorithm. 

Fig. 22. Rms Error Comparison of MR, SOR, and Gauss-Seidel (GS) 
algorithm flow estimates for the Moving vehicle sequence. 

The starting point for this is the well-known criterion of 
global smoothness constraint type formulations such as ours, 
namely that they tend to obscure localized motions such as 
that due to the helicopter in Fig. 26. This is not surprising 
since SC-type formulations yield what are in essence low- 
pass spatial filters. However, there is an extremely critical 
point that is well-known in Kalman filtering theory and in that 
relating to the use of such filters for the detection of abrupt 
changes in time series or dynamic systems. Specifically, such 
filters can also be used to implement high-pass filters that 
produce outputs that not only enhance the discontinuities to be 
detected but also make optimal detection possible. Specifically, 
the residuals or innovations in a Kalman filter, that is, the 
difference between the observations and predicted observations 
based on model and data, represent a statistically whitened 
version of the observations resulting from what is in essence a 

Fig. 20. First frame of Moving vehicle sequence. 

sequence that could be used to detect this motion discontinuity 
and obtain rough (i.e., coarse level) motion estimates. While 
it is beyond the scope of this paper to develop such a scheme 
in detail, we can provide an indication of how the MR method 
provides the essential elements for an effective solution. 
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Fig. 23. Rms Difference Comparison illustrates how the MR-initialized 
SOR, SOR, and GS algorithms converge to the smoothness constraint solution 
(Moving vehicle sequence). 

I .  
(b) 

Fig. 24. (a) Multiscale Regularization error covariance at the finest scale. (b) 
Map illustrating the optimal representation resolution for the Moving vehicle 
sequence optical flow estimates. 

high-pass filter. As discussed in many papers and books ([4], 
[52], for example), discontinuities in the data being processed 
then lead to distinctive signatures, which can be looked for 
using optimal detection methods. 

In a similar fashion we can compute residuals of the MR 
estimates 

(63) v(s )  = y(s) - C(s)T(s) 

Fig. 25. Multiscale regularization rms error sensitivity to the parameters b 
and fl  (Moving vehicle sequence). 

Fig. 26. First frame of Chopper sequence. 

for the chopper sequence, an image of which is illustrated in 
Fig. 31. Note that in contrast to the original image in Fig. 
26, this residual image does not display any coherent structure 
other than the helicopter, making detection of the helicopter a 
far easier task in this domain. Furthermore, high pass filtering 
has in fact enhanced the chopper signature, as the helicopter 
rotors, nearly imperceptible in Fig. 26 are clearly in evidence 
in Fig. 31 because of the motion discontinuity. As we have 
indicated, statistically optimal methods for using residuals 
analogous to these have been developed for time series, and, as 
discussed in [4], [52], such methods require error covariance 
information from the estimator in order to specify the optimal 
detection procedure. Since the MR algorithm also produces 
such error covariance information it is possible to develop 
optimal detection methods in this imaging context as well. 
Such a method is currently under development. 

IV. CONCLUSION 
We have presented a new approach to the regularization 

of ill-posed inverse problems, and have demonstrated its 
potential through its application to the problem of com- 
puting optical flow. This approach starts from the “fractal 
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Fig. 27. Chopper sequence Row estimates. (a) Smoothness constraint estimates computed using 2M) iterations of SOR. (b) Multiscale 
Regularization ( M R )  estimates. (c) Post-filtered MR estimates. (d) Estimates produced by using MR estimates as initial condition 
for SOR algorithm. 

prior” interpretation of the smoothness constraint introduced 
by Hom and Schunck to motivate regularization based on a 
recently introduced class of multiscale stochastic models. This 
new formulation leads to an extremely efficient, non-iterative, 
scale-recursive solution, yielding substantial savings over the 
iterative algorithms required for the smoothness constraint 
solution. In particular for 256 x 256 or 512 x 512 images, 
our algorithm leads to computational savings on the order of 
a factor of 10 to 100. Indeed, since the iterative approaches 
associated with the smoothness constraint solution typically 
take longer to converge as the image grows, whereas the 
per pixel computation associated with the MR algorithm is 
independent of image size, even larger savings can be realized 
for larger image domains. 

Our approach has a number of potential advantages in 
addition to the reduction in computational cost. First, mul- 
tiresolution estimates of the flow field are available and, 
although we have not taken advantage of it in this paper, the 
MR algorithm also allows for multiresolution measurements 
of the optical flow, i.e., measurements as in (25) but for 
triples s = (m, i , j )  at several scales. Second, error covariance 
information is available, allowing one to assess the quality of 
the estimated optical flow, and we have used this information 
to suggest one means of addressing the resolution vs. accuracy 
tradeoff inherent in ill-posed problems by specifying the 
optimal resolution for flow reconstruction at each point in 
the image. Finally, the MR algorithm provides an excellent 
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Fig. 28. Rms Error Comparison of MR, SOR, and GaussSeidel (GS) 
algorithm flow estimates for the Chopper sequence. 

initialization for algorithms computing a solution based on a 
smoothness constraint formulation. 

While we have not pursued it here, the multiresolution 
philosophy introduced here may offer a promising approach 
to motion-compensated image sequence coding. In particular, 
although we used the coding metric of reconstruction error as 
the basis for the comparison of the SC and MR approaches, the 
methods presented here would not be the method of choice in 
a coding context. In particular, motion-compensated coding 
algorithms designed specifically to minimize this criterion 
[2], [30], [51] will generally outperform the SC and MR 
approaches (which are not designed for that express purpose). 
However, the computationally efficient MR algorithm can 
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Fig. 29. Multiscale Regularization rms error sensitivity to the parameters b 
and p (Chopper sequence). 
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Fig. 30. Map illustrating the optimal resolution for the Chopper sequence 
optical flow estimates. 

be used as an initial preconditioning step for such coding 
algorithms. In addition, one can also imagine a second way in 
which MR ideas could be used in this context. In particular, 
one of the problems with the SC and MR based methods 
is the differential form of the brightness constraint that, 
given the discrete nature of spatial and temporal sampling, 
is only valid for relatively small interframe displacements. In 
contrast, methods such as [2], [30], [51] use a direct displaced 
frame matching metric, which is nothing but the integrated 
version of the brightness constraint. A common approach 
to dealing with larger displacements with the differential 
brightness constraint is to spatially blur the image sequences, 
i.e., to consider lower resolution versions of the image to 
estimate larger displacements [14], [18]. What this suggests is 
an MR approach in which we not only have a multiresolution 
model for optical flow but also multiresolution measurements. 
The development of such an approach remains for the future. 

Also, the framework in which our method is developed sug- 
gests a method for directly detecting unmodeled discontinuities 
in the optical flow field in a rational and statistically optimal 
way. In particular, the measurement residual field represents 
a high-pass version of the observed data that accentuates the 
effects of motion discontinuities and removes other features 
corresponding to smoothly varying parts of the flow field. For 
time series, such residuals provide the basis for extremely 
effective methods for the detection of discontinuities, and 
the development of corresponding methods in our multiscale, 
image processing framework represents a promising direction 
for the future. Indeed, this suggests a number of additional 
directions for extending time-series methods to the imaging 

Fig. 31. The smoothing filter residuals shown above can be used to develop 
adaptive algorithms for the motion-based object detection. 

context such as adaptive estimation of the multiscale parame- 
ters b and p in order to adaptively adjust the level and nature of 
the regularization imposed on different image regions. While 
such adaptive methods are certainly not unknown in image 
processing, our scale-recursive framework not only leads to an 
extremely efficient framework for the realization and provides 
the error covariance information needed for the development 
of statistically optimal methods but the use of a pyramidal 
framework provides enormous flexibility in adaptation. For 
example, in the time series case, the use of a very large 
value for the noise parameter corresponding to b at some 
point in time essentially decouples the processing before 
and after that point (since no smoothness at that point is 
expected). In our framework a large value for b at some node 
decouples the processing within the region, corresponding 
to the subtree of pixels beneath that node, from processing 
outside that region, exactly what would be needed to deal 
with a region corresponding to motion discontinuity relative 
to the background. 

Finally, in this paper we have focused on a particular 
image processing problem, the computation of optical flow. 
However, we believe that the multiscale stochastic modeling 
approach can be more generally useful. In particular, it may 
provide a computationally attractive altemative to standard 
approaches to the broad class of estimation problems in 
which the underlying field to be estimated is modeled as a 
Gaussian Markov random field or as the solution of noise 
driven partial differential equations, or in which a “smooth- 
ness constraint” type regularization is employed. Viewing the 
multiscale models as an alternative underlying model should 
lead to significant computational savings for such problems 
and should also have the other benefits we have described. 

APPENDIX I 
NONHOMOGENEOUS TREE STRUCTURES 

We made the assumption at the beginning of Section I1 
that the image lattice is square, and that the number of rows 
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where R(s) = max[llC(s)112, 10). The analysis below takes 
into account all floating point adds, multiplies and divides. 

Consider first the update step given by (40H43). P(sls+) is 
initialized with P I .  Computation of V - ' ( s )  requires six float- 
ing point operations (the inverse requires 1 divide since V ( s )  
is a scalar and the comparison required to compute R(s) is not 
counted). Computation of K ( s )  requires 3 flops. Computation 
of P(s ls )  requires 7 flops (Perform the C(s)P(sls+) first, and 
use the fact that P(s1s) must be symmetric). Initialize Z(sIs+) 
with zero. Computation of F(s1.s) then requires 2 flops. The 
update step is required only at the finest level, since this is the 
only place we have data for in the optical flow problem. Thus, 

Fig. 32. Nonhomogeneous tree structure for lattices that are not square. The 
grid structure is a simple extension fa the quadtree structure in that it allows 
for varying numbers of "offspring" from each parent. The figure illustrates a 
hiemchy of grids for a 6 x 9 lattice. 

is equal to a power of two. The reason we have done this 
is because of the fact that the multiscale model described 
in this paper is defined on a quadtree structure. There are 
at least two ways to relax the assumption. First, we could 
simply zero pad C(s) on the image lattice to make it fit the 
quadtree structure. This corresponds assuming no information 
is available about the (non-existent) optical flow in that 
region. A second, slightly more elegant approach, would be 
to change the modeling structure to accommodate the lattice. 
In particular, we would like to have a structure that gives us 
the proper number of nodes on the finest level. The quadtree 
structure is homogeneous in the sense that each parent has 
four offspring; what we are proposing are nonhomogeneous 
tree structures in which different parents may have different 
numbers of offspring. For example, suppose one had a 6 x 9 
lattice. Fig. 32 illustrates a sequence of grids that one might use 
to model a random field defined this lattice. In the first level, 
the root node has six offspring, two in the row direction and 
three in the column direction. At the second level, each node 
has nine offspring, three in the row direction and three in the 
column direction. Thus, at the finest level there is a 6x9  lattice. 
This example illustrates only one simple suggestion. More 
complicated tree structures could be derived, and certainly the 
idea could be combined with zero padding. 

APPENDIX I1 
MR ALGORITHM COMPLEXITY ANALYSIS 

In this section we analyze the computational complexity 
of the MR algorithm. The analysis applies to the specific 
model given by (54H58). The model is repeated here for 
convenience 

z(s) = z(s7) + (b4*)w(s) (64) 

Y(S) = C ( S ) Z ( S )  + 4 s )  (65) 
4 5 )  - W O ,  1) (66) 
4 5 )  - N(O, Ws)) (67) 

2 0  - "€J4 (68) 

the total computation associated with this step is 18 x 4' flops 
(I is defined to be the number of levels in the quadtree. There 
are 4' points at the finest level.) 

Next, consider the prediction step, (44) - (46). Computation 
of Q(scri) is negligible because this parameter varies only as 
a function of scale (level). Computation of P(slsai)  requires 
5 flops (note that F ( s )  and Q(sai)  are diagonal multiples of 
the identity). Computation of the predicted estimate Z [ s l s a i )  
requires 2 flops. These computations must be done at levels 
1 through 1. Thus, the total computation associated with this 
step is approximately 7 x 4/3 x 4' flops. 

Next, consider the merge step, (47H48). Computation of 
P(sls+) requires 44 flops (there are five 2 x 2 inverses 
requiring 6 flops apiece, and the computation of (1 - q)P;l is 
negligible since it only varies with scale. The inverses require 
only 6 flops because the matrices involved are 2 x 2 and 
symmetric.) Computation of Z(sls+) requires 36 flops. The 
merge step must be done at levels 0 through 1 - 1. Thus, the 
total computation associated with this step is 80 x 1/3 x 4' 

Finally, consider the steps in the downward sweep, 
(51H53). Computation of J ( s )  requires 12 flops (the matrix 
P(syls) has already been inverted in (48), F ( s )  is a multiple 
of the identity and J ( s )  is symmetric.) Computation of Ps(s )  
is not required, unless one is explicitly interested in the error 
covariance of the smoothed estimate. Computation of Z"(s)  
requires 10 flops. The smoothing step must be done at levels 
1 through 1. Thus, the total computation associated with this 
step is 22 x 4' flops. 

We can now add up all of the computations associated with 
the MR algorithm. There are 4' pixels in the problem domain, 
and thus the algorithm requires 18 + 28/3 + 80/3 + 22 = 
76 flops per pixel. We note that this is a lower bound on 
the number of flops per pixel in any implementation of 
the algorithm and that the implementation with the lowest 
number of flops per pixel may not be the best. The reason 
is simply that there may not be enough memory available 
to keep all intermediate calculations around (such as the 
inverses computed in (48) and reused in (53)). We compute 
the complexity of the GS and SOR algorithms in the same 
way (i.e., all intermediate results are assumed to be available), 
and thus the computational comparison we make between 
these algorithms is based on optimal (in terms of the number 
of flops) implementations. Suboptimal implementation of the 
MR algorithm will lower its computational advantage, but any 
reasonable implementation (for instance one that saves just 

flops. 
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.^(.sIs), p(.sls) and the measurement data) will still provide a 
significant savings over the SOR and GS algorithms. 
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