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Albert Benveniste, Fellow, IEEE, Ramine Nikoukhah, Member, IEEE, and Alan S. Willsky, Fellow, IEEE 

Abstract-In many applications it is of interest to analyze 
and recognize phenomena occurring at different scales. The 
recently introduced wavelet transforms provide a time-and-scale 
decomposition of signals that offers the possibility of such an 
analysis. Until recently, however, there has been no corresponding 
statistical framework to support the development of optimal, 
multiscale statistical signal processing algorithms. A recent work 
of some of the present authors and co-authors proposed such 
a framework via models of “stochastic fractals” on the dyadic 
tree. In this paper we investigate some of the fundamental issues 
that are relevant to system theories on the dyadic tree, both for 
systems and signals. 

I. INTRODUCTION 
ULTIRESOLUTION signal processing has been and M continues to be an extremely active area of research 

in both theory and applications. In part, with the development 
of the wavelet transform [18]-[201, [25], [291, 1301, pyrami- 
dal image representation schemes [lo], and multirate digital 
filtering [17], activity in this area has increased dramatically 
in the past few years. For the most part the home for this 
research has been the signal processing community, but, in our 
opinion, there is a significant role that should be played by the 
system theory community. In particular, in [7] we present an 
overview of some of our work toward this objective, and we 
explain why linear models of systems and stochastic processes 
on the dyadic tree provide a natural and powerful setting 
for multiscale modeling and processing. Roughly speaking, 
all multiresolution methods involve a process of successive 
operations of filtering-and-decimation which associate with 
any signal a collection of successively decimated waveforms. 
For example orthonormal wavelet and wavelet packets [16] 
transforms proceed by successively splitting a signal into low- 
and high-pass components that are decimated before the next 
stage of filtering. In this way we form the representation of the 
signal in a wavelet basis in which the different components of 
the transform are very naturally indexed using a dyadic tree 
representation. Such a procedure clearly describes a dynamic 
process in which the index set is the dyadic tree and the 
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basic dynamic operations can be viewed as recursions in scale, 
consisting of filtering and decimation. 

Although these observations might be viewed simply as 
an interesting interpretation of multiresolution signal repre- 
sentations, we believe (and our recent work confirms) that 
they provide much more than that. Specifically, the descrip- 
tion of multiresolution representations as dynamic systems 
on trees provides a setting for the multiresolution modeling 
of signals and phenomena which, in turn, lead directly to 
powerful methods for statistically optimal multiresolution sig- 
nal and image processing. In particular, these observations 
have led us to examine scale-recursive models for stochastic 
processes, leading to multiscale generalizations of Schur- 
Levinson techniques [41 and Kalman filtering [131,[141,[71. 
Moreover, in [7],[ 131-[ 15],[26]-[28] we have demonstrated 
that these and related algorithms for likelihood calculation lead 
to new methods for a variety of important signal and image 
processing problems, including multiscale data fusion, motion 
estimation in image sequences, and texture discrimination. 
Furthermore, these new methods offer considerable advantages 
over previous methods in terms of computational efficiency, 
statistical optimality, explicit calculation of error statistics, 
estimates at multiple resolutions, and so forth. 

In large part it is these successes that provide the motivation 
for this paper. In particular in the applications we have 
considered, the multiscale models that have been used were 
either provided or obvious. However, given the promise of 
these methods as well as the demonstrated richness of this 
multiscale framework [27], it is clear that there is a need 
for a theory for multiscale modeling, and, in particular, for 
a realization theory for multiscale models. In this paper we 
introduce and develop the basic ideas for such a multiscale 
system theory. The key to this development is the identification 
of a transform concept that is as naturally associated with 
multiscale systems as the z-transform is with usual discrete- 
time systems. The basis for this ransform is the definition of 
elementary “dynamic shift” operators associated with signals 
on the dyadic tree. That is, while in the usual signals and 
systems framework the basic operation is the time-shift of 
signals, usually represented using the variable z, the basic 
operation for us will be jltering-and-decimation, which will 
play the role of our abstract shifts on the dyadic tree. 

In particular, as we develop in Section 2, these abstract 
shifts are identified by examining the purely algebraic structure 
of Quadrature Mirror Filter (QMF) banks, which are the 
key building block in defining pyramidal multiscale signal 
representations. QMF banks are also central to the construction 
and design of orthonormal wavelet bases, although in this 
paper we exclusively use only the basic algebraic properties 
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of QMF banks and not any of the analytic properties used 
either in filter bank design [31] or wavelet construction [19]. 
Specifically, we first show that QMF banks can be naturally 
interpreted as linear operators from Z2(7) into itself, where 
7 denotes the dyadic tree. These operators satisfy a key 
algebraic condition that is a direct counterpart of the usual 
QMF property, and which amounts to defining an orthonormal 
decomposition of Z2(7). Once we have these basic shift 
operators we can immediately introduce the concept of a 
system on the tree in exactly the same way that we define 
linear discrete-time systems in terms of z-transforms. That is, 
roughly speaking, a system is a linear combination of products 
of the above mentioned basic shift operators. An important 
point here is that while for z-transforms we in essence make 
use of only two operators, namely the forward and backward 
shift z and z - l ,  which are inverses of each other, so that 
z z - l  = z - l z  = 1, for systems on dyadic trees we will need 
to define four operators that satisfy somewhat more complex 
conditions abstracted from those for QMF’s (indeed these 
operators do not commute and are not invertible). This, in 
turn, makes the study of such systems much more than a 
straightforward exercise. In particular, Section 3 is devoted 
to the study of such systems on the dyadic tree: rational 
systems, their realizations, and associated state-space forms 
are introduced. 

Following this, the geometry of the dyadic tree is deeply 
exploited in Section 4 to properly define the concept of 
a stationary system in this context. Stationary systems are 
defined as systems commuting with translations, where the 
notion of a “translation” on 7 must be carefully defined. 
In particular, for usual discrete-time systems we typically 
abuse notation and use the operator 2 to represent both 
an operation on signals (i.e. z(x)(n) = x ( 7 ~  + 1)) and as 
a translation of the index set itself ( z  : n ---t n + 1). 
For the dyadic tree these two notions are rather different, 
and thus we must provide a precise notion of the concept 
of translation. Once we have this definition, a very simple 
characterization of stationary systems is given, and similar 
results are presented for stationary stochastic processes, i.e., 
processes with a covariance that is left invariant by translations 
(the isotropic processes studied in [4] are thus particular cases 
of the notion of stationary process we introduce in this paper). 
In particular, we show that stationary systems driven by white 
noise produce stationary stochastic processes as outputs, and 
we provide a “spectral calculus” for such processes. Finally, 
in Section 5 we summarize the results of the paper and point 
to several questions for the future. 

11. MULTISCALE REPRESENTATIONS 
AND SYSTEMS O N  THE DYADIC TREE 

The diagram in Fig. 1 depicts a maximally decimated filter 
bank that still produces alias-free and perfect reconstruction 
of signals [17],[31],[32]. In this picture, the symbol 1 2 
denotes the decimation by a factor of two, i.e., the linear map 
(2,) H (U,) = ( 2 2 , ) .  Hence, in the z-transform domain, 
one has U ( z z )  = % ( X ( z )  + X ( - 2 ) ) .  Similarly, the symbol 
t 2 denotes the interpolation by a factor of two, defined in 

Fig. 1. Maximally decimated filter bank: the 1 2 denotes a downsampling 
operator with rate 2 (samples with even time index are deleted). 

the z-transform domain by the map U ( z )  H Y ( z )  = U ( z 2 ) .  
Accordingly, the corresponding input-output map is written as 
follows: 

Y ( z )  = Z ( z ) U ( z 2 )  + G(z)V(z2) (1) 
1 
2 
1 

= - F ( z ) H ( z )  + G ( z ) G ( z ) ] X ( z )  

+ 5 F ( z ) H ( - z )  + G ( z ) G ( - z ) ] X ( - z ) .  

In this formula, p ( z ) H ( - z )  + E ( z ) G ( - z ) ] X ( - z )  
represents the aliasing component, whereas 

p ( z ) H ( z )  + G ( z ) G ( z ) ] X ( z )  represents the linear 
transfer component. For this map to be both alias-free (i.e., 
H ( z ) H ( - z )  + E ( z ) G ( - z )  = - 0)  and providing perfect 
reconstruction of signals (i.e., H ( z ) H ( z )  + E ( z ) G ( z )  = 2), 
a well-known method [31,32,8] is to construct a pair ( H ,  G )  
satisfying the so-called power complementary condition: 

- 

H ( z ) H ( z - 1 )  + H(-z)H(-z - ’ )  = 2 
z-’H(-z-’) = G ( z )  (2 )  

and then to select (up to a delay) the pair ( H ,  G )  as follows: 

(3) 

This yields the “paraunitary maximally decimated filter 
banks”. Simple examples are given now: 

- _  

Z ( z )  = H ( z - ’ ) , E ( z )  = G(z-’) 

The pair 

H ( z )  = 1 , G ( z )  = 2-l (4) 

together with its proper dual p(z) = l,G(z) = z .  
This leads to pure sampling-and-interpolation operations 
(without any filtering) in which one channel keeps the 
even samples and the other channel the odd samples. 
The pair 

H ( z )  = 1 + z-’, G ( z )  = 1 - zP1 ( 5 )  

which corresponds to the Haar transform [19]. 
A pair ( H ,  G )  satisfying the condition (2) is called a Quadra- 
ture Mirror Filter (QMF) pair. 

To make the notion of a scale more apparent, we shall 
slightly modify this classical setting. For 5 real, we denote 
by (Z the set {[nln E Z}. Successive scales will be figured 
by the sets 2-”Z , where n varies from -co (the “coarsest” 
scales”) to +co (the “finest” scales”). Then we simply redefine 
the symbol T 2 as the natural embedding Z2(2Z) c--) Z2(Z) 
defined by (2,) H (yn), where yzn = z, and yzn+1 = 0. 
Similarly, 1 2 is the natural projection Z2(Z) H Z2(2Z), which 
consists of deleting the samples whose index is not even. In 
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doing so, filtering by H and then decimation by a rate of two 
induces an operator 

3-1 : P(Z)  - P(2Z) 

and similarly for 9. Vice-versa interpolation by a rate of 2 and 
then filtering by induces an operator 

- 
3-1 : P(2Z) - P(Z)  

and similarly for G. Now, the QMF conditions ( 2 ) ,  (3) induce 
the following identities [19], [SI: 

I = 3-177 = Gc 
I = R3-1 + G9 
0 = 7-G = 877 
3-1 = R*,C = 8* 
- 

(6 )  

To verify these identities, note first that the second one is 
equivalent to the perfect reconstruction condition so that it is 
satisfied. To prove the first or the third ones, we note that 
elements of Z2(2Z) are obtained via decimation of elements 
of Z2(Z), i.e., they have z-transforms of the form U ( z 2 )  = 
X ( z )  + X ( - z )  where X is the z-transform of some element 
of Z2(Z). Thus applying to U the operator R yields, in the 
z-transform domain corresponding to Z 2  (Z),  p( z )  ( X (  z )  + 
X ( - z ) ) .  Then applying 3-1 finally yields, again in the z- 
transform domain corresponding to Z 2  (Z) 

1 
- 2 [H(z”(z) + X ( - z ) )  

+ H ( - z ) H ( - z ) ( X ( - z )  + X ( z , ) ]  

= - [ H ( z ) Z ( z )  + H ( - z ) H ( - z ) ] ( X ( z )  + X ( - z ) )  

= U ( 2 )  

1 
2 

where the last equality follows directly from QMF conditions. 
Other properties are verified in the same way. 

Indeed, since decimation and interpolation are generally 
applied successively several times, it is convenient to consider 
all scales 2Y”Z. Then for each scale n, filtering by H and 
then decimation by a rate of 2 induces an operator 

3-1 : P(2T”Z) - 12(2-(”-’)z) 

and similarly for 9. Vice-versa, for each scale n, interpolation 
by a rate of two, and then filtering by H induces an operator 

- 
3-1 : P ( 2 P Z )  - Z2(2-(”+1)z) 

and similarly for e. To avoid using this floating scale n, 
it is convenient to glue all 2-”Z’s together and consider 
instead their disjoint union 2-nZ. But this latter set is 
equivalently represented by the homogeneous dyadic tree 7, 
defined as follows: the nodes of 7 are the truncated binary 
expansions of real numbers, and t -+ s is a branch of 7 if and 
only if t is obtained via cancelling the last bit in s. Then 2-”Z, 
i.e., the n-th scale, identifies with the set of all binary numbers 
that are multiples of 2-”. Fig. 4 shows a picture of this dyadic 
tree. Furthermore, the process of bit cancelling corresponds to 

lo coarser SEPICS 

. 
lo liner scales 

Fig. 2. Cascading a QMF analysis-synthesis bank. 

I 

moving to the next coarser scale (i.e. increasing decimation). 
Hence, the pair (‘Id, 8 )  is now considered as a pair of operators 

(7) 

where Zkc(. . .) refers to signals that are locally Z2-summable, 
and identities (6) are still valid. Now consider a QMF pair 
(3-1, 8) as discussed above and let us consider what we could 
mean by a system involving such a pair and, in particular, how 
the filter branch of Fig. 2 can be represented as a dynamic 
object on 7. As in the standard Hankel operator approach to 
linear system theory, we wish to look at input-output maps 
in which applied inputs finish at some point and we look 
for outputs “after” this point. In our case, this corresponds 
to considering the reference scale Z (rather than a time origin 
in the usual case) and considering inputs U E ZkC(7) which 
are zero for scales “after” this one, i.e., for all finer scales, 
which means that the support of U is contained in the disjoint 
union 2-”Z. Thus, we can think of U as a collection 
of signals U ( n ) ,  where U ( n )  is the restriction of U at the n-th 
level of resolution. Thus each U ( n )  can be interpreted as an 
ordinary signal and U ( n  - 1) has a sampling rate that is half 
that of U ( n ) .  In Fig. 2 ,  each component U ( n )  is processed first 
via a single application of and then by ( n  - 1) applications of 
3-1. That is, if we define the following input-output map on 7,: 

y = (Q+m+E2c+%3G+ ...) U =  (1 -%)-’& (8) 

then the desired signal Y is simply the restriction of y to 
the zero scale. Thus we see that the QMF reconstruction 
procedure can be thought of exactly as a particular Hankel 
map on Z2(7) that is both causal with respect to scale (i.e., 
coarse-to-fine) and, as indicated in (8), rational. A similar but 
dual interpretation holds for the pair (‘Id, G), which defines 
an anticausal (i.e., fine-to-coarse) system on 7. In the next 
section we present a precise framework for describing such 
dynamic systems and for studying the concepts of rationality 
and realizability. 

3-t, 8 : ~?0c(7) - L(7)  

- 

111. SYSTEM THEORY AND REALIZATIONS 

3.2 Systems on the Tree 

In this section we consider some “abstract” QMF pair, 
i.e., a 4-tuple of operators { c y , , t ~ , ~ , P }  on ~ ~ ( 7 )  satisfying 
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the following QMF properties that are just the translation of 
properties (6): 

- 
f fc.=pp=1 
aa+pp= 1 

= f fp  = 0. 
- 

The class of operators we consider is the multiplicative algebra 
of linear combinations of these primitive ones: this is a 
noncommutative algebra. The class of abstract systems we 
consider are matrices whose entries are elements of this 
algebra. Thanks to these rules, any system can be expressed 
as follows: 

H = h,,~,i W ~ W ’  (12) 
WT E Wt 
wl E w1 

where 

are the family of monomials generated by the operators Z1p 
and a,  p, respectively, and the hwtwl’s are matrix coefficients. 
In this writing we implicitly assume that all simplifications 
(9), (lo), and (1 1) have been performed. We shall call the 
support of H the set of monomials in (12) with nonzero 
coefficient and shall call the degree of the monomial wT or 
wl the length of the considered word, i.e., degree(wT) = 

degree(Zi1,$’) = il + 22, and similarly for wl. 
Examples of Abstract QMF Pairs on the Tree: We already 

discussed the case of abstract QMF pairs ( E ,  8 )  originating 
from some actual QMF filter bank ( H ,  G) in the classical 
setting. Of particular interest in the sequel will be the simplest 
such case in which H ( z )  = 1 and G ( z )  = z-’ ,. . this 
corresponds to performing pure decimation and interpolation 
without any filtering, and will be widely studied in Section 
4. The particular feature of QMF pairs ( E ,  6) originating 
from some actual QMF filter bank ( H , G )  is that they map 
signals with support contained in a given scale into signals 
with support contained in the next scale. But this does not 
need to be the case in general for our abstract QMF pairs,: 
in particular, it may be the case that, for t E 7,  is a 
linear combination of zs ’ s  for some nodes s located in different 
scales. 

Examples of Systems on the Tree. Referring to our discus- 
sion in (8), the system (1 - z)-lG considered there can be 
put in the generic form (12) by setting 

_ _  - 
Q = E,/3 = G , 5  = E , @  = G 

otherwise hw,u)L = 0. (13) 

V n  2 0 : h- - = 1. 
ono 

When the underlying QMF pair ( H , G )  of filters is low- 
passhigh-pass, this system corresponds to a filter bank with 
logarithmically equal frequency bands. Similarly, the choice 

Q = E ,  p = G , 5  = R, a = c (14) 
Vn 2 0 : h,r = 1 if w T  is of degree n,  otherwise h , ~ ~ l  = 0 

Y 1  

--w 
Fig. 3. A wavelet packet synthesis bank. 

which is shown in Fig. 3, corresponds to the case of a filter 
bank with equal frequency bands. 

Causality. We shall say that a monomial wTwl is causal if 

degree(wT) 2 degree(wL) (15) 

and we say that the system H is causal if, in expression (12), 
hwtwl = 0 whenever wTwl is noncausal. Strict causality is 
defined accordingly. Referring to the particular case where 
our pair {a ,p }  corresponds to a usual QMF pair, we see 
that causal monomials involve only decimation. Hence, in 
this case, causal systems are just systems such that their 
output at a particular level of resolution depends only on 
the values of their input at the same or at coarser levels of 
resolution: causality thus may be interpreted as referring to a 
dynamics oriented from coarse to j n e  resolutions. In particular, 
the synthesis QMF bank of Fig. 2 specifies a (purely) causal 
system, while the analysis QMF bank specifies a (purely) 
anticausal one. Causal systems may be written as follows: 

where $ is the set of monomials wTw1 such that 

degree(wT) = degree(wl). 

Referring again to the synthesis QMF bank of Fig. 2, the h,t 
coefficients are zero unless w’ is the empty word: such a system 
will be referred to as “zero-depth,” where the notion of depth is 
captured in the definition to follow. In Section 4 we consider 
a particular concrete set of variables a,,/?,E,P that are the 
correct ones for the study of the notion of stationarity on 7 
and we will find that the correct class of stationary models of 
the form of (16) will include those that are not restricted to 
be zero depth but are in fact finite depth. 

DeJnition: We define the depth of a causal monomial 
w = wTG (cf. formula (16)) as one-half the degree of 6. 
A system H is called finite depth if it can be expressed as a 
(possibly infinite) sum of monomials with uniformly bounded 
depth. The depth of H is the minimum among such bounds 
over all possible representations of H .  

At this point, it will be useful to provide a representation of 
the space of all monomials of depth 5 I C .  Consider the space 
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where the system H I  is unique and has a depth of zero. Thus 
we shall call the depth of H the minimum integer IC for which to coarser scales T I .  ,. U(3)  decomposition (1 8) holds. 

to 

I I Note that there is a deep reason for restricting ourselves 
to finite rather than infinite depth systems. In particular, we 
are interested in defining the class of rational systems as in 
(16). It is well known in language and automata theory that 
the language {unbnln 2 0) is not rational, i.e., it cannot 

U(2)  

U(1 )  

Y 
. . . . . . . . . . be generated by a finite-state automaton. However, any finite 

translational shill restriction of this language, e.g., {unbn10 5 n 5 N }  is 
Of this form (with more 

letters than simply a and b, namely {a ,  P }  and {E, P } > ,  and 
this rationality demands the restriction to the finite depth case. 

Fig. 4. The dyadic homogeneous tree. The various scales, i.e., 2"Z, are 
vizualized as the horizontal alignments of nodes. Moving one step upward 
corresponds to moving to the next coarser scale, i.e., removing the least bit 
in the binary coding of the node. The k' and I r ( 7 z )  signals are also visualized 
for n = 1 , 2 . 3 .  

The language ~ is 

6& spanned by the monomials w' of degree 5 2k.  Recall that 
EO. + pp =, 1 so that the family of these monomials is not 
a basis of Wk. However, it is easily checked that yonomials 
with a degree exactly equal to 2k form a basis for wk.  Denote 
by {41, ..., &.} such a basis and set 

3.2 Realizations 

We now investigate some aspects of a system theory for the 
notion of a system introduced above. We shall see that the 
theory of general systems is related to realization theory for 
automata [22,9] rather than linear system theory even though 
we are considering linear operators on signals. 

Dejinition: A finite depth system H as in (17) is realizeble 
if there exist constant matrices C, A,, A0 and a system H as 
in (17) such that 

(19) 
- 

H = C ( I  - E A ,  - P A p ) - l d .  

A state-space realization of (19) is If H is finite depth we can decompose it as follows: 

H = ~ t E i  
x = EA,x+PApx+I?u 
y = Cx. 

where Ht is a system Wit_h Support in Wf  and afifinite degree 
system with support in w. This is shown as follows. Consider 
the form (16) for the causal systems. Write each monomial w' 
using the above basis: w' = h f & k  for a suitable row matrix 
MG, then H is rewritten as 

Realization in the Zero Depth Case: According to (17), a 
zero depth system may be expressed as 

H = h,rwf. 

As is usually done in automata and noncommutative formal 
power series theories, we associate with H the following 
Hankel matrix: 

H =  h,r,-wtw' 
wt  E wf 

Next, consider two such decompositions 

Hank(H)ij = hw;..; 

where the monomials w: are ordered according to the 
increasing degree with priollfy given to Z. Note that this 
Hankel matrix is just the matrix representation of the Hankel 
operator we discussed in Section 2. Then the following results 
may be borrowed from noncommutative formal power series 
theory [22], [9]. 

Theorem: H is realizable if and only if Hank(H) has finite 
rank. Moreover, the dimension of minimal realizations equals 
this rank, i.e., 

( >i>, 

- 
Since monomials {&, ..., & k } ,  ~, and p' form a free system, H = C ( I  - EA, - P A ~ ) - ~ B  
it follows that 

where the dimensions of A ,  and AB equals the rank of 
HI = H$ Hank( H) .  

By writing 
- must hold in the above decomposition. Thus, for any k such 

that H of finite depth can be decomposed into A ,  = coefficient of w in ( I  - EA, -  PA^)-' 
H = H t @ k  (18) we also have the following theorem. 
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Theorem: A realization (C, A,, Ap, B )  is minimal if and 

v I m ( A w B ) = R n  

Ker(CAw) = (0) 

only if 

Iwl<n 

Iwl<n 

where n is the dimension of the state and where IwI denotes 
the total degree of w. 

As a corollary, we know that all minimal realizations 
are related by similarity transformations. To conclude, the 
realization theory for the zero-depth case has been tied back to 
the classical theory of noncommutative formal power series, 
which is in contrast to the realization theories for classical 
1D- and 2 0 -  linear systems. 

Realization in the Finite Depth Case: The above procedure 
has to be modified for this case. 

Theorem: Consider again decomposition (1 8) where IC = IC, 
is taken to be the depth of H :  

1) H is realizable if and only if H t  in (18) is realizable. 
2) If (C, A,, Ap, B )  is a minimal realization of HT then 

(C, A,, Ap, B@k) is a minimal realization of H .  
Proofi We just have to prove the second statement. For 

this consider two decompositions 

H = H!@k, = Hi@k 

where IC,  is the depth and IC 2 IC,. Since k ,  is minimal and 
the diagonal elements of form a basis of wk, there exists 
a surjective constant matrix G I  such that Gl@k = @ k , .  Since 
the left factor in the decomposition (18) is unique for IC fixed, 
we must have 

H I G ~  = H J .  

Assume the conclusion of the theorem is false, i.e., there 
exists a realization ( C ~ , A ~ , , , A ~ , P , B Z )  of H i  of degree 
less than the minimal realization of H I .  But in this case 
(C2,A2,,,A2,p1 BaGi) is a realization of HI where GI is 

0 any right inverse of G I ,  which is a contradiction. 
The realization procedure for the IC-depth case is: 
1) Express H as 

H = HT@k.  

2) Realize H t  as 

Ift = C ( I  -EA, - PAD)-lB. (21) 

IV. STATIONARY CAUSAL AND NONCAUSAL 
SYSTEMS AND STOCHASTIC PROCESSES 

In this section we investigate the notion of stationarity. 
An important objective of this investigation is to introduce a 
notion of stationarity for both systems and stochastic processes 
with the desirable property that the output of a stationary 
system driven by a stationary stochastic process be itself a 
stationary stochastic process. The usual notion of stationarity 
for systems indexed by integers is the following: translating the 
input would provide a translated version of the output. This is 

the notion of stationarity we shall consider here consequently 
we must first understand what is a translation on the tree, and 
what are isometries. 

4.1 The Homogeneous Tree and its Geometry 

Homogeneous trees, and their structure, have been the sub- 
ject of some work [ 11, [2], [ 121, 1211, [ 111 in the past on which 
we build and which we now briefly review. A homogeneous 
tree 7 of order q is an infinite acyclic, undirected, connected 
graph such that every node of 7 has exactly ( q  + 1) branches. 
Note that q = 1 corresponds to the usual integers with the 
obvious branches from one integer to its two neighbors. The 
case of q = 2, illustrated in Figs. 4 and 5, corresponds, as we 
will see, to the dyadic tree on which we focus in this paper. 
In 2-D signal processing, it would be natural to consider the 
case of q = 4 leading to a pyramidal structure on the indexing 
set of the 2-D processes. 

Isometries: The tree 7 has a natural notion of distance: 
d ( s , t )  is the number of branches along the shortest path 
between the nodes s , t  E 7 (by abuse of notation we use 7 
to denote both the tree and its collection of nodes). One can 
then define the notion of an isometry on 7,  which is simply 
a one-to-one map of 7 onto itself that preserves distance. 
For the case of q = 1, the group of all possible isometries 
corresponds to translations of the integers ( t  H t + I C ) ,  the 
reflection operation ( t  H - t ) ,  and concatenations of the two. 
For q >_ 2 the group of isometries of 7 is significantly larger 
and more complex. The following classification of isometries 
may be found in 1121, see Appendix A for a proof and related 
lemmas on the geometry of the homogeneous tree: 

Lemma Classification of Isometries: Given an isometry f 
of the homogeneous tree 7, three cases are possible, namely 

For obvious reasons, isometries of type (24) will be called 
translations. 

Boundary Points and Horocycles: An important concept 
here is the notion of a boundary point 121, 1111 of a tree. 
Consider the set of infinite sequences of 7 where any such 
sequence consists of a sequence of distinct nodes t l ,  t z ,  . . . 
where d ( t ; , t ; + l )  = 1. A boundary point is an equivalence 
class of such sequences where two sequences are equivalent 
if they differ by a finite number of nodes. For q = 1, there are 
only two such boundary points corresponding to sequences 
increasing toward +CO or decreasing toward -CO. For q = 2 
the set of boundary points is uncountable. In this case, let us 
choose one boundary point, which we denote by -CO. 

Once we have distinguished this boundary point, we can 
identify a partial order on 7. In particular, note that from any 
node t there is a unique path in the equivalence class defined 
by -CO (i.e.\ a unique path from t “toward” -CO). Then if we 
take any two nodes s and t, their paths to -cm must differ 
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2 successive horocycles: 

to finer scales 

translational shift 

Fig. 6. Showing shifts: very thick lines show the moves on the tree, and 
thick lines show the operators on signals (the value at the origin of each 
arrow is picked at the corresponding end). 

2) Denote by s ,  the unique point outside the skeleton such 
that d(s,,t,) = 1. 

3) Denote by 7; the semiinfinite dyadic tree with root s, 
composed of the semiinfinite paths originating at s, and 
moving away from -W. 

4) Then the primitive translation with skeleton (t,) is the 
unique isometry T such that (see Fig. 7) t 

Fig. 5. The dyadic homogeneous tree: showing two ways of looking at it. 

only by a finite number of points and thus must meet at some 
node, which we denote by s A t (see Fig. 5). Thus, we can 
define a notion of relative distance of two nodes to -cc 

so that 

s 3 t (‘‘s is at least as close to -m as t”) if S(s,  t) 5 0 

s 3 t (“s is closer to -m than t”) if S(s, t) < 0. 

This also yields an equivalence relation on nodes of 7 

s x t H S(s,t) = 0 

For example, the points s ,  U ,  and U in Fig. 5 are all equivalent. 
The equivalence classes of such nodes are referred to as 
horocycles. In this case the horocycles appear as points on 
the same horizontal level and s 1: t means that s lies on a 
horizontal level above or at the level o f t .  Note that in this way 
we make explicit the dyadic structure of the tree. With regard 
to multiscale signal representations, a shift on the tree toward 
-cm corresponds to a shift from a finer to a coarser scale 
and points on the same horocycle correspond to the points at 
different translational shifts in the signal representation at a 
single scale. 

Translations and Primitive Translations. In the remainder 
of this article, some -m is selected and fixed: only trans- 
lations associated with paths originating from -cc will be 
considered. Translations will play an important role in the def- 
inition of stationarity. Translations certainly are the isometries 
of the third class (see (24)) according to the classification of 
lemma 1. However, for the sequel, we shall need primitive 
translations encoding “moving away from -CO”, i.e. the 
counterpart of the shift operator z on Z. These are defined 
as follows: 

4.2 Ships on 7 
We shall call shifts the most elementary pair of { a l p }  

operators; shifts on the tree will be the counterpart of the 
“z” shift for the usual case of systems indexed by integers. 
Indeed, these elementary shifts are obtained by considering 
the simplest QMF pair (H, 8’) as in Fig. 1, namely (H, G) = 
(1,z-’) [for an obvious QMF pair see (4)], and then by 
applying the construction of Section 2 to get the corresponding 
abstract QMF pair on the tree. We introduce now these shift 
operators in a detailed way. In Fig. 6, two shifts are first 
described that act on the nodes of the tree: 

1 is the identity operator (no move) 
Q is the left down-shift (move one step away from -cm 
toward the left) 

is the right down-shift (move one step away from -cm 
toward the right) 

These shifts act on the right (if t is any node on the tree, ta 
is its left offspring). Note that a and /3 are one-to-one but not 
onto; they are not isometries. From these shifts on nodes we 
can derive shift operators on signals. By “signal” we mean a 
family yt of scalars or vectors indexed by the vertices of the 
tree. The primitive operators that we consider are ‘‘dual’’ of 
the shifts on 7, namely (see Fig. 6): 

1 is the identity operator (no move) 
Q is the left down-shift operator:’ 

y = QU ($ Vt : yt = uta 

p is the right down-shift operator: 

y = pu ($ Vt : yt = ut0 

’) an infinite path ( t n ) n E Z  Originating from - m y  ‘The value of y at a given node is obtained by picking the value of U at 
call it the skeleton of the primitive translation. the corresponding left down node. 
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Fig. 7. Translations: we show how the 79’, (in grey) are succesively mapped 

- a is the right up-shift operator:* 

- 
,8 is the left up-shift operator: 

It is easy to verify that these elementary shifts satisfy the QMF 
relations (1 1) and correspond to choice (4) for QMF pairs. 
When state-space forms for systems are considered with these 
particular shifts following the preceding section, the moves on 
the tree that we just introduced can be used to rewrite these 
state-space forms as follows: 

xta = Aaxt + a g u t  

Y t  = c x t  
X t P  = A0x:t + PHut (27) 

and 

would replace (20) and (21), respectively. Such notations will 
be heavily used in the remainder of the paper. 

It is clear that these elementary shifts cannot be considered 
as “stationary” in any reasonable sense. For instance, the 
relation y = 3u where U 1 yields yta = 1 but ytp = 0. 
This means that, to develop a theory of stationary systems and 
processes, we need to constrain the class of systems that we 
have considered so far. This will be the subject of the next 
section. 

4.3 Characterization of Stationary Systems 

Throughout the remainder of this section, the symbols 
(a ,  ,f3, E,  p) will denote the spec@ shift operators we intro- 
duced in the preceding subsection. Given a translation r of 
7, by abuse of notation, we also denote by r its action on 
signals defined by 

d Y > t  = Y.r(t)  

*The value of y at a given node is obtained by picking the value of U at 
the corresponding righr up node if available, or by setting 0 otherwise. 

Fig. 8. Shifts for stationary transfer functions: the value at the origin of 
each arrow is picked at the corresponding end and the grey cigar replaces 
each value by the corresponding average. 

Dejnition Stationary Systems: A linear operator H acting 
on signals is said to be stationary if3 

H o r = r o H  (29) 

holds for any translation 7. 

The following fundamental result is proved in Appendix B. 
Theorem: Let H be a linear operator acting on signals. 
1) If H satisfies (29) for any primitive translation T, then 

it must be a system of the form 

H = h,),Tyy3 (30) 
2,320 

where 
- 

(31) 
1 
2 y =  - (a+P) ,7=6+@.  

2) Conversely, any H of the form (30) is stationary, i.e., 

These two operators generate two semigroups. The action of 
these semigroups is depicted in Fig. 8: 7 is a “backward” shift 
toward -00, whereas y is a “forward-and-average” shift (the 
“Haar smoother”). In fact, the pair { (a  + p),  f (a  -,)} form 
a QMF pair with adjoint operators given by { E  + p , E  - p} 
respectively: this is just the QMF pair associated with the 
Haar transform. In particular, the y and 7 operators obey the 
following simplification rule 

satisfies (29) for any translation 7. 

y r  = 1 (32) 

To encode causal stationary systems, it will be useful to 
introduce the following family of operators, which perform 
a smoothing of data on the same horocycle as shown in the 
Fig. 8: 

(33) 

All a[’]l’s are idempotent operators. These operators may be 
used to provide the following counterpart of formula ( 1  6 )  for 
the stationary case. 

Theorem: If H is stationary and causal, it can be expressed 
as follows: 

,[.I - --z 2 --YY 

H = hz,,Tzo[31 (34) 
2,320 

Obviously, the matrix coefficients hz,, are different in 
formulae (30) and (34). 

’ o denotes the composition of maps 
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4.4 Realization of Stationary Systems 

Both (30) and (34) may be interpreted as standard 2D- 
systems that are causal in the two variables. Hence, standard 
2 0  realization theories may be applied to both cases. We shall 
briefly investigate the two cases. 

Noncausal Systems: If we interpret y as the row operator 
and 7 as the column operator, then it is natural to consider 
the row-by-row scanning to define a total ordering on the 2 0  
index space. This corresponds to decomposing the system H 
according to the following two steps: 

where K(  ...) is a linear combination of the 1, o, ..., d i ] ’ s  with 
coefficients that are polynomials in 7. It is easily shown that 
H may be equivalently expressed in the following ARMA form 

H = A-’B (39) 

where A is a causal system of finite support involving the 
operators 7 and l ,o,  ..., whereas B = B(l,a, ..., a[’]) is 
as in (38). The AR modeling filters for isotropic processes 
introduced in [4]-[6] are in fact ARMA systems in the above 

1) A bottom-up (i.e. fine-to-coarse) smoothing, followed by 
2) A top-down (i.e. coarse-to-fine) propagation. 

2D-system theory for systems having separable denominator 
[3l may be applied here. Rational systems in this latter case 
are of the following form [24]: 

H = C(I  - TA,)-’P(I  - rA. . , ) - lB (35) 

which yields the following state space form [we use here 

sense’ 

4S Stationary Stochastic Processes 

To simplify the presentation, we concentrate here on scalar 
processes. 

Definition: A zero mean stochastic process y is said to be 
stationary if its covariance function is translation invariant, i.e. 

E(Y5Yt) = E(YT(S)YT(t)) notations similar to those of (27) and (28)] 

ut = A..,(-)  + B u t  for any primitive translation T. 
Z t  = Pzvt The following theorem shows that this definition of station- 
xta = ATxt + PIZta (36) arity for processes is consistent with that of stationarity for 
xto = Ayxt + PiZtp transfer functions (this theorem is proved in Appendix B). 
y t  = czt Theorem: Let y be a stochastic process. 

where P = PlPz. The first two equations define a purely 
“anticausal” system, whereas the last three equations define a 
causal zero depth system. 

Causal Systems: Here we interpret the sequence o[Z] as the 
powers of the row operator and 7 as the column operator. 
Then again we consider the row-by-row scanning to define 
a total ordering of the 2 0  index space. This corresponds to 
decomposing the system H according to the following two 
steps: 

1) A smoothing along the considered horocycle (i.e. con- 

2) A top-down (i.e. coarse-to-fine) propagation. 
stant scale smoothing), followed by 

2D-system theory for systems with a separable denominator 
[3] may again be applied here. Rational systems in this latter 
case are of the following form [24]: 

(37) H = C(I  - rA , ) - ’P( I  - aA,) - ’B 

1) The process y is stationary if and only if 

where s A t is defined in (25). 

stationary, so is the process Hu. 
2) If the process u and the transfer function H are both 

Note that the second statement is an immediate consequence 
of the first one. 

Remark: Theorem 6 has the following interesting result as 
a consequence. Pick a point to E 7 and order the words4 
w E {a, p}* of length n according to lexicographic order with 
priority to a: the corresponding set of nodes tow is exactly the 
left-to-right ordered horocycle “segment” in Fig. 6, collect the 
values ytOw into a vector Y. Then the covariance matrix Cy 
of Y has the following recursively defined structure: 

where it is understood that, in expanding such a formula into a 
power series, oi should be replaced by &I.  As a consequence, 
the latter has an unusual feature in that no tractable time- 
domain translation of the “frequency domain” formula (37) is 
available. The finite depth case, however, yields 

q r o )  = To 

1 [”‘ rmUm-1 C(7-0, “ ‘ 1  rm-1) 
To, ’”, rm-1) r,u,-1 C(r0, ... , T m )  = 

cy = C(r0,  ..., r,) 

where U, is a 2” x 2,-matrix whose entries are 1 .  It is then 
easy to show that the eigenvectors of C y  are the discrete Haar 

More generally, x and y are said to be jointly stationary if 

xta A,xt + B ( l , ~ ,  . . . , oii]) uta 
x t p  = ATXt + B ( l ,  U, ..., r ~ [ ~ I ) u t p  

= 
(38) 

where B(1, a, ..., &I) is a linear combination of the listed 
operators. This corresponds to the case where A ,  is nilpotent. 

Y t  = c x t  basis (see [4], [13] for more details). 0 { 
we have 

(40) Thus stationary finite depth scalar systems are of the form E ( z 5 y t )  = rZY[d(s, s A t ) ,  d ( t ,  s A t ) ] .  
1 

det(1- TAT) 
H =  K (7; 1,0, ..., 4The notation to follow denotes the language of the words on the alphabet 

{ a ,  3). 
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4.6 Spectral Calculus 

The purpose of this subsection is to provide a formula to 
encode how stationary transfer functions modify covariance 
sequences. In the case of time series, the product of usual 
transfer functions and spectra is used for this purpose. Consider 
two jointly stationary processes IC and y. Pick a pair (s ,  t) and 
set d[s,  s A t] = i, d[s  A t ,  t] = j .  We have 

This suggests to define the cross-spectrum of x and y as the 
following power series: 

R X Y  2 p Y [ ’  ’ 

21 31YZY3 
i , j > O  

where PY[i,j] is the cross-covariance sequence of x and y, 
see (40). Finally, given a stationary transfer function of the 
form H = hi,jq-yj (cf. (30)), it will be useful to introduce 
the following notion of an “adjoint” : 

Then the following formula yields the cross-spectrum of 
two stationary processes Hx and Ky,  where H and K are 
stationary transfer functions and IC, y are jointly stationary 
processes : 

(41) R ( H x ) ( K Y )  = H*RXYK 

See Appendix B for a proof. This formula generalizes a well- 
known result of the case of standard stationary time series. 

V. CONCLUSION 
In this paper we have introduced and developed the basic 

concepts of a system theory for the multiscale modeling and 
processing of signals. The starting point for this theory is an 
examination of the abstract properties defining QMF banks 
and the identification of the filtering and decimation operations 
performed in such banks as signal transformations from one 
scale of representation to another. This led directly to the 
idea of viewing QMF filtering and decimation operations in 
terms of a pair of operators acting on Z2(7) where 7 is the 
homogeneous dyadic tree and where these operators satisfy 
algebraic properties directly inherited from the algebraic QMF 
conditions. Using these abstract QMF operators as basic 
“shifts” on the tree, we developed a system theory on the 
homogeneous dyadic tree as a foundation for a multiscale 
system theory. We have shown that the homogeneous tree 
possesses critical geometric properties that have the following 
consequences: the double role played by the classical z- 
transform, namely: (1) Encoding systems as weighted sums of 
products of the basic shift operators; and (2) defining stationar- 
ity, must be split into two separate objects-the shifts (which 
are not invertible) to encode systems, and the translations to 

define stationarity (which are not easily expressed via shifts). 
We sketched two system theories, each with an emphasis 
on one of these two different objects. Finally a notion of 
stationary stochastic processes has been introduced, and the 
transformation of the second-order “spectral” characterization 
of a process when it is passed through a stationary multiscale 
system has been characterized via a simple “spectral calculus” 
formula. The main results of this paper are summarized 
below and we also suggest a number of directions for further 
work: 

The usual notion of QMF pairs in multirate digital 
filtering generalizes naturally to abstract QMF pairs 
{ a ,  p}  of operators acting on P(7). Thus, system theory 
for abstract QMF pairs on Z2(7) is a natural framework 
for fundamental studies on multiscale signal processing. 
We established the foundations for such a system theory, 
further work has to be pursued to exploit it. In particular, 
we have shown in (13) and (14) how the wavelet 
and wavelet packet filter banks are encoded as rational 
systems on the tree. A natural question to look at would 
then be to characterize and completely parametrize all 
rational systems that are associated with orthonormal 
decompositions of 12-spaces of signals. 
We also see that multiscale signal processing within 
this framework has (at least) two levels of flexibility 
as compared to usual discrete-time processing. In partic- 
ular, in addition to the flexibility in defining the system 
on the tree (as in the previous point), we also have 
flexibility in the choice of the concrete specification of 
what the variables on the tree actually represent. That is, 
we have the flexibility in the specific choices of QMF 
filters corresponding to the abstract pair of literature on 
filter banks [31] as well as the analytical properties of 
wavelets inherited from the QMF’s that define them [19]. 
There is a unique natural way to define stationarity 
for both systems and stochastic processes on the ho- 
mogeneous tree. Such a notion emphasizes “stochastic 
fractalness”, as discussed at length in [7],  [51, [41. An 
important direction for further research is the stochastic 
realization problem, which is the construction of multi- 
scale models driven by white noise and which produce 
outputs whose second-order characteristics match (either 
exactly or approximately) those of a given process. In 
[4,5] we provide some results along these lines for 
the construction of so-called multiscale autoregressive 
models whose outputs have second-order statistics that 
are or a theory of multiscale state space stochastic 
realization. 

Finally, we note that the results of this paper immediately 
generalize to homogeneous trees with more than 3 branches 
originating from each node. For instance, multiscale system 
theory for images would require a homogeneous tree with 5 
branches at each node, i.e., a quadtree (1 branch toward the 
coarser scale, and 4 for the pyramid going toward the finer 
scale). Here again our framework may provide new views 
and insights on how to model, analyze, and design multires- 
olution systems and representations for signals indexed by 
multidimensional sets. 
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APPENDIX A. 
SOME USEFUL RESULTS ON THE 

Prooj? (43) is a consequence of (42), so that we just 
prove the first formula. Denote by I? the infinite path left 
invariant by r. We have 

Hence, taking a point so on r sufficiently close to --CO, we 
have d[so ,  s A t ]  5 min{d[s,, s], d [ s o ,  t ] }  SO that d[r(s0) ,  T ( S A  
t ) ]  <_ ~nin{d[r(s~),~(s)],d[.r(s,),~(t)]}. Hence T ( S  A t )  is 
closer to --x than r ( s )  A ~ ( t ) .  In particular 

GEOMETRY OF THE HOMOGENEOUS TREE 

We collect here all results we need on the geometry of the d [ r ( s ) ,  r ( s  A t ) ]  2 d [ r ( s ) ,  r ( s )  A ~ ( t ) ] .  (44) 

homogeneous tree. 

three types of isometries have just the identity in their inter- 
section. In the sequel we consider nontrivial isometries only. 
First, it is clear that the cases (22) and (23) are distinct. Hence, 
it remains to prove that an isometry f, which is neither of type 
(22) nor of type (23), must be of type (24). This is what we 
do now. Let f denote such an isometry. Introduce 

Classifying the Isometries: Here we prove lemma 1 .  The and for From (44) we get 

d [ s ,  t ]  = d [ s ,  s A t ]  + d[s  A t ,  t]  
= d [ r ( s ) ,  r ( s  A t ) ]  + d [ r ( s  A k ) ,  r(t)] 
2 d[7(5) ,  T ( S )  A .(t)l + 
= d[.r(s) ,  .(t)l 

A T ( t ) ,  T(t)l 

dmin = rnin d [ t ,  f ( t ) ] .  so that the inequality in (44) must in fact be an equality. This 
and the fact that T ( S  A t )  is closer to --CO than T ( S )  A r( t )  

0 
Translations Generate Vertical Symmetries: We call verti- 

cal symmetries and denote by U the isometries of the following 
type: 

t E l  

We know that dmin > 0 due to the assumption. Hence, together Prove the k”m 
consider 

7 m i n  = { t  : d [ t ,  f ( t ) l  = dmin.} 

Note that, for t E I m i n ,  we have I )  Pick a point to  E 7, call it the pivot. 
2) Partition I according to I = ‘&: U ‘&b, where - 

dmin = d [ t ,  f(t)I = d[f(t) ,  f 2 ( t ) ]  
5: = { s  = t 0d ) ,u l  E { a l p } * } .  

so that I m i n  is f-invariant. Next, denote by I[$,t] the path 
linking s and t. Considering that t’ E it, f ( t ) ] ,  we claim that 
t’ E lmin as well. Indeed 

3) U satisfies 

whence 

dmin = d[ t ’ ,  f ( t ) ]  + d [ f ( t ) ,  f ( t ’ ) ]  

= dit’, f (t’)l 
Considering the infinite sequence t ,  f ( t ) ,  f 2  ( t )  , . . ., we have 

7 m i n  c U l~t,  fkwn r. 
k>O 

Assume r to be ajni te  path. Then we must have, for some 
I C , ,  f ’ o + ’ ( t )  E it, f k o ( t ) ] ,  so that the points f k o ( t )  and 
f k 0 + l ( t )  would be exchanged by f .  This latter fact turns out 
to contradict our assumption that f is not of type (23). Hence 
I m i n  must contain an infinite path. If I m i n  contains more than 
a unique path, f must be the identity. This proves the 1emma.O 

Translations Commute with A: 
Lemma: Let T be a translation. Then we have 

T ( S  A t )  = T ( S )  A r( t )  (42) 

(43) d [ s ,  s A t]  = d [ ~ ( s ) ,  ~ ( s )  A r( t )] .  

if 
if 

where .lirl is the word obtained by exchanging a and p 
in w l .  

Lemma: The closure (w.r.t. the weak topology) of the group 
spanned by the primitive translations contains the vertical 
symmetries. 

Pro03 consider a vertical symmetry U with pivot to. 
Introduce = 1-m, to] U {toan, 71 > 0} and similarly for 
r p .  f = Tr, o T;~’ is an isometry, which keeps ‘&’, invariant 
and exchanges toan and topn.  Since f is an isometry, it must 
also exchange toan-’p and topn-la. Next consider 

A 

tl = the s = towL closest to to such that 
sa is not exchanged with sp. 

Certainly, it holds that t l  # to. So we apply the procedure 
above (definition of f ,  etc ...) to tl instead of to. Given any 
finite subset of the tree, after finitely many steps, the resulting 
composition of primitive translations coincides with U on this 

0 finite subset. This proves the lemma. 
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More on Primitive Translations: It will be convenient to 
re-encode definition (26) of primitive translations using the 
shift operators on 7. Let r = { t n } n E ~  be the skeleton 
of the considered primitive translation denoted by v, and 
denote by s, the unique point outside the skeleton such that 
d ( t n ,  s,) = 1. Then Tr is encoded by the following formulae: 

(45) 

Given two skeletons I' and I", we define their composition 

r" e r r' 
by the following formulae, where we label the two skeletons 
in such a way that they exactly bifurcate after t o ,  i.e., t o  = 
tb, tl  # ti, and n denotes an arbitrary nonnegative integer: 

t'L, = t- ,  (46) 

tg+n = s l d  if ti+, = tit& 
t'i = tl 

We have the following result: 

Tr o Trl = T ; ~ ~ , ,  (47) 

A nice consequence of formula (47) is that the family of powers 
of primitive translations is a semigroup. 

APPENDIX B. 

SYSTEMS ANDSTOCHASTIC PROCCESSES. 

Proof of the Characterization of Stationary Systems Here we 
prove theorem 4. 

Proof of I .  Since H is a linear operator we have, for any 
primitive translation 7 

PROOFS OF THE RESULTS ON STATIONARY 

[H.ult = ht,sus 
s €7 

whence 

and 

Since U is arbitrary, H must satisfy 

" t , S  h T ( t ) , T ( S )  

which proves 1. 
Proof of 2. Denoting by N the set of the nonnegative 

integers, we can write H in the form 

H = hi,J U I ~ W '  

i , j ~ N  I r W T I  = 
Iwll = j  

so that 

(Huh = Ch"' u s  

d [ t , t  A s] = z 
s{ d [ t  A s ,  s]  = j 

Z , J  

which proves part two of the theorem, thanks to (43) in lemma 
2. 0 
Proof of the Characterization of Stationary Processes Here 
we prove theorem 6 .  The sufficiency of the condition of the 
theorem follows triviallly from (43) in lemma 2. To prove the 
necessity, select a path r0 containing the segment [s A t ,  t], 
and take m > d[s  A t ,  t ] .  For any such path we have 

E(?/S Y t  = E (YT;.", (S) ( t )  ) ' (48) 

Now, take any path r such that 

r n ro 2 ( - m , T ~ ( s  A t ) ]  

then (48) holds for such a path as well. But T?(S A t )  = 
rR(s A t )  and T?(S)  = ~r",(s)  both hold true, whereas $( t )  
ranges over all points t' such that 

d [ ~ , " o ( s  A t ) , t ' ]  = d[i-:(s A t ) , r F ( t ) ] .  

This proves that E(y,yt) is invariant for those points t that 
are at a given distance of s A t. The necessity of the condition 

U 
Proof of the Spectral Calculus Formula: It is enough to 

of the theorem 6 follows easily. 

verify (41) in the following cases: 

H = y , K = l  (49) 
H = y , K = l  (50) 
H = l , K  = 7 (51) 

H = l , K = y .  (52) 

Pick a pair ( 8 ,  t )  with d [ s ,  s A t]  = 2. d[s  A t ,  t]  = j. Consider 
(49). Then 

E((Hz)S(Ky)t) E((y.z)sYt) 
= E((7..)s(7ZYJ.Y)s) 
= E(dY7"y3 . d S )  

holds true, where the last equality is readily verified. Noting 
that ?* = y we get (41) in case (49). For (50), write 

E ( ( H z ) s ( K ? / ) t )  = E((Y.-c)sYt) 
= E((r.l.)s(722Y'.Y)s) 
= E ( ~ . , ( W ~ ' . Y ) ~ )  

which also yields (41), since 7 = y*. For the case (51) we 
write 

which proves (41) in this case. Case (52) is handled in a similar 
way. 0 
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