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Multiscale Recursive Estimation, 
Data Fusion, and Regularization 

Kenneth C. Chou, Member, ZEEE, Alan S. Willsky, Fellow, ZEEE, and Albert Benveniste, Fellow, ZEEE 

Abstruet-A current topic of great interest is the multiresolu- 
tion analysis of signals and the development of multiscale signal 
processing algorithms. In this paper, we describe a framework 
for modeling stochastic phenomena at multiple scales and for 
their efficient estimation or reconstruction given partial and/or 
noisy measurements which may also be at several scales. In 
particular multiscale signal representations lead naturally to 
pyramidal or tree-like data structures in which each level in the 
tree corresponds to a particular scale of representation. Noting 
that scale plays the role of a time-like variable, we introduce 
a class of multiscale dynamic models evolving on dyadic trees. 
The main focus of this paper is on the description, analysis, and 
application of an extremely efficient optimal estimation algorithm 
for this class of models. This algorithm consists of a fine-to- 
coarse filtering sweep, followed by a coarse-to-fine smoothing 
step, corresponding to the dyadic tree generalization of Kalman 
filtering and Rauch-Tung4triebel smoothing. The Kalman fil- 
tering sweep consists of the recursive application of three steps: 
a measurement update step, a fine-to-coarse prediction step, and 
a fusion step, the latter of which has no counterpart for time- 
(rather than scale-) recursive Kalman filtering. We illustrate the 
use of our methodology for the fusion of multiresolution data and 
for the efficient solution of “fractal regularizations” of ill-posed 
signal and image processing problems encountered, for example, 
in low-level computer vision. 

I. INTRODUCTION 
ULTIRESOLUTION signal and image analysis meth- M ods have been investigated for some time under a 

variety of names including multirate filters [27], subband 
coding [22], Laplacian pyramids [7], and “scale-space” image 
processing [30]. It is the emerging theory of wavelet trans- 
forms, [ll], [12], [l5], [17]-[19], [23], that has sparked much 
of the recent flurry of activity in this area, in part because of 
its rich mathematical foundation and in part because of the 
evocative examples suggesting the possibility of developing 
efficient, optimal processing algorithms. The development of 
such algorithms (e.g., for the reconstruction of noise degraded 
signals) and the evaluation of their performance requires the 

Manuscript received December 10, 1991; revised February 7, 1993. Rec- 
ommended by Past Associate Editor W. S. Wong. This work was supported 
in part by the Air Force Office of Scientific Research under Grant AFOSR- 
924-0002. by the National Science Foundation under Grants MIP-9015281 
and INT-9002393, and by the Office of Naval Research under Grant N00014- 
91-J-1004. 

development of a corresponding multiscale theory of stochastic 
processes that allows us both to model phenomena and to 
develop effective analysis tools. The research presented in this 
paper and in several others, [2]-[5], [8] has the development 
of such a theory as its objective. 

In this paper we examine a class of multiscale state space 
models. Standard time domain state space models have proven 
to be of considerable value both because of the extremely 
efficient algorithms they admit (e.g., the Kalman filter) and 
because rich classes of stochastic phenomena can be well 
modeled using such descriptions. As we will see, both of 
these are also true for our multiscale state models, leading 
to the possibility of devising novel and extremely efficient 
algorithms for a variety of signal and image analysis problems. 
The key to our development is the observation that multiscale 
representations, whether for one-dimensional (1-D) time series 
or multidimensional images, have a natural, time-like variable, 
namely scale. Essentially all methods for representing and 
processing signals at multiple scales involve pyramidal data 
structures, where each level in the pyramid corresponds to a 
particular scale and each node at a given scale is connected 
both to a parent node at the next coarser scale and to several 
descendent nodes at the next finer scale. 

In 1-D, the usual scale-to-scale decimation by a factor of 
two leads directly to a dyadic tree data structure. The simplest 
example of this is the Haar wavelet representation in which 
the representation of a signal f(z) at the mth scale is given by 
its average values f (m,  n) over successive intervals of length 
2-,, i.e., 

(n+1)2-- 

f(m, n) = km s f(z)dz (1.1) 
pE2-m 

where k, is a normalizing constant. In this case each node 
(m, n) is connected to a single “parent” node (m - 1, [71/2]), 
where [y]=the integer part of y, and to two “descendent” 
nodes (m + 1, 2n) ,  (m + 1, 271 + l), where the fine-to- 
coarse relationship among the f(m, n) values is given by an 
interpolation plus the adding of higher resolution detail not 
available at the coarser level. 

An important aspect of this example is that the signal 
representations at different scales are related by a local scale- 
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to-scale recursion on the dyadic tree structure of the (m, n) 
index Set. Also, while the fine-tO-COarSe recursion corresponds 
to the miltiresolution analysis of signals, the coarse-to-fine 
recursion, in which we add higher resolution detail at each 
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modeling of signals and phenomena. In doing this, however, 
we wish to consider a far broader class of models than the 
Haar transform. In particular we choose to view each scale 
of such a representation more abstractly, much as in the 
notion of state, as capturing the features of signals up to 
that scale that are relevant for the “prediction” of finer scale 
approximations. For example, the Haar transform can naturally 
be thought of as a first-order recursion in scale. As we know 
from time series analysis, however, a considerably broader 
class of models is obtained if we allow higher-order dynamics, 
i.e., by introducing additional memory in scale. 

In this paper we develop such an extension by considering 
vector state models on the dyadic tree, providing a framework 
that allows us to model phenomena with multiscale features 
and to develop extremely efficient, parallelizable algorithms. 
By adopting this perspective, we provide a natural setting not 
only for dealing with multiscale phenomena and algorithms 
but also with multiscale data. In particular, a problem of 
considerable importance (e.g., in remote sensing) is the fusion 
of data from heterogeneous suites of sensors (multicolor IR, 
visual, microwave, etc.) providing information in different 
spectral bands and at different resolutions. The framework 
we describe allows the modeling of such multiresolution data 
simply as measurements at different levels in the dyadic 
tree, resulting in data fusion algorithms that are no more 
complex than algorithms for filtering single resolution data. As 
we discuss, the same cannot be said for standard estimation 
formulations. Since the key to our models and algorithms are 
recursions in scale, we obtain essentially the same algorithmic 
structures for two- or higher-dimensional image processing. 
For example in two-dimensions (2-D) our dyadic tree would 
be replaced by a quadtree in which each node has four 
descendants rather than two, resulting in the same order of 
complexity per data point as in 1-D. This stands in stark 
contrast to other optimal 2-D estimation formulations which 
have per-point complexities that grow with the size of the data 
array to be processed. The use of a simple quadtree model 
of the type described in this paper has been explored in the 
context of image coding and reconstruction in [9], [25]. 

In the next section we introduce our model and perform 
some elementary statistical analysis. In Section I11 we then 
investigate the problem of optimal estimation for this model 
and develop the generalization of the Rauch-Tung-Striebel 
(RTS) algorithm [20], consisting of a fine-to-coarse filtering 
sweep followed by a coarse-to fine smoothing sweep. The 
fine-to-coarse sweep, corresponding to a generalization of the 
Kalman filter to multiscale models on trees, consists of a 
three-step recursion of measurement updating, fine-to-coarse 
prediction, and the fusion of information as we move from 
fine-to-coarse scales. The last of these three steps has no 
counterpart in standard Kalman filtering, and this in turn 
leads to a new scale-recursive Riccati equation. In Section 
IV, we illustrate the application of our methodology for the 
estimation of both fractal, l/f-like processes and standard 
Gauss-Markov processes, both based on single-scale mea- 
surements and based on the fusion of multiresolution data. 
In addition we demonstrate the use of our methodology for 
the efficient solution, via “fractal regularization,” of a motion 

coarse 

Fig. 1. 
notation used in the paper. 

Illustrating the multiscale structure of the dyadic tree and some 

estimation problem typical of many ill-posed image processing 
problems encountered, for example in low-level computer 
vision. For simplicity our entire development is carried out 
in the context of the dyadic tree which corresponds to the 
representation and processing of l-D signals. As we have 
indicated the extension to higher dimensions introduces only 
notational rather than analytical or computational complexity, 
offering the possibility of substantial computational savings 
for many image processing problems. 

11. STATE-SPACE MODELS ON DYADIC TREES 

In this section, we intfoduce dynamic models on the dyadic 
tree of scale/translation pdirs (m, n) where each value of m 
corresponds to a particular scale of resolution and there is 
a factor of two decimation from scale to scale. As shown 
in Fig. 1, for convenience we denote each node of the tree 
by a single abstract index t ,  i.e., t = (m, n), where T 
denotes the set of all nodes, and m(t) denotes the scale or m- 
component of t .  We also introduce the basic shift operators on 
T, which play roles analogous to forward and backward shifts 
for temporal systems. In particular, with increasing m (i.e., 
coarse-to-fine) denoting the forward direction, there is a unique 
backward shift 7 and two forward shifts (Y and p (see Fig. 1.’ 
If t = (m, n), then ta = (m  + 1, 2n), t p  = (m + 1, 2n + l), 

The structure of T admits a class of scale-recursive linear 
dynamic models defined locally on T and evolving from coarse 
to fine scales: 

and t7 = (m - 1, [n /2] ) .  

Z ( t )  = A ( t ) ~ ( t ? )  + B( t )w( t )  (2.1) 

Y(t )  = C( t l4 t )  + 44  (2.2) 

where w( t )  and v( t )  are independent, zero-mean white noise 
processes with covariances I and R(t), respectively, and z(t)  
is an n-dimensional, zero-mean stochastic process. The term 
A(t )z ( tT)  represents a coarse-to-fine prediction or interpola- 
tion, B(t )w( t )  represents the higher resolution detail added 

scale, is used only in Appendix B. 
‘The other operator 6, which maps t to its nearest neighbor, t6,  at the same 
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in going from one scale to the next finer scale, and y ( t )  is 
the measured variable (if any) at the particular scale m and 
location n represented by t. Thus (2.1) represents a gener- 
alization of the coarse-to-fine synthesis form of the wavelet 
transform in that we allow additional memory, captured by 
z(t) ,  at each scale, together with a general scale-to-scale linear 
recursion rather than the particular synthesis recursion of the 
Haar transform. 

The general model (2.1)-(2.2) allows full tdependence of 
all the system matrices, e.g., A(t) can vary with both scale 
and translational position. An important special case is that 
in which the parameters are constant at each scale but may 
vary from scale to scale, in which case we abuse notation 
by writing A( t )  = A(m(t)) ,  etc. Such a model is useful for 
capturing a variety of scale-dependent effects such as l/f-like, 
fractal behavior as shown in [28], [29]. Also, as we illustrate 
in Sections IV-B and IV-C, the general case of t-varying 
parameters also has a number of potential uses. 

We assume throughout this paper that A( t )  is invertible for 
all t. The analysis and results we present extend to the case 
when this is not true, but our discussion is simplified if we 
make this assumption. In addition we assume that w( t )  is 
independent of the “past” of 5, i.e., { x ( ~ ) l m ( ~ )  < m(t)}. 
In this case, (2.1) not only describes a scale-to-scale Markov 
process, but it in fact specifies a Markov random field on 
T in that conditioned on s(t’J), ~ ( t a ) ,  and s(t,B)s(t) is 
independent of s at all other nodes.2 Also, if we wish to 
consider representations of signals of unbounded extent, we 
must deal with the full infinite tree T, i.e., {(m, n)I - 00 < 
m, n < CO}. If we are concerned with a compact interval of 
data, the index set of interest represents a finite version of the 
tree of consisting of M + 1 levels beginning with the coarsest 
scale represented by a unique root node, denoted by 0, and 
M subsequent levels, the finest of which has 2M nodes. In 
this case, we simply assume that w ( t )  is independent of the 
initial condition s(0) which is assumed to have zero mean 
and covariance P,(O). 

Straightforward calculation shows that the covariance 
P,(t) = E[s(t)zT(t)] evolves according to a Lyapunov 
equation on the tree 

P,(t) = A(t)P,(t’J)AT(t) + B(T)BT(t) .  (2.3) 

Let K,,(t, s) = E[s(t )sT(s)] .  Let s A t ‘denote the least 
upper bound of s and t ,  i.e., the finest scale node that is a 
predecessor of both t and s. Then 

&,(t, s) = @(t, s A t)Pz(s A t ) Q T ( s ,  s A t )  

where @(t1 ,  t 2 )  is the state transition matrix on the tree 

(2.4) 

Equation (2.4) differs from the formula for standard state 
models in which the transition matrix appears on either the 
left or right side (but not both). 

’Indeed this fact is used in [33] to describe a multigrid-like iterative 
algorithm for the solution of the multiscale estimation problem studied in 
t h i s  paper. 

- 0  ~ ~ 
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Fig. 2. Sample paths for two scalar multiscale models: (a) Process with 
A = .9, B(m) = 2-m/2, Pz(0) = 1; (b) Process with A = .9, 
B = P,(O) = 1. 

In the case in which the model parameters vary in scale 
only, if at some scale PS(t )  is constant, then this holds at 
each scale, so that by an abuse of notation P, (t) = P, (m(t)), 
and we have a scale-to-scale Lyapunov equation 

P,(m + 1) = A(m)P,(m)AT(m) + B(m)BT(m) (2.6) 

(this is always true for a finite subtree with single root node 
01, and 

L ( t ,  s) = @(m(t), m(s A t)>P,(m(s A t ) )  
@(m(s), m(s A t ) )  (2.7) 

where @(ml, m2) is the state transition matrix for A(m). 
Fig. 2(a) depicts the sample path of a scalar model with A = .9 
and B(m) = 2-”/’, m = 1,. ,7, and P,(O) = 1. The 
use of a geometrically-varying noise gain allows us to capture 
fractal characteristics with commensurately-scaled fluctuations 
at all scales. 

If we further specialize our model to the case in which A 
and B are constant, and A is stable, then (2.6) admits a steady- 
state solution, P,, which satisfies the usual algebraic Lyapunov 
equation. In this case if P,(t) = P, for all t ,  we have what 
is referred to as a stationary model in [35] 

K,,(t, 3) = Ad(t, eAt)P,(AT)d(s, 

= K,,(d(t, s A t ) ,  d(s, s A t ) )  (2.8) 

where d ( t l ,  t 2 )  denotes the distance between tl and tar i.e., 
the number of branches on the path from tl to t 2 .  Fig. 2(b) 
depicts the sample path of a scalar model with A = .9, B = 
P,(O) = 1. The covariance in (2.8) only depends on the 
distances of s and t to their common “parent” node s A t. 
This yields a notion of self similarity since, roughly speaking 
(2.8) states that the correlation between z(t)  and z(s) depends 
on the differences in scale and in temporal offset of the nodes 
t and s. A stronger notion of shift invariance for stochastic 



CHOU er al.: MULTISCALE RECURSIVE ESTIMATION 461 

processes on trees is isotmpy in which K,,(t, s) depends 
only on d ( s ,  t). Note also that (2.8) represents an isotropic 
covariance if AP, = P,AT, which points to the connection to 
the class of reversible stochastic processes [l]. Note also that 
since d(s,  t )  = d(s, s A t )  + d ( t ,  s A t ) ,  any isotropic process 
is stationary, but the reverse implication is not always true. 
We refer the reader to [5], [6], [35] for a detailed analysis of 
isotropic processes. 

Finally, in the next section we encounter the need for fine- 
to-coarse prediction and recursion, i.e., a model representing 
z(t7) in terms of ~ ( t )  and a noise that is uncorrelated with 
x( t ) .  To do this, we can directly apply the results of [26] 

(2.9) z(t7) = F(t )z ( t )  - A-'(t)B(t)G(t)  

F ( t )  = A- '@)[ I -  B(t)BT(t)P['(t)] 
= P, ( tT)AT (t)Pc ' ( t )  (2.10) 

G(t)  = w(t) - E[w(t)lz(t)] (2.1 1) 

E[G(t)GT(t)] = I - BT(t)PF'(t)B(t) 
Q(t). (2.12) 

For standard temporal models the noise process G(t)  is 
white in time. In our case the situation is a bit more complex. 
In particular G ( t )  is white along all upward paths on the 
tree, i.e., G(s) and G(t )  are uncorrelated if s A t = s or t. 
Otherwise it is not difficult to check that G(s) and G(t )  are 
not ~ncorrelated.~ 

111. A TWO-SWEEP ESTIMATION 
ALGORITHM FOR MULTISCALE mOCESSES 

In this section we derive an extremely efficient algorithm 
for the smoothing of (possibly) multiscale measurement data 
for our dynamic system (2.1), (2.2). Recall that the standard 
RTS algorithm involves a forward Kalman filtering sweep 
followed by a backward sweep to compute the smoothed 
estimates. The generalization to our models on trees has the 
same structure, with several important differences. First for the 
standard RTS algorithm the procedure is completely symmetric 
with respect to time, i.e., we can start with a reverse-time 
Kalman filtering sweep followed by a forward smoothing 
sweep. For processes on trees, the Kalman filtering sweep 
must proceed from fine-to-coarse (i.e., in the reverse direction 
from that in which the model (2.1) is defined) followed by 
a coarse-to-fine smoothing sweep." Furthermore, one full step 
of the Kalman filter recursion involves a measurement update, 
two parallel backward predictions (corresponding to backward 
prediction along both of the paths descending from a node), 
and the fusion of these predicted estimates. This last step 

31n fact G ( t )  is a martingale difference for a martingale defined on the 
partially-ordered tree [31]. 

4The reason for this is not very complex. To allow the measurement on the 
tree at one point to contribute to the estimate at another point on the same 
level of the tree, one must use a recursion that first moves up and then down 
the tree. 

has no counterpart for state models evolving in time and 
is one of the major reasons for the differences between the 
analysis of temporal Riccati equations and that presented in 
the sequel [34] to this paper. Note also that our algorithm 
has a pyramidal structure consistent with that of the tree and 
thus has considerable parallelism. To begin, let us define some 
notation 

(3.1) yt = {y(s)(s = t or s is a descendant of t}  

yt+ = (y(s)ls is a descendant of t}  

= y t  - {t}  = yt, uyt, (3.2) 

?(-It+) = E[z(-)Iy,+]. (3.4) 

Suppose that we have computed 2(tlt+) and the corre- 
sponding error covariance, P(tlt+). Then, standard estimation 
results yield 

(3.5) ?(tit) = 2(t( t+)  + K(t)[g( t )  - C(t)2(tlt+)] 

K( t )  = P(tlt+)CT(t)v-'(t) (3.6) 

V( t )  = C(t)P(tlt+)CT(t) + R(t) (3.7) 

P(tJt)  = [I  - K(t)C(t)]P(tJt+).  (3.8) 

Suppose now that we have computed f ( ta( ta)  and 
2(tPltP). Note that yt, and ytp are disjoint, and these 
estimates can be calculated in parallel. We then compute 

2(tlta) = F(ta)2(talta) (3.9) 

q t l t P )  = F(W( tP l tP)  (3.10) 

with corresponding error covariances given by 

P(tlta) = F(ta)P(talta)FT(ta) + Q(ta) (3.11) 

Q( ta) = A- ' (ta) B( t a )  Q (t a )  Bt (t a )  A-T (t a )  (3.12) 

&( tP)  = A-' (tP)B( tP)Q( tP)BT (tP). (3.14) 

These equations follow directly from the backward model 
(2.9)-(2.12). 

The third and final step of the Kalman filtering recursion is 
to merge the estimates (3.9) and (3.10), to form ?(tit+) 

2( t 1 t+) = P (t 1 t+) [P- 1 (t  1 t a ) i  (t I ta)  
+P-'(tl tp)2(tltP)] (3.15) 
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The interpretation of (3.15), (3.16) is rather simple: 
P(t1ta) (2(tltP)) is the best estimate of z( t )  based on the 
prior statistics of z(t)  (i.e., it is zero-mean, with covariance 
Pz(t))  and the measurements in ytol(ytp); consequently the 
fusion of these estimates, as captured in (3.15) and (3.16), 
must avoid a double-counting of prior information. A brief 
proof of (3.15) and (3.16) is given in Appendix A. 

Equations (3343.16) define the coarse-to-fine Kalman 
filter for our multiscale stochastic model. The on-line cal- 
culations consist of an update step (3.5), a pair of parallel 
prediction steps (3.9), (3.10), and the fusion step (3.15). The 
associated Riccati equation consists of three corresponding 
steps (3.6)-(3.8), (3,ll)-(3.14), (3.16) the first two of which 
correspond to the usual Riccati equation (in reverse time). The 
third step (3.16) has no counterpart in the standard case. 

(t), the optimal 
smoothed estimate of z( t )  based on all available data on 
a finite subtree with root node 0 and M scales below it. 
The initialization of the Kalman filter in this case at scale 
m(t) = M is given by 2(tlt+) = 0, P(tlt+) = Pz(t). Once 
the Kalman filter has reached the root node at the top of the 
tree, we have computed 2s(0) = i?(OlO), which serves as the 
initial condition for the coarse-to-fine smoothing sweep which 
also has a parallel, pyramidal structure. Specifically, suppose 
that we have computed 2s(tT). This is then combined with 
the fine-to-coarse filtered estimate ?(t(t) to produce 2s ( t )  

Let us now consider the computation of 

&(t)  = ?(tit) + J(t)[Z.,(tT) - i ( tTI t )]  (3.17) 

where 

J (  t )  2 P( t ( t )FT(  t p - 1  (t7)t). (3.18) 

We also have a coarse-to-fine recursion for the smoothing error 
covariance, initialized with Ps(0) = P(OI0) 

Ps(t)  = P( t ( t )  + J(t)[Pz(tT) - P(tTlt)]JT(t) .  (3.19) 

Equations (3.17)-(3.19) are of the same form as the usual RTS 
smoothing sweep, although the derivation, given in Appendix 
B, is somewhat more involved. 

Note that all of the coarse-to-fine and fine-to-coarse pro- 
cessing steps can be performed in parallel with only nearest 
neighbor communication required (e.g., the fusion step). Such 
tree-like structures map directly onto hypercube architectures 
which can achieve logarithmic speed-up: for example, the 
estimates at the 2M nodes at the finest level can be computed 
in time proportional to the number of levels in the tree, i.e., in 
O ( M )  steps. This can be compared to standard temporal RTS 
smoothers, which, for a signal of length 2 M ,  require 0(2‘) 
sequential steps. 

IV. EXAMPLES AND APPLICATIONS 
In this section we provide several illustrations of the ap- 

plication of the estimation framework described in this paper. 
The purpose of the first subsection is to demonstrate that the 
highly parallelizable estimation structure we have developed 
can be successfully applied to a rather rich class of processes 

extending well beyond those that are precisely of the form 
generated by our tree models. In the second subsection we 
present examples of the fusion of multiresolution data which 
the algorithm of Section I11 accomplishes with essentially 
no increase in computational complexity as compared to the 
processing of single scale data. Finally in Section IV-C we 
examine a l-D version of the computer vision problem of 
motion estimation, illustrating that the use of a slight variation 
on standard formulations, involving a “fractal prior” obtained 
from a tree model, yields excellent results while offering 
substantial computational advantages. In particular, while all 
of the examples in this section are 1-D, they all can be 
extended to 2-D, in which the potential computational savings 
can be quite dramatic. 

A. Smoothing Gauss-Markov and I / f  Processes 
In this section we consider smoothing problems for two 

stochastic processes, neither of which exactly fits the tree 
model used in this paper. 

1 )  Smoothing for a First-Order Gauss-Markov Process: 
The first of these is a discrete-time first-order Gauss-Markov 
process, i.e., a stationary time series given by the standard 
first-order difference equation 

Xn+1 = + W n  (4.1) 

where, for simplicity, we normalize the variance of z, to a 
value of one, so that the variance of the white noise sequence 
w, is (1 - a’). For our example we take a = .9006, a value 
arrived at by sampling and aliasing considerations [33]. We 
consider the following measurements of zn. 

yn = 2, +U,, n = 0, .  . . , N  - 1 (4.2) 

where U, has variance R so that the SNR in (4.2) is 
In the examples that follow we take N = 128. 

As developed in [6], [8], [14] while the wavelet transform 
of {zn10 5 n 5 N - 1) does not yield a completely 
whitened sequence of wavelet coefficients, it does accomplish 
a substantial level of decorrelation, i.e., the detail added to the 
approximation at each scale is only weakly correlated with 
the coarser-scale approximation. Furthermore, decorrelation is 
improved by using wavelets of larger support, and in particular 
those with increasing numbers of vanishing moments [6], [ 111, 
suggesting a wavelet-transform-based estimation algorithm 
developed in [SI, [33]. It also provides the motivation for the 
example presented here in which we smooth the data in (4.2) 
using a model for z, as the finest level process generated by 
a scalar model of the form (2.1), (2.2), where in this case 
the data (4.2) corresponds to measurements only at the finest 
level of the tree. In particular we have considered two scalar 
tree models, the first being a constant parameter model in 
steady-state 

z( t )  = az(t7)  + w(t) (4.3) 

with w( t )  having variance equal to p(1 - a2), where p is the 
variance of z( t ) .  In our example in which the length of the 
signal z, is 128, the model (4.3) evolves from the root node 
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sample path (solid) and its smoothed version using the optimal smoother for the Gauss-Markov model. 

(a) Sample path of a stationary Gauss-Markov Process (solid) and its noisy measurement with SNR =1.4142 (dashed); (b) the same Gauss-Markov 

to level m = 7, at which we obtain our approximate model 
for z, and at which we incorporate the measurements (4.2). 

A second model that we considered has the property that 
its fine-scale variations have smaller variance than its coarser- 
scale variations. In particular, as developed in [131, [241, [281, 
fractal-like processes which have spectra that vary as l/fP 
for some value of p, have wavelet variances that decrease 
geometrically with m. Thus we consider a variation on the 
model (4.3) 

where S controls the scale-to-scale geometric decay in the 
variance of the noise term, w(t) has unit variance, and the 
variance of the initial condition, z(O), at the top of the tree 
is PO. 

Models of this type were used to design suboptimal es- 
timators for the Gauss-Markov process (4.1) based on the 
data (4.2) at several different SNR’s. Fig. 3(a) illustrates a 
sample path of (4.1) and data (4.2) at SNR = fi, while 
Fig. 3(b) compares the Gauss-Markov sample path to the 
optimal estimate using a standard optimal smoothing algorithm 
for the model (4.1). To compare this optimal performance 
to that of algorithms based on the tree models (4.3), (4.4) 
we define a metric for comparison based on error variance 
reduction. Specifically if pi is the prior variance of a process, 
and popt and psub denote the error variances of the optimal 
and suboptimal estimates, respectively, then 

(4.5) 

is the loss in error variance reduction (from prior to estimate) 
due to using the suboptimal rather than the optimal estimate, 
where this loss is expressed as a fraction of the error variance 
reduction achieved by the optimal e~t imate .~ 

For each SNR considered and for each of the models (4.3), 
(4.4), we chose the model parameters (a and p for (4.3) 

5 ~ ~ r  example, if p ,  - popt = .5 and p ,  - = .4, then there is a 20% 
loss in variance reduction if we use the suboptimal estimate. 

a = Psub - Popt 
Pi - Popt 

TABLE 1 
PERFORMANCE DEGRADATION COMPARISON FOR TREE 

SMOOTHERS BASED ON MODELS (4.3) AND (4.4) 

Model (4.3) Model (4.4) 

S N R  = 2.8284 1.11% 1.08% 
SNR = 1.412 3.55% 3.31% 
SNR = .7071 1.59% 6.88% 
sNR=.5 10.52% 9.15% 

and a, p , ,  and S for (4.4)) to minimize the corresponding 
value of A. Table 1 presents the resulting values of A, 
expressed in percentage form, indicating that estimators based 
on these models achieve variance reduction levels within 
a few percent of the optimal smoother.6 This is further 
illustrated in Fig. 4 in which we compare in (a) the optimal 
estimate at SNR = fi for a tree smoother based on the 
model (4.4) with the original sample path. In Fig. 4(b) we 
compare the estimates produced by the optimal filter (Fig. 
4(b)) and that of Fig. 4(a), providing further evidence of the 
excellent performance of our estimators. One should ask why 
this is significant, since we already have optimal smoothing 
algorithms for Gauss-Markov processes. There are at least 
three reasons: 1) the tree algorithms, with their pyramidal 
structure, are highly parallelizable; 2) as we will see in 
the next section, these algorithms directly allow us to fuse 
multiresolution data; and 3) perhaps most importantly, these 
same ideas extend to 2-D data where the computational savings 
over previously known algorithms are substantial. 

Note that as part of this experiment we were faced with 
the issue of choosing a multiresolution state model that is 
“close” to the Gauss-Markov process in (4. l), (4.2) where the 
specific measure of “closeness” that we have used here is A, 
namely the closeness in error variance performance between 

6Note that the increasing size of A with decreasing SNR is due for the 
most part to the decrease in the denominator of (4.5), i.e., at low SNR’s only 
minimal variance is achieved by any estimator. 



470 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 39. NO. 3, MARCH 1994 

3 2 

1 .5 

1 

1 0.5 

2 

UI 

9 0  
2 0  t 

4 $ -0.5 

1 1 

-1.5 

2 

-2.5 

2 

3 
20 40 60 80 100 120 20 40 60 80 100 120 

SAMPLES SAMPLES 

(a) (b) 
Fig. 4. (a) Stationary Gauss-Markov process (solid) versus the result of smoothing of the noisy data of Fig. 3(a) (dashed) based on the model (4.4) 
with parameters a = .9464, b = 1, po = 7.7462, 6 = .5059; and (b) comparison of the optimal smoothing estimate of Fib. 3(b) (solid) versus 
the estimate in Fig. 4(a) (dashed). 

1.5 

1 

0.5 

3 0  
t 
2 

-0.5 

1 

-1.5 

I .  
0 20 40 60 80 100 120 

SAMPLES 

(a) 

1 

0.5 

8 0  
$ 4 -0.5 

-1.5 -I 
I 

0 20 40 60 80 100 120 

SAMPLES 

-2 1 

@) 

Fig. 5. 
l/f sample path (solid) versus the optimal estimate (dashed) based on the noisy data of part (a). 

(a) A 1/f process (solid) generated using the method of [36] and its noisy measurement (dotted) with SNR = a, and (b) comparison of the 

that of a suboptimal estimator based on a multidimensional 
model and the performance of the optimal estimator based on 
(4. l), (4.2). Obviously one could also consider model selection 
using any of the many other metrics that have been developed 
for measuring distance between models. For example, one 
such measure is the Bhattacharya distance used to bound the 
probability of error in deciding, based on noisy observations 
as in (4.2), if a given stochastic process corresponds to one of 
two models, and we refer the reader to [33] for the use of this 
metric for multiresolution models. As for any model class, the 
development of efficient methods for constructing models and 
assessing the goodness of fit is an important topic whose full 
development for our multiresolution models remains for the 
future. We also point to [5] in which some of the first steps in 
developing a realization theory for such models are described. 
The development of a full theory of stochastic realization and 
system identification for multiresolution models is still far 

from completion, but the results presented here, we believe, 
provide motivation for its continued investigation. 

2) Smoothing for l/fProcesses: As a second example, we 
consider smoothing for a l/f-like fractal process of the type 
developed in [28]. Specifically as shown in [28], we can 
use the synthesis form of the wavelet transform to construct 
processes possessing self-similar statistical properties and with 
spectra which are nearly l/f by taking the wavelet coefficients 
to be white and with variances that decay geometrically at 
finer scales. In Fig. 5(a) we illustrate the sample path of such 
a process using the four-tap wavelet filter of Daubechies [ 111, 
as well as noisy data with an SNR of a. In this case the scale- 
dependent geometric decay in wavelet coefficient variances is 
2-m, yielding a l / f P  spectrum with ,kJ = 1. In Fig. 5(b) we 
illustrate the optimal estimate in this case. As developed in 
[8], [29] this optimal estimator can be implemented by taking 
the (four-tap) wavelet transform of the data and then filtering 



CHOU et al.: MULTISCALE RECURSIVE ESTIMATION 47 1 

1 I 
0.8 

0.6 

0.4 

Lu 0.2 

1 

0.5 

5 E o  
5 5 0  
4 -0.5 2 

-0.2 

1 -0.4 

-0.6 

-08 t I ‘ 1  
I 

20 40 60 80 100 120 
-2’ 

SAMPLES 

(a) 

1 C  I 
20 40 80 80 100 120 

SAMPLES 

(b) 

2 2 

1 1 

W 8 

9 a 
5 0  0 g o  

1 1 

-2 -2 

3 3 
20 40 60 80 100 120 20 40 60 80 100 120 

SAMPLES SAMPLES 

(a) (b) 
Fig. 7. (a) Sample path of the stationary Gauss-Markov Process (solid) of Fig. 3(a) and the result of using the tree smoother based on (4.4) and using 
sparse data of SNR =1.4142 (dashed); (b) comparing the Gauss-Markov sample path (solid) with the result (dashed) of using the tree smoother to fuse high 
quality coarse data (at two scales above the finest scale) of SNR =lo0 with the sparse fine data of SNR =1.4142. 

each wavelet coefficient separately (taking advantage of the 
fact that the wavelet transform yields the Karhunen-Loeve 

and thus the methods of [SI, [29] are not applicable, but our 
tree-based methods are. 

expansion for the data). In Fig. 6(a) we illustrate the result of 
smoothing the noisy data of Fig. 5(a) based on a tree model of 
the form of (4.4), and in Fig. 6(b) we compare this estimate 
to the optimal estimate of Fig. 5(b). The average performance 
degradation of the tree smoother is only 2.76%, although, as 
indicated in Fig. 6, the tree smoother appears to do better over 
certain portions of the signal, indicating that our models are 
well-suited to capturing and tracking l/f-like behavior. Again 
given the existence of effective optimal algorithms [8], [29], 
there is the natural question of why we should bother with 
the tree-based algorithm in this case, especially since these 
methods are very efficient, the methods of [8] can be applied 
to multiresolution data, and they can be extended to 2-D. 
The reason is that, for these wavelet-transform-based methods 
to apply, it is necessary that the identical type and quality 
of measurement be available along each scale (i.e., C ( t )  in 
(2.2) must only depend on m(t)). In the next two section we 
encounter important examples in which this is not the case, 

B. Multiresolution Data Fusion 
In this section, we illustrate the application of our tree- 

based smoothing algorithms to the fusion of multiresolution 
data. While we could provide examples in which data are 
available at all nodes at several levels of the tree-and 
such examples are presented in [8], [33] using wavelet- 
transform-based algorithms-we focus here on examples to 
which wavelet-based methods do not apply. In particular we 
consider an example in which we wish to fuse fine-scale 
data of limited coverage with full coverage coarse-scale data. 
Problems of this type arise, for example, in atmospheric or 
oceanographic sensing in which both broad coverage satellite 
data and sparse point measurement data (e.g., from surface 
measurement stations) are available. 

Consider first the Gauss-Markov process of Fig. 3(a) where 
we assume that only 50% of the data in this figure are 
available, corresponding to the 32 data points at each end 
of the data interval. In Fig. 7(a) we illustrate the optimal 
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tree-smoothed estimate based on the model of (4.4) and 
using only this limited data set. In contrast, in Fig. 7(b) 
we display the optimal tree-smoothed estimate based on the 
fusion of the limited fine-scale data with a full set of high 
quality measurements at a level two scales coarser (i.e.. 
where there are 32 points rather than 128). Note that in 
addition to providing information that guides the interpo- 
lation of the fine-scale data, the coarse data also provides 
information that allows us to remove offset errors in regions 
in which noisy fine scale data are available. By using the 
multiscale covariance equations of Section I11 we can quantify 
the value of such coarse data, as illustrated in Fig. 8 in 
which we display the variation of performance with the level 
at which the coarse data is available. We refer the reader 
to [33] for other examples, including, for example, the l/f 
process of Fig. 5 .  

Note further that the algorithm used to compute the es- 
timates based on this multiresolution data is of exactly the 
same form as that used in the preaeding section, i.e., there 
is no increase in computational complexity as a result of 
idcluding multiresolution data. This stands in sharp contrast 
to what happens in the standard Kalman filtering framework. 
In particular consider the model (4.1) based on fine-scale 
measurements as in (4.2) (for some sets of values of n) 
together with coarse scale measurements, each of which has 
the form 

1 
2, = ~ ( 2 ,  + ~ n - i +  1 .  . + z~--N+I)  + p m  (4.6) 

where, for the example shown here, N = 4. In this case the 
application of Kalman filtering techniques require the use of 
an augmented state, corresponding to a window of values of 
2, of size corresponding to the coarsest scale measurement to 
be incorporated, i.e., equal to the largest value of N .  Thus in 
the example here, N = 4, so the resulting Kalman filter would 
be four-dimensional, involving the solution of a 4x4 Riccati 
equation. Furthermore the situation is worse if even coarser 
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measurements are to be fused. For example, if we have a 
measurement of the average value of 2, over the entire 128- 
point interval, then a 128-dimensional Kalman filter would, in 
principle, be required. In contrast, the dimension of our scale- 
recursive filter is always one, independent of the scales of the 
measurements to be processed. 

Finally, let us comment on the measurement model for 
the coarse-level data in the example depicted in Fig. 7(b). 
In particular, the coarse data used in the example of Fig. 7 
were noise-corrupted measurements of four-point averages 
of the fine-level process 2,. Note that using the model 
(4.4) we can view these as measurements two levels higher 
in the tree. For example, from (4.4) it is straightforward 
to see that the average of z(ta2), z(tap), $(@a) and 
x ( t p 2 )  is a scaled version of x(t) corrupted by the noises 
w(tcr), w(t@), w(ta2), w(taP),  w( tpa) ,  and w(tP2). From 
this it is straightforward to obtain a model for the coarse 
measurements in which the measurement noise also reflects 
finer-scale process fluctuations captured by the w’s. Note that 
to be precise, this noise is correlated with the finer level 
data, and thus a truly optimal tree-based smoother would 
need to account for this. The result presented in Fig. 7(b), 
however, was generated using a tree-based smoother that 
neglected this correlation. As the quality of the result in the 
figure indicates, excellent performance is achieved with this 
simplification. 

C. Motion Estimation 
In this section we illustrate the use of our tree model in 

order to provide statistical regularization for a 1-D version of 
a representative problem arising in computer vision, namely 
that of estimating opticuEJIow, i.e., motion in the image frame 
that is apparent from observation of the temporal fluctuations 
in the intensity patterns in an image sequence. Regularization 
methods are common in many computer vision problems such 
as optical flow estimation and in other contexts including 
many inverse problems of mathematical physics, and the 
approach described in this section should prove to be of 
considerable value in many of these as well as in full 2-D and 
three-dimensional image analysis problems. In particular the 
usual “smoothness” regularization methods employed in many 
problems lead to computationally intensive variation problems 
solvable only by iterative methods. By adopting a statistical 
perspective and by modifying the regularization slightly, we 
obtain a formulation exactly of the form of our tree smoothing 
problem, leading to non-iterative, highly parallelizable and 
efficient scale-recursive solutions. 

The results in this section focus on a 1-D version of the 
problem as formulated in Horn and Schunck [16]. Let f(x, t) 
denote a 1-D “image sequence”, i.e., for each t ,  f(z, t) is 
a function of the 1-D spatial variable z, representing image 
intensity variations with space. The constraint typically used 
in gradient-based approaches to motion estimation is referred 
to in the literature as the “brightness constraint” [16], and it 
amounts to assuming that the brightness of each point in the 
image, as we follow its movement, is constant. In other words, 
at each time t the total derivative of the image intensity is 
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zero, i.e., 

of - = 0. d t  

where w(x)  is a 1-D white noise process with unit inten- 
sity. The estimation problem equivalent to (4.12) consists of 
estimating v(x) based on the following observation equation (4.7) 

This equation can be rewritten as follows: Y(Z) = c(.>v(.> + +) (4.14) 

a f  d f d x  - + -- = 0. 
at ax at (4.8) 

The quantity (ax/at)  is referred to as the optical flow, which 
we denote as the spatial function, U(.), and it is this quantity 
which we would like to determine from observing f(x, t )  
sequentially in time. That is, at each t we assume that we can 
extract measurements of the temporal and spatial derivatives 
of f(x, t )  and we then want to use these, together wifh (4.8), 
to estimate the velocity field v(x) at this instant in time. 

We rewrite (4.8) as 

Y(4 = c(4.(4 (4.9) 

af y(x) = -- at 

af 
C(.) = -. ax 

(4.10) 

(4.1 1) 

The following is the optimization problem formulation of 
Horn and Schunk [16] for determining v(x) 

‘ (4.12) 
The second term in the cost function, )Idv/dx))2, is referred 
to as the “smoothness” constraint as it is meant to penalize 
large derivatives of the optical flow, constraining the solution 
to have a certain degree of smoothness. In the standard 2- 
D image processing problem v(x) is a 2-D velocity vector 
field, (a f /ax) is the 2-D gradient of image intensity, and, the 
brightness constraint (4.8) provides a scalar constraint at each 
spatial location for the 2-D vector v(x). In this case the optical 
flow problem is ill-posed, and the smoothness penalty makes it 
well posed by, in essence, providing another (noisy) constraint 
in 2-D. The other purposes of the smoothness constraint is to 
reduce the effects of noise in the measurement of the temporal 
and spatial gradients and to allow interpolation of motion over 
regions of little or no contrast, i.e., regions where c(x) is 
zero or nearly zero. In our 1-D problem, we do not have 
the issue of ill-posedness, so that the role of the smoothness 
constiaint is solely for the purposes of noise rejection and 
interpolation in areas of zero or near-zero intensity variations. 
Note that computing e(.) in (4.12) is potentially daunting as 
the dimension of 6(x) is equal to the number of pixels in the 
image. 

As in Rougee, et al. [21], the optimization problem in 
(4.12) can be interpreted as a stochastic estimation problem. 
In particular, the smoothness constraint can be interpreted as 
the following prior model on v(x). 

dv 
dx - = W(.) 

where ~ ( x )  is white noise with intensity p-’. Henceforth, we 
refer to (4.13), (4.14) as the standard model. 

Let us now examine the particular prior model (4.13) 
associated with the smoothness constraint. In particular we 
see that v(x) is in fact a Brownian motion process, i.e., a 
self-similar, fractal process with a l/f2 spectrum. For this 
reason (4.12), (4.13) is sometimes referred to as a “fractal 
prior.” Given that the inpoduction of this prior is simply for 
the purposes of regularization, we are led directly to the idea 
of replacing the smoothness constraint model (4.13) by one of 
our tree models. Since in 2-D, solution of (4.12) corresponds 
to solving coupled partial differential equations [ 161, the use of 
a tree model and the resulting scale-recursive algorithm offer 
the possibility of substantial computational savings. 

Let us consider a simplified, discretized, version of this 
problem, i.e., where f (x, t )  is observed only at integer values 
of x and t .  In this case we need to approximate ( a f / a t )  
and (a f /ax). For simplicity in our discussion, we consider 
the following finite difference approximations of these partial 
derivatives. 

afl M f(z, t + 1) - f(z, t )  (4.15) 
at x , t  

afJ M (f(x + 1, t )  - f ( x  - 1, t ) ) / 2  (4.16) 

Obviously these rather crude approximations will lead to 
distortions (which we will see here), and more sophisticated 
methods can be used. In particular, as discussed in [32], the 
highest velocity that can be estimated depends both on the 
temporal sampling rate and the spatial frequency content of 
f(z, t ) .  In particular, low-pass spatial filtering of f(x, t )  not 
only is useful for the reduction in noise in the derivatives 
(4.15), (4.16) but also in allowing the estimation of larger 
inter-frame spatial displacements via the differential brightness 
constraint (4.8). As we are simply interested in demonstrating 
the promise of our alternate formulation, we confine ourselves 
here to the simple approximation (4.1.9, (4.16). 

We assume that our image is available at two time instants, 
t and t + 1, where each image is uniformly sampled over a 
finite interval in space, i.e., we have f ( i ,  t )  and f ( i ,  t + 1) 
where i E (0, 1, 2, . . , N - 1). The discretized smoothing 
problem for our standard model is as follows: 

v(i  + 1) - v(Z) = w(i )  

ax x , t  

(4.17) 

~ ( 2 )  1 -[f (x, i + 1) - f(z, Z)] = c(i)v(i) + ~ ( i )  (4.18) 

c( i )  = f (i + 1, t )  - f (i, t )  (4.19) 

where the white noises w( i )  and v( i )  have intensities 1 and 
(4‘13) ,U-’, respectively. The solution to this smoothing problem is 
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(4.21) 

given by 

.i, = (L + p-1c%)-yp-1cT)g (4.20) 

where 6 is the vector of velocity estimates for all i, jj is the 
vector of measurements, and 

. . . . . .  0 -1 2 -1 

. . . . . .  0 -1 1 

Note that the matrix L, which is a discrete approximation of 
the operator (d2 /dz2 ) ,  is a result of the prior model we have 
chosen. 

The multiscale model we use as our prior model for U($), 
as an alternative to our discretized standard model, is the 
tree model, (4.4) where t indexes the nodes of a finite tree 
with N points at the bottom level. Thus, the covariance P(0)  
of this zero-mean process at the bottom level of the tree is 
specified entirely by the parameter vector 0 = [a, PO, y, b]. 
To choose the parameters of our tree model so as to yield an 
approximation to the standard model, we fit the information 
matrix of our tree process, P I ( @ ) ,  to L by minimizing the 
matrix two-norm of the difference between L and P-'(0). 

(4.23) 

In comparing the performance of the multiscale smoother 
with the performance of the standard regularization method, 
we need a way of normalizing the problem. We define the fol- 
lowing quantity, which can be thought of as the ratio between 
the information due to measurements and the information due 
to the model. 

(4.24) 

where Z is either L or P-'(e>. For our examples, we vary 
I' by varying p. 

Fig. 9 shows snapshots of the image of a translating sinusoid 
at times t and t + 1, while Fig, 1O(a) shows the result 
of estimating based on standard regularization for I' = 
1, .l, .01, and Fig. lo@) shows the result of estimating U 
based on our tree smoother for I? = 1, .l, .01. The true value 
of 'U is a constant equal to three. The substantial deviations 
from the value of three are due to the inaccuracy of the 
approximations (4.15), (4.16). Note that the two approaches 
yield similar results. In fact, for all three values of I' our tree 
smoother actually performs better. As we would expect by 
decreasing J?, i.e., decreasing the weight p of the measurement 
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Fig. 9. Translating sinusoid at time t (solid) and at time t + 1 (dashed). 

term in the cost function, the effect of the approximation 
error in (4.15), (4.16) is reduced, and smoother estimates 
result. Figs. ll(a) and (b) show similar behavior when the 
data of Fig. 9 is observed in noise. Again the performance 
is somewhat better for the tree model, but this is not our 
main point. Rather, what we have shown is that comparable 
results can be obtained with tree-model-based algorithms, and, 
given their considerable computational advantages, they offer 
an attractive alternative. 

V. CONCLUSION 
In this paper we have developed a new method for multires- 

olution modeling of stochastic processes based on describing 
their scale-to-scale construcion using dynamic models defined 
on dyadic trees. This framework allows us to describe a rich 
class of processes and also leads to an extremely efficient 
and highly parallelizable scale-recursive optimal estimation 
algorithm generalizing the Rauch-Tung-Striebel smoothing al- 
gorithm to the dyadic tree. This algorithm involves a variation 
on the Kalman filter in that, in addition to the usual measure- 
ment update and (fine-to-coarse) prediction steps, there is also 
a data fusion step. This in tum leads to a new Riccati equation, 
which we analyze in detail in [34] using several system- 
theoretic concepts for systems on trees. We have illustrated 
the potential of this framework in providing highly parallel 
algorithms for the smoothing of broad classes of stochastic 
processes, for the fusion of multiresolution data, and for the 
efficient solution of statistically regularized problems such as 
arise in computer vision. 

We believe that this framework has considerable promise, 
and numerous directions for further work suggest themselves. 
In particular the extension and application of these ideas 
in 2-D offers numerous possibilities such as for the motion 
estimation problem described in Section IV. Also, there are 
several reasons to believe that our tree models can be used 
to describe a surprisingly rich class of stochastic processes. 
For example, a recent extension of wavelet transforms is the 
class of so-called wave packet transforms [lo] in which both 
the fine and coarse resolution features are subject to further 
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Fig. 11. (a) Estimate of U($) for the translating sinusoid based on noisy data and using standard regularization for I? = 1 (solid), for I? = .1 (dashed), 
and for I? = .01 (long-dashed); (b) Analogous estimates using the tree smoother. 

decomposition. These correspond, in essence, to higher-order 
models in scale and thus to higher-dimensional versions of 
our state models. These and a variety of other examples offer 
intriguing possibilities for the future. 

APPENDIX A 

In this appendix we verify the formulae (3.15), (3.16) for 
the fusion of the estimates i ( tJ ta)  and i(tltP) to produce 
?(t(t+). By definition 

Wit+) = E[z(t)lY,,, ytpl .  ( A 3  

By abuse of notation, let Yt, and Ytp also denote vectors ob- 
tained by ordering the corresponding sets of random variables 
defined as in (3.1). Then, from our model (2.1), (2.2) we can 
decompose Yt, and y tp  in the following way: 

yt, = Mt,z( t )  + E1 (A.2) 

where the matrices Mt, and Mtp contain products of 
A(s),  m(s) > m(t), and the vectors and & are functions 
of the driving noises w(s) and the measurement noises w(s) 
for s in the subtrees strictly below ta and tP, respectively, 
the latter fact implying 51 I &. Let Rt, and Rtp denote 
the covariances of 51 and &, respectively. Then, rewriting 
(A.2), (A.3) as 

where 

and z( t )  I E, we can write the optimal estimate of z(t) given 
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y in the following way: 

P(tJt+) = [P,-'(t) + 3-IT'R-13-I]-1 

We now proceed to show that (B.8) indeed holds and 
compute explicitly the matrix L. We begin with the following 
iterated expectation 

Similarly 

i ( t ( ta)  = P(tpa)M&RG'K, (A.8) 

where 

P(t1Ta) = [Pg'(t) + MgRC:Mt,]-' (A.9) 

and analogous equations hold for ?( t l tP)  and P(t(tP). Equa- 
tions (3.13, (3.16) then follow immediately from (A.6)-(A.9). 

APPENDIX B 
In this appendix, we verify the RTS smoothing recursions 

(3.17)-(3.19). The key to this is the following orthogonal 
decomposition of YO (i.e., the full set of all measurements at 

We now examine the inner expectation, E[Z(tlt)ld(t7lt), qt3, 
in detail. In particular note that YF corresponds to measure- 
ments at all nodes outside of the subtree with root note t, 
i.e., at all nodes including t7 and extending from it in either 
of the two directions other than toward t (toward tT2 or 
toward tS-see Fig. 1). Any such node is connected to t7 by 
a backward segment (of possibly zero length) moving back 
to tT for some T > 0, followed by a forward segment 

'moving down the other portion of the tree (i.e., a path of 
the form t ~ ,  tT2, - .  . , tT-l, t 7 ,  tT-lS, tT-lSa, By 
using the backward dynamics (2.9H2.12) for the backward 
portion of any such path and the forward model (2.1) for the 
forward segment, we can express z(s) for any s outside the 
tree as a linear combination of z(tT), backward white noises 
W = ( G ( t 7 ) ) ~  > 0) and forward white noises W = {w(s)(s 
a descendant of tTS for some T 2 1). Then, letting V denote 
the vector of measurement noises for Yz, we have that Yz has 
the following form 

every node on the tree). Specifically, for each t, 6, is given 
by (3. l), and we let 5 denote all the remaining measurements. 
Viewing these as vectors we define 

( ~ . 1 )  

so that qlt I yt and the linear span of the set of all 
measurements, is given by 

Yz = LlZ(t7) + f(@, W )  + v (B.ll) 

where f is a li!ear function of its arguments. Note that 
by construction W and W are orthogonal to z(t7) and to 
everythmg beneath ~ ( 5 ) .  The same is trivially true of V. 
Thus, in particular f(W, W) + V I yt, and substituting 
(B.11) into (B.l) then yields 

q t  = y, - E[YFJK] 

spanyo = span{&, %} = span{K, q t ) .  (B.2) qlt = Lld(t=$) + f (W, W )  + V. (B.12) 

 his, together with the fact that f(@, W )  + v 
2(tlt), d ( t ~ \ t ) ,  yields 

I 

E [Z( tit) I E (t71 t )  , qlt] = E [ E ( t It) If (tTlt)]. (B. 13) 

But by using (2.9) and (3.9) (in the latter of these with ta H t 
and t H tT) we find that (B*4) 

and note that E[i?(t(t)(f( t7(t)] = J(t)Z(t?lt) (B. 14) 

?.(tit> 1 q t  
then we can write the following: 

(B'5) where J ( t )  is given by (3.18). This, together with (B.10) then 
yields 

&(t) = 2(tlt) + E[d( tJ t )Jq, ] .  (B.6) E [Z( t It ) 1 q t 1 = J (  t )  E[Z( t7J t ) I 9, tl . (B. 1 5 )  

This together with (B.8) and (B.9) then yields t7 (3.17). 

smoothing error. Let 

Using the same argument on as(t7) allows us to write 

2s(t7) = 2(t7lt) + E[9( t7( t ) (q t] .  

Suppose the following equality were to hold 

(137) Finally, we can now easily derive a recursion for the 

A k,(t) = z( t )  - ZS( t ) .  (B.16) 
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By multiplying both sides Of (B.17) on the right by its 
transpose and taking expectations, we get 

[18] S .  G. Mallat, “Multifrequency channel decompositions of images and 
wavelet models,” IEEE Trans. ASSP, vol. 37, pp. 2091-21 10, Dec. 1989. 

[19] Y. Meyer, “L’analyse par ondelettes,” Pour la Science, Sep. 1987. 
[20] H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likelihood 

estimates of linear dynamic systems,” AIM J., vol. 3, no. 8, pp. 

[21] A. Rougee, B. Levy, and A. Willsky, “An estimation-based approach 
to the reconstruction of optical flow,” MIT, Cambridge, MA, Lab. Info. 
Decision Systems Tech. Rep., LIDS-P-1663, Apr. 1987. 

[22] M. J. Smith and T. P. Bamwell, “Exact reconstruction techniques 
for tree-structured subband coders,” IEEE Trans. ASSP, vol. 34, pp. 
4 3 W 1 ,  1986. 

[23] G. Strang, “Wavelets and dilation equations: A brief introduction,” SIAM 
Rev., vol. 31, no. 4, pp. 614-627, Dec. 1989. 

[24] A. H. Tewfik and M. Kim, “Correlation structure of the discrete wavelet 
coefficients of fractional Brownian motions,” IEEE Trans. Info. Theory, 
vol. 38, no. 2, pp. 904-909, Mar. 1992. 

[25] M. Todd and R. Wilson, “An anisotropic multi-resolution image data 
compression algorithm,” in Proc. 1989 Int’l Con$ on Acoustics, Speech, 
and Sig. Proc., 1989. 

[26] G. C. Verghese and T. Kailath, “A further note on backwards Markovian 
models,” IEEE Trans. on Info. Theory, vol. 25, pp. 121-124, 1979. 

[27] M. Vetterli and C. Herley, “Wavelet and filter banks: Relationships and 
new results,” in Proc. ICASSP, Albuquerque, NM, 1990. 

[28] G. W. Womell, “A Karhunen-Loeve-like expansion for llf processes 
via wavelets,” IEEE Trans. Info. Theory, vol. 36, no. 9, pp. 859-861, 

p.8 ( t )  + J(t)E[f, (t?)?: (q)] JT ( t )  
= P( t 1 t ) + J (  t )E  [? ( (@It)] JT (t ) (B. 18) 1445-1450, Aug. 1965. 

Ps(t> = E[[5S( t )53t ) ]  (B.19) 

where we have relied on the fact that 

E[iL(t)23t7)] = 0 

E[2( t l t ) tT ( tq t ) ]  = 0. 

(B.20) 

(B.21) 

And finally, since 

(B*22) 

( ~ ~ 2 3 )  

E [ 5 9 ( ~ 7 ) 3 3 i ) ]  = Pz(t?) - Ps(t7) 

E[?(tqt)?T(t=j)t)] = Pz(t7) - P(t7lt) 
we obtain (3.19). 
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