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Abstract. In this paper we describe and analyze a class of multiscale stochastic processes which are modeled using dynamic represen-
tations evolving in scale based on the wavelet transform. The statistical structure of these models is Markovian in scale, and in addition
the eigenstructure of these models is given by the wavelet transform. The implication of this is that by using the wavelet transform we
can convert the apparently complicated problem of fusing noisy measurements of our process at several different resolutions into a set
of decoupled, standard recursive estimation problems in which scale plays the role of the time-like variable. In addition we show how
the wavelet transform, which is defined for signals that extend from o to + oo, can be adapted to.yield a modified transform matched
to the eigenstructure of our multiscale stochastic models over finite intervals. Finally, we illustrate the promise of this methodology by
applying it to estimation problems, involving single and multi-scale data, for a first-order Gauss—-Markov process. As we show, while
this process is not precisely in the class we define, it can be well-approximated by our models, leading to new, highly parallel and scale-
recursive estimation algorithms for multi-scale data fusion. In addition our framework extends immediately to 2D signals where the
computational benefits are even more significant.

Zusammenfassung. Wir beschreiben und analysieren eine Klasse stochastischer Mehrskalen-Prozesse, welche mit Hilfe dynamischer
Darstellungen modelliert werden, die sich beziiglich der Skalierung entwickeln und auf der Wavelet-Transformation beruhen. Diese
Modelle weisen eine Markov-Struktur beziiglich der Skalierung auf, und dariiber hinaus erhilt man die Eigenstruktur dieser Modelle
durch die Wavelet-Transformation. Daraus ergibt sich, daB wir durch die Verwendung der Wavelet-Transformation das offensichtlich
komplizierte Problem der Zusammenfiigung verrauschter Messungen unseres Prozesses bei einigen verschiedenen Auflgsungen in eine
Reihe entkoppelter, gewohnlicher rekursiver Schiitzprobleme tiberfiihren kénnten, in denen die Skalierung die Rolle einer zeitihnlichen
Variablen spielt. Dartiber hinaus zeigen wir, wie die Wavelet-Transformation, die fiir Signale definiert ist, welche von —o bis +o0
reichen, so angepallt werden kann, daf} sie eine modifizierte Transformation liefert, die an die Eigenstruktur unserer stochastischen
Multiskalenmodelle {iber endlichen Intervallen angepaft ist. Schlielich illustrieren wir, was diese Vorgehensweise zu leisten verspricht,
indem wir sie auf Schitzprobleme fiir einen GauB—Markov-Proze$ erster Ordnung anwenden, bei denen ein- und mehrskalige Daten
beteiligt sind. Wie wir zeigen, kann dieser Prozef3, obwohl nicht wirklich in der von uns definierten Klasse, durch unsere Modelle gut
angeniéihert werden. Das fiihrt auf neue, hochparallele und skalierungsrekursive Schatzverfahren fiir die mehrskalige Datenfusion. Dariiber
hinaus 148t sich under Gedankengebiude unmittelbar auf zweidimensionale Signale ausdehnen, fiihr welche die rechnerischen Vorteile
noch bedeutender sind.

*This work was performed at the M.I.T. Laboratory for Information and Decision Systems with partial support from the Army Research
Office under Grant DAAL(03-86-K-0171, from the Air Force Office of Scientific Research under Grant AFOSR-92-J-0002, and from the Office
of Naval Research under Grant NO0014-91-J-1004.

Correspondence to: Dr. Kenneth C. Chou, SRI International 301-37, 333 Ravenswood Ave., Menlo Park, CA 94025-3493, USA.

0165-1684/93/$06.00 © 1993 Elsevier Science Publishers B.V. All rights reserved
SSDI0165-1684(93)YE0030-0



258

K.C. Chou et al. / Multiresolution stochastic models

Résumé. Nous décrivons et analysons dans cet article une classe de processus stochastiques multi-échelles modélisés a I’aide de
représentations dynamiques basées sur la transformation en ondelettes et évoluant en échelle. La structure statistique de ces modeles et
markovienne en échelle, et de plus la structure des valeurs/vecteurs propres est fournie par la transformée en ondelettes. L’ implication
de ceci est que par utilisation de la transformation en ondelettes nous pouvons convertir le probléme apparemment complexe de la fusion
de mesures bruitées de notre processus a plusieurs niveaux de résolution en un ensemble de problémes decouplés d’estimation récursive
standard dans lesquels 1’échelle joue le r6le de la variable de type temps. De plus nous montrons comment la transformation en ondelettes,
qui est définié pour des signaux s’étendant de —o & + o, peut étre adaptée de maniére a fournir une transformation modifiée adaptée a
la structure des valeurs/vecteurs propres de nos modeles stochastique multi-échelles sur des intervalles finis. Nous illustrons enfin les
promesses de cette technologie en 1’appliquant & des problemes d’estimation faisant intervenir des données simples et multi-échelles
dans le cadre d” un processus de Gauss—-Markov du premier ordre. Comune nous le montrons, ce processus peut étre bien approximé par
nos modeles bien qu’il ne fasse pas exactement partie de la classe que nous définissons, ce qui conduit & des algorithmes d’estimation
nouveaux, hautement paralléles et récursifs en échelle, pour la fusion de données multi-échelles. Notre concept est de plus immédiatement

extensible aux signaux 2D pour lesquels les gains en calcul sont encore plus significatifs.

Keywords. Multiscale; optimal estimation; sensor fusion; stochastic modeling; wavelet transform.

1. Introduction and background

Multiresolution methods in signal and image proc-
essing have experienced a surge of activity in recent
years, inspired primarily by the emerging theory of
multiscale representations of signals and wavelet trans-
forms [3, 10, 11, 12, 15, 18, 19, 24, 29]. One of the
lines of investigation that has been sparked by these
developments is that of the role of wavelets and mul-
tiresolution representations in statistical signal proc-
essing [ 1, 2, 7-9, 13, 14, 17, 30, 31]. In some of this
work (e.g. [13, 14, 17, 28]) the focus is on showing
that wavelet transforms simplify the statistical descrip-
tion of frequently used models for stochastic processes,
while in other papers (e.g. [1, 2, 7-9, 30, 31]) the
focus is on using wavelets and multiscale signal rep-
resentations to construct new types of stochastic proc-
esses which not only can be used to model rich classes
of phenomena but also lead to extremely efficient opti-
mal processing algorithms using the processes’ natural
multiscale structure. The contributions of this paper lie
in both of these arenas, as we both construct a new class
of multiscale stochastic models (for which we also
derive new and efficient algorithms) and demonstrate
that these algorithms are extremely effective for the
processing of signals corresponding to more traditional
statistical models.

In [30, 31] anew class of fractal, 1/flike stochastic
processes is constructed by synthesizing signals using
wavelet representations with coefficients that are
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uncorrelated random variables with variances that
decrease geometrically as one goes from coarse to fine
scales. The wavelet transform, then, whitens such sig-
nals, leading to efficient signal processing algorithms.
The model class we describe here not only includes
these processes as a special case but also captures a
variety of other stochastic phenomena and signal proc-
essing problems of considerable interest. In particular
by taking advantage of the time-like nature of scale, we
construct a class of processes that are Markov in scale
rather than in time. The fact that scale is time-like for
our models allows us to draw from the theories of
dynamic systems and recursive estimation in develop-
ing efficient, highly parallelizable algorithms for per-
forming optimal estimation. For our models we develop
a smoothing algorithm, an algorithm which computes
estimates of a multiscale process based on multiscale
data, which uses the wavelet transform to transform the
overall smoothing problem into a set of independently
computable, small 1D standard smoothing problems.
If we consider smoothing problems for the case in
which we have measurements of the full signal at the
finest scale alone, this algorithmic structure reduces to
amodest generalization of thatin [31] —i.e., the wave-
let transform whitens the measurements, allowing
extremely efficient optimal signal processing. What
makes even this modest contribution of some signifi-
cance is the richness of the class of processes to which
it can be applied, a fact we demonstrate in this paper.
Moreover, the methodology we describe directly yields
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efficient scale-recursive algorithms for optimal proc-
essing and fusion of measurements at several scales
with only minimal increase in complexity as compared
to the single scale case. This contribution should be of
considerable value in applications such as remote sens-
ing, medical imaging and geophysical exploration, in
which one often encounters data sets of different
modalities (e.g. infrared and radar data) and resolu-
tions. Furthermore, although we focus on 1D signalsin
this paper, the fact that scale is a time-like variable is
true as well in the case of 2D, where similar types of
models lead to efficient recursive and iterative algo-
rithms; the computational savings in this case are even
more dramatic than in the case of 1D.

In order to define some of the notation we need and
to motivate the form of our models, let us briefly recall
the basic ideas concerning wavelet transtorms. The
multiscale representation of a continuous signal f(x)
consists of a sequence of approximations of that signal
at finer and finer scales where the approximations of
f(x) at the m-th scale consists of a weighted sum of
shifted and compressed (or dilated) versions of a basic
scaling function ¢(x),

)= T fomm)2m (2 —n). (1)

n=—oo

For the (m+ 1)-st approximation to be a refinement of
the m-th we require ¢(x) to be representable at the next
scale,

$(x) =Y V2h(n) $(2x—n). (2)

Asshownin [11], A(n) must satisfy several conditions
for (1) to be an orthonormal series and for several other
properties of the representation to hold. In particular
h(n) must be the impulse response of a quadrature
mirror filter (QMF) [11, 27], where the condition for
h(n) to be a QMF is as follows:

Y. h(k)h(k—2n) =34, (3)
k

By considering the incremental detail added in
obtaining the (m+ 1)-st scale approximation from the
m-th, we arrive at the wavelet transform based on a
single function ¢s(x) that has the property that the full

set of its scaled translates {2™/%y (2"x—n)} form a
complete orthonormal basis for L2, In [11] it is shown
that ¢ and ¢ are related via an equation of the form

$(x) =Y V2g(n) p(2x—n), (4)

where g(n) and h(n) form a conjugate mirror filter
pair [27], and that

Joi1 () = () + Y d(n) 222" —n).  (5)

Note that g(n) and h(n) must obey the following
algebraic relationships:

Y 8(k)h(k—2n) =0, (6)
k

Y &(k)g(k—2n) =34, (7
k

Y h(mh(n=2k) +Y g(n)g(n—2k)=8,.  (8)
k k

If we have the coefficients {f(m~+1,-)} of the
(m+ 1)-st-scale representation we can ‘peel off’ the
wavelet coefficients at this scale and carry the recursion
one complete step by calculating the coefficients
{f(m,)} at the next coarser scale. The resulting wave-
let analysis equations are

f(mn) =Y h(2n—k)f(m+1,k)
k

L (H,f(m+1),)),, (9)
d(m,;n) = Z gn—k)f(m+1,k)
k

£ (G f(m+1,)),, (10)

where the operators H,, and G,, are indexed with the
subscript m to denote that they map sequences at scale
m+1 to sequences at scale m.' From (3), (7), (6) we
have the following:

'Note that for the case of infinite sequences the operators as defined
here are precisely equivalent for each scale; i.e. they are not a function
of m. However, we adhere to this notation for the reasons that (a)
we may allow for the QMEF filter to differ at each scale and (b) for
the case of finite length sequences the operators are in fact different
at every scale due to the fact that the number of points differs from
scale to scale.
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H,H; =1, (11)
G.Gn =1, (12)
H,G) =0, (13)

where * denotes the adjoint of the operator.

Reversing this process we obtain the synthesis form
of the wavelet transform in which we build up finer and
finer representations via a coarse-to-fine scale recur-
sion,

fom+1,n) =Y h(2k~n)f(mk)
k
+Y g(2k—n)d(mk). (14)
k

Expressed in terms of the operators H,, and G,,, we
have

fm+1n) = (HEf(m, ), +(GEf(m, ), (15)
or
H*H,+G*G, =1, (16)

which is an expression of (8) in operator form.

Thus, we see that the synthesis form of the wavelet
transform defines a dynamical relationship between the
coefficients f(m,n) at one scale and those at the next,
with d(m,n) acting as the input. Indeed this relationship
defines an infinite lattice on the points (m,n), where
(m+1,k) is connected to (m,n) if f(m,n) influences
f(m+1,k). This structure is illustrated in Fig. 1 for the
case where h(n) is a 4-tap filter, where each level of
the lattice represents an approximation of our signal at
some scale m. Note that the dynamics in (14) are now
with respect to scale rather than time, and this provides

us with a natural framework for the construction of
multiscale stochastic models.

In particular if the input d(m,n) is taken to be a white
sequence, then f(m,n) is naturally Markov in scale
(and, in fact, is a Markov random field with respect to
the neighborhood structure defined by the lattice).
Indeed the class of 1/f-like processes considered in
[30, 31] is exactly of this form with the additional
specialization that the variance of d(m,n) decreases
geometrically as m increases. While allowing more
general variance structures on d(m,n) expands the set
of processes we can construct somewhat, a bit more
thought yields a substantially greater extension. First
of all, with wavelet coefficients which are uncorrelated,
(14) represents a first-order recursion in scale that is
driven by white noise. However, as we know from time
series analysis, white-noise-driven first-order systems
yield a comparatively small class of processes which
can be broadened considerably if we allow higher-order
dynamics, which can either be captured as higher-order
difference equations in scale, or, as we do here, as first-
order vector difference equations. As further motiva-
tion for such a framework, note that in sensor fusion
problems one wishes to consider collectively an entire
set of signals or images from a suite of sensors. In this
case one is immediately confronted with the need to
use higher-order models in which the actual observed
signals may represent samples from such a model at
several scales, corresponding to the differing resolu-
tions and modalities of individual sensors.

Thus the perspective we adopt here is to view mul-
tiscale representations more abstractly than in the
wavelet transform, by using the notion of a state model
in which the state at a particular node in our lattice
captures the features of signals up to that scale that are

£ (m, n)

£ (m+1l,n)

Fig. 1. Infinite lattice representing domain of scaling coefficients.

Signal Processing
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relevant for the ‘prediction’ of finer-scale approxima-
tions. As we will see, this leads us to a model class that
includes the wavelet representation of (:14) as a special
case and that leads to extremely efficient processing
algorithms. In the next section we introduce our frame-
work for state space models evolving in scale, and we
show that the wavelet transform plays a central role in
the analysis of the eigenstructure of these processes.
This fact is then used in Section 3 to construct scale-
recursive, and highly parallel algorithms for optimal
smoothing for such processes given data at possibly a
number of different scales. In Section 4 we then inves-
tigate an important issue in the practical application of
these ideas, namely the issue of applying the wavelet
transform to finite length data. The typical approach is
to base the transform on cyclic convolutions rather than
on linear convolutions and to perform the scale by scale
recursion up to some specified coarse scale. We present
a more general perspective on the problem of adapting
the wavelet transform to finite length data which
includes as a special case the approach using cyclic
convolutions as well as other approaches which provide
modifications of the wavelet transform to provide Kar-
hunen-Loeve expansions of windowed multiscale
processes. In Section 5 we illustrate the promise of our
multiscale estimation framework by applying it to
smoothing problems for Ist-order Gauss—Markov
processes, including problems involving the estimation
of such processes based on multiresolution data. Addi-
tional experimental results for other processes, includ-
ing 1/flike fractal processes can be found in [7].

2, Multiscale processes on lattices

In this section we define our class of multiscale state
space models and analyze their eigenstructure. We
develop our ideas for the case of the infinite lattice, i.e.,
for signals and wavelet transforms of infinite extent. In
Section 4 we discuss the issue of adapting the wavelet
transform and our results to the case of finite length
data.

Consider an infinite lattice corresponding to a wave-
let whose scaling filter, #(n), is a FIR filter of length
P. Recall that in the wavelet transform of a signal feach

level of the lattice can be viewed as the domain of an
[ sequence, namely f(m,-) = f(m). In our generali-
zation of the dynamic model (15) we think of each
level of the lattice as. corresponding to a vector
sequence x(m) =x(m,- ), where x(m,n) canbe thought
of as the vector state of our multiscale model at lattice
node (m,n) and x(m) as the representation at scale m
of the phenomenon under study.

To motivate our general model let us first consider
the synthesis equation (14) driven by uncorrelated
wavelet coefficients d(m,n), where the variances are
constant along scale but varying from scale to scale. In
this case we obtain the following stochastic dynamic
state model where we define the scale index m from an
initial coarse scale L to a finest scale, M; and where we
assume that the coarsest scaling coefficients f(L,n) are
uncorrelated. Thus, with x(m) corresponding to f(m, - )
andw(m) tod(m,-) wehaveform=LL+1,..M—1,

E[x(L)x(L)"]1=A, =41, (17)

x(m+1)=HYx(m) +GE*w(m), ©(18)

Elw@)w() 1 =A=A1, i=LL+1,..M—1.(19)

Note that if we let A,= 02~ ", this model is precisely
the one considered in [ 30, 31] for modeling a 1/f-type
process with spectral parameter 7.

The model class we consider in this paper is a natural
generalization of (17)-(19). In specifying our model
we abuse notation and use the same notation H, G,
for the coarsening and differencing operators defined
as in (9), (10) where f(m,n) is a vector. With this
convention our model takes the following form for
m=LL+1,..M—1:

E[x(L)x(L)") = 2(L), - (20€)

x(m+ 1) =HX«v(m+1)x(m)

+ B (m+Dw(m+1), (21)
E(w(i)w(j)T]=@(i)8,-,j, i=L+1,..,M, (22)
where

o (m) 2diag(...A(m),..A(m),...), (23)
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F(m) 2 diag(...B(m),..B(m),...), (24)
@(m) £ diag(...,Q(m),..0(m),...), (25)
PAL) 2diag(....P(L),.P(L),..), (26)

and where , B(m), Q(m) and P,(L) are finite-dimen-
sional matrices representing the system matrix, the
process noise matrix, the process noise covariance
matrix, and the initial state covariance matrix, respec-
tively.

If we let x(m,n) and w(m,n) denote the components
of x(m) and w(m), respectively, the model (21) can
be written in component form as

x(m+1,n) ={Zh(2k—n)A(m+ 1)x(m,k)}
k

+B(m+Dw(m+1,n), 27)

where the w(m,n) are white with covariance Q(m).
Note also that if we use (16) plus the fact that &
commutes with G,, and H,,, we find that (21) can be
written as

x(m+1)y=HE{&(m+1)x(m)
+F(m+1DH, wim+1)}

+GX{B(m+1)Gwim+1)}.  (28)

Comparing this to (18), we see that we have general-
ized (18) in two ways. First, the noise in (21) is added
directly to the (m+ 1)-st scale rather than being inter-
polated through G} as in (18), and in (28) we see
that the implication of this is that the noise specifies
both the detail & (m+1)G,,w(m-+1) plus a contri-
bution F(m+1)H,w(m+1) to the coarser scale
description. From a signal modeling rather than signal
synthesis perspective, this makes considerable sense.
For example, imagine modeling a signal consisting of
a long constant pulse on which a short constant pulse
is superimposed. To be sure the short pulse will con-
tribute a modest amount to the overall average value,
the wavelet transform of such a signal will display the
effect of this short pulse in wavelet coefficients at a
number of scales. However, the model (21) can capture
the modeling of this signal in exactly the manner we
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described: a long pulse plus a simple pulse added at the
appropriate scale.

Note that in this case the coarse version of the signal
is not the coarse wavelet approximation but rather is a
more general (and intuitive) representation of the fea-
tures in the signal up to the considered scale. Moreover,
by adopting this more general philosophy we can
extend this abstraction even further. In particular by
allowing values of &7 (m) other than 1 and, more gen-
erally, by allowing x(m + 1) to be a finite-dimensional
state vector, we allow for the possibility of higher-order
models in scale. This allows us to consider a consid-
erably richer class of processes which is parametrized
by the matrices corresponding to our state model. Fur-
thermore, despite this generalization, as we now pro-
ceed to show, the wavelet transform provides us with
a very efficient multiscale whitening procedure for this
class of models.

In particular, as mentioned in the introduction, the
model (17)—(19) yields a covariance with eigenstruc-
ture given by the wavelet transform, and it is this fact
that is used in [30, 31] to develop efficient processing
algorithms for 1/f-like processes. As we now state, the
same is true for our more general model (21), where
in this generalization we focus on what can be thought
of as the ‘block’ eigenstructure of the process x(m).
Thatis, if x(m,n) is d-dimensional, the discrete wavelet
transform of the signal x(m,-) for each m yields an
uncorrelated set of random vectors. To see this, let us
examine the covariance R,.(m) of x(m), where, if we
use the fact that the block-diagonal operators .27 (m),
F(m),&(m), #.(L) and their adjoints commute with
the operators H,,, H}%, we find that

R.(m) £E[x(m)x(m)"]
=(P(m—1,L)Z (L) P* (m—1,L))

m—1 i=L

I—_[ *

i=L m—1
m—1

+ Y (B(m—1,0) B (k)@ (k)

k=L+1

X B*(k)P*(m—1,k))
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(T 11,1

13

+B(m)G(m)Z*(m), (29)

where for

T . I B l =J s
D(i,j) = = 30
) {M(i)fl’(i—l,j), i>). G0
Let us next define a sequence of block unit vectors as
follows:

81 &T...04004 L 040004517, (31)

i-th

where the superscript j is used to denote that the vector
(in (1*)?) corresponds to the j-th scale of the lattice
and where [ is the d Xd identity matrix (and 0, the
d X d zero matrix). Note that in the present context the
superscript j is completely superfluous notation. How-
ever, in Section 4 we consider the extension of the ideas
presented here and in the next section to the case of
finite length signals. In this case the (finite) lengths of
the vectors x(m) vary with m, as will the dimensions
of the block unit vectors analogous to (31). As we will
see, with changes in definitions of quantities such as
&/, the following result on the block-eigenstructure of
R,.(m), as well as the results of Section 3, hold in
essentially unchanged form for the finite length case.

LEMMA 2.1. The block vectors v*(m), vi(m) for
I=L,.m—1andfori,n€Z are block-eigenvectors of
the correlation matrix at scale m, R..(m), where

m—1

ﬁf(m)é( H;“)S,-L (32)
j=L

and
m—1

uf,(m)é( I1 H,*)G,*af,. (33)
i=1+1

The following holds:

R_(m)5 (m) =diag(...,A (m),..A (m),..)0F(m),

(34)

R (m)vi(m) =diag(..,A,(m),..A,(m),...) v (m)
(35)

for I=L,...m—1, i, n€Z, where A (m), A,(m) are
d X d matrices of the form

A(m)y="Y (@(kL)B(k)QUk)B (k)P (kL))

k=L+1

+®(m—1L)P(LY® (m—1,L), (36)

Afm) = i (P(kDB(R)Q)BT (k) D™ (k1D)),

k=1+1
(37)

where

I, i=j,

PL)) = A D(i—1,5), i>].

(38)

The details of the proof of this result can be found
in [7]. Rather than to present these details here, we
provide a simple interpretation of them which will also
be of value in understanding the optimal estimation
algorithms presented in the next section. Specifically,
for m=L,...M—1 define the following transformed
guantities, where j in (39) runs from / through m—1
and k from — to + o

Za(m) 2 (vh(m)) x(m), (39)
up(m) £ (vi(m)) x(m). (40)

From (15) and (32), (33) we see that what we have
done is to take the partial discrete wavelet transform
decomposition of each component of the d-dimensional
x(m,n) viewed, for m fixed, as a discrete-time signal
with time index n.That is, starting with x(m, +) we have
first peeled off the finest level of the wavelet transform
Zm—14(n), viewed as a discrete signal with index k, and
then we have computed successively coarser wavelet
coefficients, through z; ,(m), also producing the coarse
scaling coefficients u; ;(m).

What the lemma states is that all of these variables,
i.e., the set of d-dimensional vectors z;,(m) and
u; (m) for all values of j and k, are mutually uncor-
related. Indeed much more is true, in that these varia-
bles in fact evolve in a statistically decoupled manner
as a function of m. Specifically, if we transform both
sides of (21) asin (39), (40), and use (11)—(13) and
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the commutativity of the operators in (23)—(26) with
HY and GZ, we obtain the following transformed
dynamics for m=L,..., M — 1. First, the coarsest signal
components evolve according to

up(m+1)=A(m~+ 1)y, (m)
' +B(m+Dr (m+1), (41)

where r; ,(m+ 1) is the coarse wavelet approximation
of wim+1,-),1ie.,°

redm+1)=(vi(m+1))"w(m+1), (42)

and where the initial condition for (41) is simply the
coarse scale signal itself,

ur (L) =x(Lk). (43)

Next, the wavelet coefficients at different scales evolve
according to

Zip(m+1)=A(m+1)z;,(m)

+B(m+1)s;;(m+1) (44)
forj%L,...,m— 1, and where
si(m+1) =(vi(m+1))"'w(m+1) (45)

are the corresponding wavelet coefficients of
w(m+1,-). Finally, as we move to scale m+ 1 from
scale m we must initialize one additional finer level of
wavelet coefficients,

Zi(m+1) =B(m+1)s,(m+1). (46)

What we have determined via this transformation is
a set of decoupled ordinary dynamic¢ systems (41),
(44) where this set is indexed by & in (41) and by
j=L,:..,m—1 and k in (44), where m plays the role of
the ‘time’ variable in each of these models, and where
at each ‘time’ m+ 1 we initialize a new set of models
asin (46). More importantly, thanks to (11)—(13) and
(25), (26) the initial conditions and driving noises,
x(Lk), 1 (m+1) and s; ,(m+ 1) are mutually uncor-
related with covariances P,.(L), Q(m-+1) and
Q(m+ 1), respectively, so that these models are statis-

2Note that we are again abusing notation since w(m,n) may have
dimension g #d. In this case the only needed modifications are to
use g-dimensional identity and zero matrices in (31) and similar g-
dimensional versions of the operators H, and G,.
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tically decoupled as well. From this fact the lemma
essentially follows immediately, with the identification
of A,(m) as the covariance of u; (m) (for any value
of k), which evolves according to

A(m+1D) =A(m+ DA (m)AT(m+1)

+B(m+1D)O(m+1)BY(m+1), (47)
with initial condition
AL (L)=P(L). (48)

Similarly, A,(m) is the covariance of z;,(m) which
also evolves according to a Lyapunov equation exactly
as in (47), but from initial condition at the (/+1)-st
scale:

A1) =B+ 1D QU+ 1)BT(I+1). (49)

3. Wavelet-based multiscale optimal smoothing

In this section we consider the problem of optimally
estimating one of our processes as in (21) given sen-
sors of varying SNRs and differing resolutions. An
example where this might arise is in the case of fusing
data form sensors which operate in different spectral
bands. We formulate this sensor fusion problem as an
optimal smoothing problem in which the optimally
smoothed estimate is formed by combining noisy meas-
urements of our lattice process at various scales. In
other words each sensor is modeled as a noisy obser-
vation of our process at some scale of the lattice.

Consider the following multiscale measurements for
m=LL+1,..M:

y(m)=%(m)x(m) +uv(m), (50)
where

#(m) £ diag(...,C(m),..C(m),...), (51)
F(m) £ diag(....R(m),..R(m),...), (52)
E[v(D)v()"1=2(i)8;—;, (53)

and where C(m) is a b X d matrix and R(m) isabXb
matrix representing the covariance of the additive
measurement noise. Note that the number of sensors,
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the resolution of each sensor, and the precise spectral
characteristics of each sensor are represented in the
matrix C(m). For example if there were simply one
sensor at the finest scale, then C(m) = 0 for all m except
m=M.

We define the smoothed estimate, denoted as x*(m),
to be the expected value of x(m) conditioned on y{i)
fori=LL+1,..M,ie.,

x*(m) =E[x(m) |y(L),...y(M)]. (54)

We define the coarse-to-fine filtered estimate to be the
expected value ‘of x(m) conditioned on y(i) for
i=LL+1,..mie.,

£(mim) =E[x(m) |y(L),....y(m)]. (55)

We define the coarse-to-fine one-step predicted esti-
mate to be the expected value of x(m) conditioned on
y(i) fori=LL+1,...m—1;1e.,

£(mlm—1) =E[x(m)|y(L),...y(m—1)]. (56)

From standard Kalman filtering theory, we can
derive arecursive filter with its associated Riccati equa-
tions, where the recursion in the case of our lattice
models is in the scale index m. We choose to solve the
smoothing problem via the Rauch-Tung—Striebel
(RTS) algorithm [26]. This gives us a correction
sweep that runs recursively from fine to coarse scales
with the initial condition of the recursion being the final
point of the Kalman filter. The following equations
describe the ‘down’ sweep, i.e. the filtering step from
coarse to fine scales.

Form=L,...M,

Emlm—1)=H% | Z(m)i(m—1Im—1), (57)

X(m|lm)=£(mim—1)

+Z(m)[y(m) =€ (m)f(mlm—1)],
(58)

F(m)=P(mlm—1)&*(m).#(m), (59)

F(m)=(F(m)P(mlm—1)&*(m) + Z(m)) ",
(60)

F(mim—1)
=HY_ o/ (m)P(m—1|m—1)*(m)H,_,

+Z(m)G(m)FB*(m), (61)

P Y mlm)=2" mlm—1)

+Z*(m)# ~ (m)&(m), (62)
with initial conditions
A(LIL-1)=0, (63)
P(LIL=1)=P(L). (64)
We also have the following equations for the correction
sweep of the Rauch-Tung-Striebel algorithm, i.e. the

‘up’ sweep from fine to coarse scales.
Form=M—-1M-2,..L+1,L,

x(m) =2(m|lm) +P(mim)& *(m+1)H,
X P~V (m+1m) [x*(m+1)
—X(m-+1lm)], (65)

P(m)y=FP(mlm) +E(m)[ P*(m+1)
—P(m+11m)]E*(m), (66)

E(m)=%(mlm)&/ *(m+1)

XH, 7 (m+1|m), (67)
with initial conditions
(M) =x(M|M), (68)
P M)=P(MIM). (69)

Note that we could equally have chosen to start the RTS
algorithm going from fine to coarse scales followed by
a correction sweep from coarse to fine, i.e., an up—down
rather than the down—up algorithm just described. This
involves defining the filtered and one-step predicted
estimates in the direction from fine to coarse rather than
coarse to fine. Similarly, we could also construct a so-
called two-filter algorithm [26] consisting of parallel
upward and downward filtering step. Details on these
variations are found in [7].

The smoothing algorithm described to this point
involves a single smoother for the entire state sequence
x(m) at each scale. However, if we take advantage of
the eigenstructure of our process and, more specifically,
the decoupled dynamics developed at the end of the
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preceding section, we can transform our smoothing
problem into a set of decoupled 1D RTS smoothing
problems which can be computed in parallel. Specifi-
cally, define the following transformed quantities:

Zu(mlm—1) £ (v}(m))"#(mIm—1), ©(70)
Py (mlm—1) £ (v}(m))"P(mIm—1)vi(m),

(71)
Zu(mim) £ (Vi(m)) £(mlm), (72)
Py(mlm) £ (vj(m)) 2 (mIm)vi(m), (73)
i (mlm—1) & WEm))YH(mim—1), (74)
Py (mlm—1) 2 (57(m)) P (mIm—1)55(m),

(75)
iy (mim) & (0% (m)) % (mm), (76)
Py (mlm) & (55(m)) P (mIm)ig(m), (77)
z5(m) & (v}.(m))"x*(m), (78)
P (m) & (v)(m)) P (m)vi(m), (79)
23 (m) £ (vE(m)) "x*(m), (80)
P a(m) & (vk(m)) 2 (m)vi(m). (81)

These quantities represent the transformed versions of
the predicted, filtered and smoothed estimates in the
Rauch-Tung-Striebel algorithm, along with their
respective error covariances, in the transform domain.
We also need to represent the transformed data, where
the data at each scale, y(m), has components which are
finite-dimensional vectors of dimension » X 1. We rep-
resent these vectors using eigenvectors as in (32),
(33), where in this case the blocks in (31) are b X b,

Via(m) & (vi(m))Ty(m), (82)
Fre(m) & (0E(m)) "y(m). , (83)

As before for each scale m, where m=L+1,...,.M, the
index ranges are j=L,...,m— 1 and —o <k <. That
is, for each m other than at the coarsest scale, L, we
transform our quantities so that they involve eigenvec-
tors whose coarsest scale is L.

We now can state the following, which follows
directly from the analysis in the preceding section.
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ALGORITHM 3.1. Consider the smoothing problem for
a lattice defined over a finite number of scales, labeled
from coarse to fine as m= L,L+ 1,...,M. The following
set of equations describes the solution to the smoothing
problem, transformed onto the space spanned by the
eigenvectors of R, (m), in terms of independent stan-
dard Rauch-Tung—Striebel smoothing algorithms:
DOWN SWEEP:

Forj=L.L+1,..M—2andkeZ,

L(mlm=1) =A(m)Z(m—11m—1), (84)
P (mlm—1) =A(m) P, (m—1lm—1)AT(m)
+B(m)Q(m)B" (m),
m=j+2,j+3,..M, (85)

with the initial conditions for j=L,L+1,...M—1 and
ke,

Z.G+11j) =0, (86)
P, (i+11j) =BG+ 1)QG+1)BT(j+1). (87)
Forj=L,L+1,.,M—1and k€Z,
Zix(mlm) =7, (mlm—1)

+K; 1 (m) (3(m) = C(m) £, (mim—1)),

(88)
P (mlm) =P (mim—1)
+C"(m)R ™" (m)C(m),
m=j+1,j+2,.,M, (89)
K (m) & (0}(m)) " (m)7 % (m). (90)
For k€ Z we have
fig g (mim—1) = A(m) i (m—1Im—1), (91)
Pry(mlm—1) =A(m)Pri(m—1lm—1)A"(m)
+B(m)Q(m)B"(m),
m=L+1L+2,..M, (92)
with the initial conditions
U (LIL—1)=0, (93)
P, (LIL—1)=P,(L). (94)
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For k€7 we have
iy (mlm) =iy y(m|m—1)
+ Ky 1 (m) Grp(m) — C(m)iii(mlm—1)), (95)

Bri(mim) =P} (mim—1)

+CTY(m)R"Y(m)C(m), m=LL+1,...M, (96)
Ky x(m) & (#(m)) " (m)7 %(m). (97)
UP SWEEP:
Forj=LL+1...M—1andkeZ,
25(m) =2 (mlm) + P, (mIlm)A™ (m+1)

XP (m+1m)[z5(m+1)

=Zi(m+1lm)], (98)

P;,k(m) =P—]k(m|m) +E_j,k(m) [P]S',k(m+ 1)

— P, (m+11m) 1EL (m), (99)
Eji(m) =P, (mIlm)A"(m+ 1)P ;' (m+ 1lm),
(100)
m=M—-1M=2,.j+2,j+1, (101)
with initial condition
(M) =2, (MIM), (102)
3 (M) =P; (MIM). (103)
ForkeZ,
236(m) =i (m|m) + P, (m|m)AT(m+1)
XP (m+1m)[25(m+1)
—dj(m+1lm)],
(104)
B3 ((m) =P,y (mlm) + E}(m) [P (m+1)
=B, (m+11m) 1(EL)"(m), (105)
Ej(m) =P, (mim)AT(m+ 1), (m+1|m),
(106)
m=M—1M-2,.,L+1L, (107)

with initial condition

21 M) =iy (MIM), (108)
Ps (M) =P, (MIM). (109)

Note that our algorithm is highly efficient in that we
have transformed the problem of smoothing what are,
in principle, infinite-dimensional or, in the case of win-
dowed data, very high-dimensional vectors, to one of
smoothing in parallel a set of finite-dimensional vec-
tors. Also, the smoothing procedure takes place in scale
rather than in time, and for finite data of length N this
interval is at most of order log N, since each succes-
sively coarser scale involves a decimation by a factor
of 2. Note also that as we move to finer scales we pick
up additional levels of detail corresponding to the new
scale components (46) introduced at each scale. This
implies that the smoothers in our algorithm smooth data
over scale intervals of differing lengths: of length
roughly log N for the coarsest components (since data
at all scales provide useful information about coarse
scale features) to shorter length scale intervals for the
finer scale detail (since data at any scale is of use only
for estimating detail at that scale or at coarser scales,
but not at finer scales).

Let us next analyze the complexity of our overall
algorithm for smoothing our lattice processes. We first
transform our data using the wavelet transform which
is fast: O(IN), where N is the number of points at the
finest scale and / is the length of the QMF filter. We
then perform in parallel our 1D smoothers. Even if
these smoothers are computed serially the total com-
putation is O(/N). After performing the paraliel 1D

'smoothers on these transformed variables, an additional

inverse transformation is required, which is performed
again using the inverse wavelet transform. That is if
£%(m) is desired at some scale L <m <M, we use the
wavelet synthesis equation (15) to construct it from its
coarse scale approximation 77 ,(m) and its finer scale
wavelet coefficients z;, for scales j=L,...,m— 1. Thus,
the overall procedure is of complexity O(IN).

Let us make several closing comments. First, as the
preceding complexity analysis implies, the algorithm
we have described can be adapted to finite length data,
with appropriate changes in the eigenvectors/wavelet
transform to account for edge effects. This extension is
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discussed in the next section. Secondly, note that if
only finest-scale data are available (i.e., only
C(M) #0), our smoothers degenerate to coefficient-
by-coefficient static estimators (i.e., each wavelet coef-
ficientin (82), (83), at scale m =M is used separately
to estimate the corresponding component of x(M)),
which is an algorithm of exactly the same structure as
that in [31] for the particular choice of parameters in
the scalar version of our model corresponding to 1/
like processing.

Finally, it is important to note that the transform
method of parallelizing the smoothing problem, used
here and in [31] requires the matrix ’(m) in (50) to
have constants along the diagonal for all m, i.e., that
the same measurements are made at all points at any
particular scale. The case of missing data at a given
scale is an example in which this structure is violated.
This is relevant to situations in which one might want
to use coarse data to interpolate sparsely distributed
fine data. This problem can be handled via an alternate
set of efficient algorithms using models based on homo-
geneous trees. We refer the reader to [ 2, 7] for details.

4, Finite length wavelet transforms

In this section we discuss the problem of adapting
the wavelet transform, thusfar defined only for infinite
sequences, to the case of finite length sequences, i.e.
producing a transform that maps finite length sequences
into finite length sequences. This is a topic of consid-
erable current interest in the wavelets literature [24],
as the effects of windowing in wavelet transforms are
not as well-understood as those for Fourier analysis.
To begin, note that both the analysis and synthesis
equations, (9), (10), (14), for computing the wavelet
and scaling coefficients are defined as operations on
infinite length sequences. Adapting these equations to
the case of finite length sequences while preserving

both the orthogonality and the invertibility of the trans-
formation proves to be non-trivial for the following
reason. Take a 10-point sequence, x(7), and consider
performing its wavelet transform using a QMF filter,
h(n), of length four. To compute the scaling coeffi-
cients at the next coarsest scale we apply (9) to x(n),
resulting in a scaling coefficient sequence, c(#n), which
is of length 6 (the linear convolution results in a 13-
point sequence, while the downsampling by a factor of
two reduces this to a 6-point sequence). Similarly, by
applying (10) to x(n) we get a wavelet coefficient
sequence, d(n), which is also of length 6. Thus, the
overall transformation from the nonzero portion of
{x(n)} to the nonzero portions of {c(#n), d(n)} in this
case is a map from R' to R'?, which makes it impos-
sible for it to be invertible. This example is illustrated
in Fig. 2, where x(n) is defined as indicated on the first
level of a truncated lattice and {c(n), d(n)} are
mapped into the second level where the lattice branches
are illustrated for the case where the operators H;, G,
correspond to a QMEF filter, A(n), of length four and
only branches connecting to points in the non-zero por-
tion of x(n) are shown.

Thus, we can already see the fundamental problem
in trying to develop an orthonormal matrix transfor-
mation based on the wavelet transform. At each scale
we must have a well-defined orthonormal transforma-
tion from our approximation at that scale into its scaling
coefficients and its wavelet coefficients at the next
coarsest scale. To see how this can be done it is suffi-
cient to focus on our previous example involving the
map from x(n) into {c(r), d(n)}. We can write the
transformation in our example explicitly as follows.
We denote our 4-tap QMF filter, 4, as a row vector
[hy Ay h, hs]. Similarly, our filter, g, is denoted as
[go &1 & g:] where from (6)—(8) a valid choice of

gis
(g0 81 & &l=1hs —hy hy —hel. (110)

*—— ¢ (n),d(n)

—— x{n)

Fig. 2. Transformation of a 10-point sequence x(n) into 6-point scaling coefficients c(#) and its 6-point wavelet coefficients d(n).

Signal Processing
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If we think of the non-zero portion of our sequence
x(n) as a vector, x, in R'° and the non-zero portions of
c(n), d(n) as vectors, ¢ and d, in RS, our maps
x{n) = c(n) and x(n) — d(n) can be thought of as the
following 6 X 10 matrices.

(b, h, 0 00 00 0 0 0 ]
ho hy h, 1 0 0 0 0 0 0O
Al 0 0 hyh by , 0 0 0 0
e 111
H 0 0 0 0 hyhy hy h 0 0 - (D
00 000 0 hyh hy hy
00000000 hh
(4,80 0 0 0 0 0 0O 1
80818283000000
00808182830000
G2 . (112)
0 000 g8 88500
000 0O0O0 g & & &
(00000000 g g
where
c=Hzx, (113)
d=Gx. (114)

Note that ¢ and d are precisely the non-zero portions
of the sequences one obtains by applying the operators
H,, G; to x(n). Thus, we can in fact reconstruct x(n)
from ¢, d using our synthesis equation, (16). In matrix
notation

x=H"c+G%d. (115)

If we denote our overall map x—c,d as the 12X 10
matrix

Al H
UZ[G]’ (116)

then (115) says that UTU =1I. Note, however, that it is
not the case that UUT =1, since U is not even square.
That is, while it is true that the finite dimensional ver-
sion of (16), namely H"H+ GG =1, holds, the fol-
lowing conditions do rot hold:

HHT=1, (117)
GG™=1, (118)
GH™=0. (119)

The failure of these conditions to hold is due primarily
to the first and last rows of H and G. In Fig. 2 these
correspond to the averaging performed at the edges of
both ends of the lattice. Note that the rows of H are
mutually orthogonal and the rows of G are mutually
orthogonal. The reason for (117), (118) is simply the
fact that the edge rows of H and G are not normalized
so that their inner products equal one. The reason for
(119) is the fact that the edge rows of G are not orthog-
onal to the edge rows of H.

If we want our overall transformation, U, to be
orthonormal, we must somehow eliminate two of its
rows. Note that if we eliminate the first and last rows
of the matrix H, we get

ho hy by B 0 0 0 0 0 O
ho hy hy B 0 0 0 O
0 0 hy hy hy s 0 0
000 0 hyhy hy Ig

>

~210 O
H 00 (120)
0 0

In this case (117) and (119) do hold with A replacing
H, but (118) does not quite hold due to the fact that
the first and last rows of G are not properly normalized.
Examining G in detail and using the QMF property in
(7), we see that

a 00 0 0O
01 0 0 0O
0 01 0 0O
T:
GG 0O 001 0 0}’ (12
0O 00010
_O 00 0 O b_J
where
a=g35+g3, (122)
b=g5+g7. (123)

Thus, we can satisfy (118) simply by normalizing the
first and last rows of G by a and b, respectively.

The resulting transformation maps our length 10 sig-
nal x into scaling coefficients ¢ of length 4 and wavelet
coefficients d of length 6. This has the following inter-
pretation. While &/ maps the nonzero portion of x(n)
into the nonzero portion of its wavelet coefficients,
d(n), at the next coarsest scale, normalizing the coef-
ficients at the edges, it maps the nonzero portion of
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x(n) into the nonzero portion of its scaling coefficients,
c(n), while zeroing the two scaling coefficients at the
edges. Note that if we perform our transformation
recursively in scale, at scale each scale we end up with
scaling coefficients which are zeroed at the edges, leav-
ing us with fewer and fewer scaling coefficients as we
go to coarser scales. If we take our example one step
coarser in scale, i.e., we apply the same idea used to
create 7 on the scaling coefficients ¢, we end up map-
ping ¢ into one scaling coefficient and three wavelet
coefficients at the next coarsest scale. The overall two
scale decomposition results in scaling coefficients
defined on the lattice in Fig. 3. The resulting wavelet
coefficients reside on the lattice in Fig. 4, where the
dotted lines represent averaging at the edges due to the
normalization of the g,’s.

Note that if we consider a QMF pair of length greater
than 4, there are more edge rows of G, and the required
modification to these is more than simple normaliza-
tion. For example if the filter is of length 6, then the
corresponding H operator, with the edge rows removed
has the form

H=
‘ho hl h2 h3 h4 h5 0 O s 0 ‘
O 0 ho hl h2 h3 h4 h5 O 0
0 e 0 O ho hl h2 h3 h4 h5 O 0
0 0 0 0 0 hy hy hy hs hy hs

(124)

and the corresponding G matrix, including the edge
TOWS, iS

G=

848 0 0 0 0 0 0 - - 0
8 8 8.8 0 0 0 O 0
8 & & 8 84+ 8 0 0 0
0 0 g 81 & 8 8 8& O 0
0 -0 0 g 8 8 8 8 8 0 0
0 -0 00 0 g & & 8 & &
0 -0 0 0 0 0 0 g & & &
0 -0 0000000 g g

(125)

The point now is that each of the two pairs of edge-
rows in (125) is not only not normalized but also not
an orthogonal pair. Consequently we must Gram—
Schmidt orthonormalize each ‘of these pairs. This
changes the values of the nonzero coefficients in the
edge rows but does not introduce additional nonzero
entries, so that the local nature of the wavelet calcula-
tions is still preserved. More generally, if we have a
QMF of length P (which, to satisfy the QMF condi-
tions, must be even), we must perform two Gram—
Schmidt orthonormalizations of sets of P/2 vectors.
Note that the coefficients d(n) and c(n) play a sym-
metric role in our procedure, and thus we could equally
well have zeroed the edges of our wavelet coefficients
d(n) rather than our scaling coefficients c(n) or could
have zeroed out the scaling coefficients at one end of
the signal and the wavelet coefficients at the other. In
addition, there are other possible ways in which to
modify the edge rows of H and G to achieve orthogon-
ality, the most common being cyclic wrap-around. We
refer the reader to [7, 24] for further discussion of

Fig. 3. Lattice representing domain of scaling coefficients for 2-scale décomposition based on zeroing edge scaling coefficients.
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Fig. 4. Lattice representing domain of wavelet coefficients for 2-scale decomposition based on zeroing edge scaling coefficients.

these variations, as we focus here on the one we have
Just described, as it is this form that yields the correct

eigendecomposition for a windowed version of the

state model described in the preceding section.
In particular, we specify our model on a finite lattice
as follows form=L,L+1,....M:

E[x(L)x(L)"] =2.(L), (126)
x(m+1)=HE 2 (m+1)x(m)
+Z(m+1Dw(m+1), (127)
Elw()w()"1=@()8_,, i=L+1,..M, (128)
where
o (m) 2diag(A(m),...A(m)), (129)
B (m) 2diag(B(m),...B(m)), (130)
@ (m) £diag(Q(m),...,0(m)), (131)
P (L) &diag(P.(L),....P.(L)). (132)

Here A(m), B(m), Q(m) and P.(L) are as before,
x(m) and w(m) represent the finite vectors of variables
x(m,n) and w(m,n), respectively, at the finite set of
nodes at the m-th scale, and H,, and G, are the coun-
terparts of the operators H,, and G,, adapted to the case
of finite intervals by removing edge rows of H,, and
orthonormalizing those of G,, (note that here we again
allow these wavelet operators to act on vector signals
component-by-component). Note that the dynamics
(127) are not square, since over a finite interval we
increase the number of scaling coefficients as we move
from coarse to fine scales. For example if scale L con-
sists of a single root node and if we use QMFs of length

4, our dynamics evolve on the finite lattice of Fig. 3
from coarse to fine scales, yielding a stochastic process
at a sequence of resolutions on a finite interval. As we
have indicated, the block-eigenstructure of our finite
lattice process is precisely as we derived in the previous
section, except that we now must use the modified
wavelet transform on a finite interval, as determined by
the sequence of operators H,,, G,,. To make this precise,
let f(m) denote the number of nodes on our finite lattice
at scale m=1L,...,M, where for a length P QMF we can
easily check that

fi+ D) =2f())+P-2. (133)
Define the block unit vectors
&é [Od,"-aod, Id ’Odv"od]T’ (134)

i-th

where the superscript j is again used to denote that the
vector (now in R *¥) corresponds to the j-th scale
of the lattice and where I, is the d X d identity matrix
(and 0, the dXd zero matrix). The block vectors
or(m), vi(m) for I[=L,..,n—1 and for
i=0,12,.. (L) —1andn=0,1,2,. f(I) — 1, are block-
eigenvectors of the correlation matrix of the process at
scale m, R .(m), where

m—1

ot (m) é(l—[ H].T)af (135)
j=L

and
m—1 -

uf,(m)é( I'1 H,-T)GIT(Sﬁ,. (136)
i=Il+1

As we did for the infinite case we can now transform
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the smoothing problem using a wavelet basis composed
of the block vectors v%(m) and vl(m). Our trans-
formed variables are formed as in (70)—(81), except
that now we have a finite number of variables to esti-
mate. In particular for each scaleindex, j, the translation
index k ranges from O to f(j) — 1. The wavelet trans-
form smoothing algorithm developed in the preceding
section then applies.

5. Numerical examples

In this section we illustrate the use of our multiscale
estimation framework for solving estimation problems
involving both single scale as well as multiscale data.
We do this by focusing on problems involving esti-
mation of first-order Gauss—Markov processes. We
have chosen this process as it is a frequently-used and
well-understood and accepted model and it cannot be
exactly modeled using the multiresolution framework.
Thus we can demonstrate the richness of our models in
approximating well-known processes by comparing the
performance of our smoother, using model parameters
chosen so as to well-approximate the Gauss—Markov
process, with the performance of standard smoothers.
Our examples indicate that our multiscale models do
rather well both in modeling important classes of proc-
esses and as the basis for constructing computationally
efficient algorithms. For first-order Gauss—-Markov
processes there, of course, already exist efficient esti-
mation algorithms (Wiener and Kalman filters). How-
ever, these algorithms apply only in the case of
pointwise measurement data. On the other hand, our
multiscale modeling framework allows us to incorpo-
rate data at a set of resolutions with no increase in
algorithmic complexity. We demonstrate the potential
of this capability by fusing multiscale data for the esti-
mation of a Gauss—Markov process, illustrating how
the use of coarse-scale data can aid in estimating fea-
tures which are not discernible using fine-scale data of
poor quality. We refer the reader to [ 7] for other exam-
ples of the application of our framework, including the
fusion of multiscale data for the 1/f-processes intro-
duced in [30, 31].

Signal Processing

5.1. Processes and multiscale models

Consider the following stationary 1st-order Gauss—
Markov process:

#(1) = — Bx(t) +w(p), (137)
E[x2(1)]=1. (138)

This process has the following correlation function and
associated power spectral density function:

bo(1) =2 A7, (139)
2
S.(w) =;f—32. (140)

In the numerical examples that follow we use a dis-
cretized version of (137). In particular, we use a sam-
pled version of (137) in which the sampling interval
is small enough to minimize any aliasing effects. We
choose B=1 and take the sampling rate to be twice w,
where S,.(w,) =0.002, S,,(w) being the power spec-
tral density function of x(#). This yields a sampling
interval of A=w/w, where wy;=30. Our discretized
model is as follows:

x(t+1) =ax(t) +w(e), (141)
E[x3(H]=1, (142)
a=e £4=0.9006. (143)

We consider the following measurements of x(¢):

y() =x(1) +v(z), (144)
E[v*(¢)] =R, (145)
Y={y(r)1t=0,...N—1}. (146)

In the examples that follow we take the interval length
N=128.

Figure 5 is a gray-scale image of the covariance
matrix of our stationary first order Gauss—Markov proc-
ess defined on a finite interval, corresponding to the
model in (141). Note that thanks to the normalization
(138), what s displayed here is the array of correlation
coefficients of the process, i.e., the covariance between
two points normalized by the product of the standard
deviation at each point. The diagonal of the matrix thus
is unity, and the off-diagonal terms decay exponentially
away from the diagonal. In [ 14] this correlation coef-
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Fig. 5. Covariance matrix of a stationary Gauss—Markov process.

ficient matrix is transformed using various wavelet
bases, i.e., the matrix undergoes a similarity transfor-
mation with respect to the basis representing the wave-
let transform based on a variety of QMEF filters, /i(n).
This transformation corresponds essentially to the sep-
arable form of the 2D wavelet transform [ 19]. Figures
6 and 7 are the images of the correlation coefficient
matrix in Fig. 5 transformed using QMF filters of length
2 and 8, respectively. That is, these are the correlation
coefficient matrices for the multiscale wavelet coeffi-
cients of a finite length segment of a 1st-order Gauss—
Markov process, where the finest level wavelet coeffi-
cients are located in the bottom half of the coefficient
vector, the next coarser level coefficients comprise the
next fourth of the vector, the next set fills the next
eighth, etc. Note that aside from the finger-like patterns
in these images, the off-diagonal elements are essen-
tially zeroed. The finger patterns correspond to corre-
lations between wavelet coefficients at different scales
which share the same location in the interval. Note that
even these correlations are weak. Furthermore, since
the variances of many of the wavelet coefficients are
actually quite small, the normalization we have intro-
duced by displaying correlation coefficients actually
boosts the magnitude of many of the off-diagonal
terms, so that the approximate whitening of this process

Fig. 6. Representation of the stationary Gauss-Markov process in a
wavelet basis using a 2-tap QMF filter.

Fig. 7. Representation of the stationary Gauss—~-Markov process in a
wavelet basis using an 8-tap QMF filter.

performed by wavelet transforms is even better than
these figures would suggest. Note that analogous obser-
vations have been made for other processes, such as
fractional Brownian motions [17, 28], suggesting a
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rather broad applicability of the methods described
here.

To continue, the low level of inter-scale correlation
in the wavelet representation of the Gauss—-Markov
process as illustrated in Figs. 6 and 7 motivates the
approximation of the wavelet coefficients of this proc-
ess as uncorrelated. This results in a lattice model pre-
cisely as defined in (17)—(19). We use this model as
an approximation to the Gauss—Markov process in
order to do fixed interval smoothing. In particular, the
class of models which we consider as approximations
to Gauss—Markov processes is obtained precisely in the
manner just described. That is, we construct models as
in (17)—(19) where the wavelet coefficients are
assumed to be mutually uncorrelated. In this case the
variances of the wavelet coefficients, w(m) in (17)-
(19), are determined by doing a similarity transform
on the covariance matrix of the process under investi-
gation using a wavelet transform based on the Daube-
chies FIR filters [11]. In particular, if P, denotes the
true covariance matrix of the process, V the diagonal
matrix of wavelet coefficient variances, and W is the
wavelet transform matrix, then

A=WP,WT, (147)
V= WP ppeox W (148)

Thus, this approximate model corresponds to assuming
that A is diagonal (i.e. to neglecting its off-diagonal
elements).

In our examples we use the 2-tap Haar QMF filter as
well as the 4-tap, 6-tap and 8-tap Daubechies QMF
filters [ 11]. Note that in adapting the wavelet transform
to the finite interval we have, for simplicity, used cyclic
wrap-around in our wavelet transforms rather than the
exact finite interval wavelet eigenvectors described in
the preceding section. In this case the number of points
at each scale is half the number of points at the next
finer scale.

5.2. Smoothing processes using multiscale models

In this section we present examples in which we
compare the performance of the optimal estimator for
a Ist-order Gauss—Markov process with that of the

Signal Processing

suboptimal estimator based on our multiscale approx-
imate model.

Let x(2), t=0,..,N—1, denote a finite window of
our Gauss—Markov process, and consider the white-
noise-corrupted observations:

() =x(2) +v(1), (149)
E[v*(1)] =R, (150)
Y={y(5)}t=0,...N—1}. (151)

Let the optimal smoothed estimate (implemented
using the correct Gauss—Markov model) be denoted as

£(t) 2E[x(1) |Y]. (152)

Letting x and £, denote the vectors of samples of x(¢)
and £,(¢), respectively, we can define the optimal
smoothing error covariance

Sop SE[(x—%) (x—£)"T]. (153)

Also if P, denotes the covariance of x the optimal
estimate is given by

% =LY, (154)
with
L.=P/(P,+RI™* (155)
and
St =P, —P(P,+RD)'P,. (156)

More generally if we consider any estimator of the form
of (154) (such as the one we will consider where L,
corresponds to the optimal smoother for our multiscale
approximate model for the Gauss—Markov process),
then the corresponding error covariance is given by

Zou EL(r—fup) (X = %) "] (157)
=(I-L)P,(I-L)"+L,RLT. (158)

We now give several examples demonstrating the
performance of our multiscale models in smoothing
Gauss—Markov processes. We focus in this subsection
on the case of a single scale of data at the finest scale.
In Figs. 8-12 we compare the performance of the opti-
mal estimator, with the performance of our suboptimal
estimator based on lattice models for both 2-tap and 8-
tap Daubechies filters. In these examples the measure-
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Fig. 8. Sample path of a stationary Gauss—Markov process (solid) and its noisy version with SNR = 1.4142 (dashed).

ment noise variance R=0.5; i.e. the data is of
SNR=1.4142.

Note the strikingly similar performances of the opti-
mal and suboptimal smoothers, as illustrated in Fig. 11
for the case of the 2-tap lattice smoother. From visual
inspection of the results of the two smoothers it is
difficult to say which does a better job of smoothing
the data; it seems one could make a case equally in
favor of the standard smoother and the lattice-model
smoother. The similarity in performance of the optimal
smoother and our lattice smoothers is even more dra-
matic for the case of the 8-tap smoother as illustrated
in Fig. 12.

Note that although the standard smoother results in
a smaller average smoothing error (the trace of 3,
divided by the number of points in the interval), it
seems the average error of our lattice-model smoothers
is not that much larger. To quantify these observations
let us define the variance reduction of a smoother as
follows:

A . .
p= =vanance reduction

PP (159)

Do
Do = average process variance, (160)
ps =average smoothing error variance. (161)

We also define the performance degradation resulting
from using a lattice smoother as compared with using
the standard smoother as follows:

Apers £ performance degradation

— Putandara _ Pranice (162)

Pstandard

Pstandara = Variance reduction of standard

smoother, (163)
Prasiice = Variance reduction of lattice-model
smoother. (164)
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Fig. 9. Stationary Gauss—Markov process (solid), and its smoothed version (dashed) using standard minimum mean-square error smoother
(data of SNR=1.4142).
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Fig. 11. Standard minimum mean-square error smoother (solid) versus multiscale smoother using 2-tap (dashed) (data of SNR=1.4142).
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Fig. 12. Standard minimum mean-square error smoother (solid) versus multiscale smoother using 8-tap (dashed) (data of SNR=1.4142).
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Table 1 shows the performance degradation of the
lattice-model smoother relative to the standard
smoother for filter tap orders 2, 4, 6 and 8 and for four
different noise scenarios: (1) SNR=2.8284, (2)
SNR=1.412, (3) SNR=0.7071, (4) SNR=0.5. The
variance reductions are computed using smoothing
errors averaged over the entire interval. While the deg-
radation in performance lessens as the order of the filter
increases, a great deal of the variance reduction occurs
just using a 2-tap filter. For example for the case of
SNR = 1.412 the standard smoother yields a variance
reduction of 85%. It is arguable whether there is much
to be gained in using an 8-tap filter when its relative
decrease in performance degradation is only 2.23%
over the 2-tap smoother; i.e. the variance reduction of
the 8-tap smoother is 83.8%, while the variance reduc-
tion of the 2-tap smoother is already 81.9%.

The performance degradation numbers for the lower
SNR case (SNR=0.7071) seem to suggest that the
effect of raising the noise is to decrease the performance
of the lattice-model smoothers. But one should keep in
mind that this decrease is at most only marginal. Con-
sider the case where the SNR =0.5. In this case the data
is extremely noisy, the noise power is double that of
the case where SNR =0.7071, and yet the performance
degradation in using the 2-tap smoother compared with
the standard smoother is 9.58%, up to only 2.87% from
the case of SNR=0.7071. Furthermore, if one exam-
ines plots of the results of applying the two smoothers
to even noisier data (e.g., the SNR=0.3536 data con-
sidered in the next subsection), the performance of the
two smoothers remains quite comparable visually.

We emphasize that the average performance degra-

Table 1

Performance degradation comparison of lattice-model smoothers —
2-tap, 4-tap, 6-tap and 8-tap

2-tap 4-tap 6-tap 8-tap
SNR=2.8284 1.07% 0.550% 0.402% 0.334%
SNR=1.412 3.27% 1.77% 1.24% 1.04%
SNR=0.7071 6.71% 4.13% 2.70% 2.33%
SNR=0.5 9.58% 6.14% 3.87% 327%

Signal Processing

dation is a scalar quantity, and at best gives only a
rough measure of estimation performance. From this
quantity it is difficult to get any idea of the qualitative
features of the estimate. The plots of the sample path
and its various smoothed estimates over the entire inter-
val offer the reader much richer evidence to judge for
himself what the relative differences are in the outputs
of the various smoothers.

The preceding analysis indicates that multiscale
models can well approximate the statistical character-
istics of lst-order Gauss—Markov processes in that
nearly equivalent smoothing performance can be
obtained with such models. Further corroboration of
this can be found in [7] where Bhattacharya distance
is used to bound the probability of error in deciding,
based on noisy observations as in (149), if a given
stochastic process x(¢) is either a 1st-order Gauss—
Markov process or the corresponding multiscale proc-
ess obtained by ignoring interscale correlations. An
important point here is that the 1st-order Gauss—Mar-
kov model is itself an idealization, and we would argue
that our multiscale models are an equally good ideali-
zation. Indeed if one takes as an informal definition of
a ‘useful’ model class that (a) it should be rich enough
to capture, with reasonable accuracy, important classes
of physically meaningful stochastic processes, and (b)
it should be amenable to detailed analysis and lead to
efficient and effective algorithms, then we would argue
that our multiscale models appear to have some decided
advantages as compared to standard models. In partic-
ular, not only do we obtain efficient, highly parallel
algorithms for the smoothing problems considered in
this section, but we also obtain equally efficient algo-
rithms for problems such as multiscale data fusion,
which we discuss next.

5.3. Sensor fusion

In this section we provide examples that show how
easily and effectively our framework handles the prob-
lem of fusing multiscale data to form optimal smoothed
estimates. In our framework, not only is there no added
algorithmic complexity to the addition of multiscale
measurements, but it is also easy for us to evaluate the
performance of our smoothers in using multiscale data.
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Fig. 13. Sample path of stationary Gauss—Markov process (solid), results of 4-tap Jattice smoother using fine data of SNR = 0.3536 supplemented
with coarse data of SNR = 31.6: coarse data at 64 point scale (dashed).

For simplicity we focus here on the problem of fusing
data at two scales. Consider the Gauss—Markov process
used in our previous examples as defined in (141). We
assume that we have fine-scale, noisy measurements as
in (149) together with one coarser level of measure-
ments. In particular, as before, the length of our interval
is taken to be 128 points. Thus we assume that we have
2M =128 measurements of the finest scale version of
our signal as well as 2¥ measurements of the coarser
approximation of our signal at scale K.

Consider the case where our fine scale measurements
are of extremely poor quality. In particular we take the
case where our data is of SNR =0.3536 (the noise
power is eight times the signal power). Figure 13 com-
pares the result of using only this fine scale noisy data
to estimate the process with the result of fusing this fine
scale data with high quality, slightly coarser data. In
particular we take our coarse data to reside at the scale

®Note that as mentioned previously, the lattice models used in this
section correspond exactly to the wavelet transform, i.e. to (17)-
(19), so that the signal x(K) is precisely the vector of scaling coef-
ficients at scale K of the fine scale signal x(M).

one level coarser than the original data (scale at which
there are 64 points) and the coarsening operator, H,,
corresponds to a 4-tap filter. The SNR of the coarse
data used in Fig. 13 is 31.6.

Note that the coarse measurement aids dramatically
in improving the quality of the estimate over the use of
just fine-scale data alone. To quantify this, recall that
our smoother computes the smoothing error at each
scale. We use these errors as approximations to the
actual suboptimal errors (note that the computation of
the actnal error covariance from multiscale data is
appreciably more complex than for the case of single
scale measurements; the same is not true for our tree
models, where the complexity of the two cases is essen-
tially the same). The variance reduction in the case of
fusing the two measurement sets in Fig. 13 is nearly
100%. Indeed, even if we reduce the coarse-scale meas-
urement SNR to a value of 2, we still achieve a variance
reduction of 97% versus only 36% for the case of using
only the poor quality fine-scale data.

To explore even further the idea of fusing coarse
measurements with poor quality fine measurements, we
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compare the results of using coarse measurements of
various degrees of coarseness in order to determine how
the scale of the coarse data affects the resolution of the
smoothed estimate. In particular, we take our fine scale
data to be the same as before (SNR =0.3536). How-
ever, in addition to Fig. 13, we also display the results
of fusing these fine scale data with coarse data of
SNR = 31.6 at two other coarser scales: (1) the coarse
data is at a scale at which there are 32 points, (2) the
coarse data is at a scale at which there are 16 points.
Comparing Figs. 13-15, note how the estimates in these
figures adapt automatically to the quality and resolution
of the data used to produce them.

6. Conclusions

In this paper we have described a class of multiscale,
stochastic models motivated by the scale-to-scale
recursive structure of the wavelet transform. As we
have described, the eigenstructure of these models is
such that the wavelet transform can be used to convert
the dynamics to a set of simple, decoupled dynamic
models in which scale plays the role of the time-like
variable. This structure then led us directly to extremely
efficient, scale-recursive algorithms for optimal esti-
mation based on noisy data. A most significant aspect
of this approach is that it directly applies in cases in
which data of differing resolutions are to be fused,
yielding computationally efficient solutions to new and
important classes of data fusion problems.

In addition we have shown that this modeling frame-
work can produce effective models for important clas-
ses of processes not captured exactly by the framework.
In particular we have illustrated the potential of our
approach by constructing and analyzing the perform-
ance of multiscale estimation algorithms for Gauss—
Markov processes. Furthermore, we have shown how
the problem of windowing — i.c., the availability of
only a finite window of data — can be dealt with by a
slight modification of the wavelet transform. Finaily,
while what we have presented here certainly holds con-
siderable promise for 1D signal processing problems,
the payoffs for multidimensional signals should be
even greater. In particular the identification of scale as

atime-like variable holds in several dimensions as well,
so that our scale-recursive algorithms provide poten-
tially substantial computational savings in contexts in
which the natural multidimensional index variable
(e.g. space) does not admit natural ‘directions’ for
recursion.
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