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Probabilistic and Sequential Computation of 
Optical Flow Using Temporal Coherence 

Toshio M. Chin, Student Member, ZEEE, William C. Karl, and Alan S. Willsky, Fellow, IEEE 

Abstruct- In the computation of dense optical flow fields, 
spatial coherence constraints are commonly used to regularize 
otherwise ill-posed problem formulations, providing spatial inte- 
gration of data. In this paper, we present a temporal, multiframe 
extension of the dense optical flow estimation formulation pro- 
posed by Horn and Schunck [l] in which we use a temporal coher- 
ence constraint to yield the optimal fusing of data from multiple 
frames of measurements. Conceptually, at least, standard Kalman 
filtering algorithms are applicable to the resulting multiframe 
optical flow estimation problem, providing a solution that is 
sequential and recursive in time. Experiments are presented to 
demonstrate that the resulting multiframe estimates are more 
robust to noise than those provided by the original, single- 
frame formulation. In addition, we demonstrate cases where the 
aperture problem of motion vision cannot be resolved satisfac- 
torily without the temporal integration of data enabled by the 
proposed formulation. Practically, the large matrix dimensions 
involved in the problem prohibit exact implementation of the 
optimal Kalman filter. To overcome this limitation, we present 
a computationally efficient, yet near optimal approximation of 
the exact filtering algorithm. This approximation has a precise 
interpretation as the sequential estimation of a reduced-order 
spatial model for the optical flow estimation error process at each 
time step and arises from an estimation-theoretic treatment of 
the filtering problem. Experiments also demonstrate the efficacy 
of this near optimal filter. 

I. INTRODUCTION 
OMPUTATION of the dense, 2-D vector field of apparent C motion, or optical flow (image flow), is of considerable 

interest in image sequence processing. It is an important 
"low-level" step in many of the hierarchical approaches to 
computational vision-both for the development of artificial 
visual systems in robotics and for the modeling of biological 
visual systems. For example, optical flows can provide us 
with the information necessary to detect object boundaries 
121, [3] and to derive the 3-D motion and structure of the 
objects in an image frame [4]-[6]. Optical flow computation 
is also important to applications in fields outside of robotics 
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and cognitive sciences, such as in assessing motility of the 
heart [7], [8] and in interpretation and prediction of oceanic 
and atmospheric processes [9], [lo]. Motion information is 
additionally useful for managing the image sequences them- 
selves as it offers a basis for image sequence compression 
for efficient transmission and storage [l 11, [12]. There exist a 
variety of techniques for computing optical flow, including [ 11, 
[13]-[20], as well as comparative studies of them [21], [22]. 
The focus of this paper is not to provide a fundamentally 
new method of optical flow computation but to study, in 
a probabilistic framework, how the flow estimates can be 
improved by incorporating a longer sequence of images and 
how to compute such improved estimates in a computationally 
efficient and near-optimal manner. 

In the computation of a dense optical flow field at a single 
point in time, spatial coherence (smoothness) constraints are 
commonly used to regularize an otherwise ill-posed formula- 
tion by the spatial integration of data. Spatial coherence, in 
a sense, represents our prior knowledge or assumption that 
the moving object (solid, viscous fluid, etc.) in the scene is 
structurally integral and smooth. In this paper, we examine 
the effects of applying a similar constraint over time. In 
particular, we present a temporal extension of the formulation 
proposed by Horn and Schunck [ l ]  in which we use a temporal 
coherence constraint captured by an evolution equation to 
provide the optimal fusing of data from multiple frames of 
measurements. Estimating the optical flow field by processing 
sequences of measurements has an obvious advantage over 
static estimation based on only a single such observation. For 
one thing, the accumulation of a larger quantity of data leads 
to a more reliable estimate due to a reduction in measurement 
noise. Another advantage, which is not as obvious, is that in 
some cases, a single measurement may not provide sufficient 
information to resolve static ambiguities in the flow field 
(i.e., the aperture problem of computational vision [23]), 
and hence, for reasonable estimates to be obtained, temporal 
information must be utilized as well. Such ambiguity is caused 
by a lack of spatial diversity in the direction of the spatial 
gradient [l]. In many cases, the desired diversity of gradient 
directions is available over time, allowing the resolution of this 
ambiguity through the incorporation of more image frames, as 
exemplified in this paper. 

The spatial and temporal coherence constraints can be 
interpreted as a priori statistical descriptions of the unknown 
field [24], [25]. Specifically, the optical flow formulation by 
Horn and Schunck can be considered to be a Bayesian estima- 
tion problem with additive Gaussian noise. Utilizing such an 

1057-7149/94$04.00 0 1994 IEEE 



114 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 3, NO. 6, NOVEMBER 1994 

estimation-theoretic framework for optical flow computation, 
we model the time-varying unknown flow field as a dynamic 
process with an associated evolution equation that captures the 
temporal coherence constraint of the variational formulation. 
Thus, the temporal extension of the Horn and Schunck formu- 
lation, i.e., multiframe optical flow estimation, can be written 
as state estimation based on a dynamic system to which well- 
developed optimal sequential estimation algorithms, such as 
the Kalman filter and its variants, are applicable for solution 
[26], [24]. The probabilistic framework allows quantification 
of uncertainty in the estimates through computation of the 
second-order statistics. 

Although Kalman filtering allows time-recursive estimation 
of multiframe optical flow fields, its computational demands 
are still impractical. For typical problems, the dimension of 
the associated state will be on the order of the number 
N of pixels in the image, typically lo4 to lo6 elements. 
The associated covariance matrices, which are necessary for 
implementation of the optimal filter, will thus have on the 
order of lo8 to lo1’ elements. The storage and manipulation 
of such large matrices is clearly prohibitive, necessitating 
the use of a suboptimal method. Our model-based approach 
provides a rational basis for the design of a computationally 
feasible yet nearly optimal filter for optical flow estimation 
that naturally incorporates both temporal and spatial coherence 
constraints. Our approximate filter arises from the construc- 
tion of a reduced-order spatial model for the optical flow 
estimation error field at each time step and thus possesses 
a precise estimation-theoretic interpretation. Reduced-order 
approximations for Kalman filtering on (2-D) image frames 
have frequently been reported [27]-[29]; the computational 
algorithm in this paper represents a 3-D version for image 
sequences in which we must determine a reduced-order spatial 
model at each frame in the image sequence in order to capture 
the dynamically evolving statistical structure of the estimation 
error field. 

The paper is organized as follows. In Section 11, we review 
the classical single-frame optical flow estimation problem in 
a continuous setting. In Section 111, we present our temporal 
extension to the continuous classical problem. In Section IV, 
we give a discrete reformulation of the single-frame formula- 
tion and its interpretation as a maximum likelihood estimation 
problem. We then derive a statistically optimal Kalman filter- 
ing algorithm for the resulting multiframe problem. In Section 
V, we investigate implementation issues, including approxi- 
mation of the Kalman filter and the effects of discretization on 
the fundamental measurement constraint. In Section VI, we 
present various simulation results demonstrating the benefits 
of applying temporal coherence to multiframe optical flow esti- 
mation as well as the effectiveness of our approximate Kalman 
filter in computing such flow fields. The paper concludes with 
final comments in Section VII. Preliminary results of parts of 
this work have appeared in [25]. 

11. OPTICAL FLOW ESTIMATION 

We perceive motion by temporally tracking image intensity 
patterns that are often associated with reflections from the 

surfaces of objects in the scene. If the brightness corresponding 
to a point on the object surface remains practically constant 
for a sufficiently long duration, the position of the point can 
be tracked by referencing the same brightness value, lead- 
ing to motion perception. Such an assumption of brightness 
invariance can be expressed as [ I ]  

(1) 

where E(s1, s2, t )  is the image intensity, which is treated as a 
differentiable scalar function over the image frame ( S I ,  s2) C 
2) and time t. Let f ( s l , s z , t )  = [ds1/dt,ds2/dtlT be the 
optical flow vector at a given point in the image frame and 
time. By expanding (1) in terms of partial derivatives, we 
obtain the following relationship between the image intensity 
gradients and the optical flow vector at each point in the 
space-time domain: 

(2) 

d 
dt 
-E = 0 

-+  z [;:?;:I - - f = O .  

Horn and Schunck [I] have suggested that the fact that (2) 
provides only one constraint for the two unknown components 
of f is the reason for the visual ambiguity often referred to as 
the aperture problem in psychophysics [23] and have provided 
a method to compute optical flow using additional constraints. 
Their method of computing the optical flow finds a single 
frame of the flow field, i.e., f ( s 1 ,  s2, t )  for a fixed t ,  as the 
solution of a quadratic minimization problem 

where v(s1, s2, t )  # 0, and ~1 and p2 are given weights. The 
first quadratic term involves the image data, penalizing large 
deviations from (2). The second and third terms are necessary 
to make the formulation mathematically well posed [30]. These 
two terms also represent our prior belief about the flow field, 
implying that the computed flow should vary smoothly over 
space. Such spatial coherence of the flow vectors reflects the 
smoothness and stiffness of the object surface in the scene [23]. 

111. MUL~FIZAME FORMULATION 

We now consider imposition of temporal coherence [3 11 to 
the flow field in addition to the more commonly used spatial 
coherence enforced by (3), thus allowing the utilization of 
more data (the gradients of the image intensity) for each frame 
of flow vector estimates. A temporal coherence imposes an 
inertia condition on the flow field, favoring smooth changes in 
the optical flow vectors over time. Models of optical flow 
incorporating temporal coherence are applicable to a wide 
range of motions in natural scenes, as most motions display 
inertia of some type. A simple temporal extension [24], [26] 
of (3) is used to obtain such a multiframe formulation of the 
optical flow computatiyn problem. In particular, for 0 5 t 5 7, 

we find the flow field f(s1, s2, t ) ,  which provides the solution 

1 1  
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to 

(4) 

Note that (4) is obtained by the addition to (3) of a quadratic 
term involving the first-order temporal derivative of f .  The 
inclusion of the temporal constraint allows the integration 
of data over time. As demonstrated in Section VI, this use 
of temporally extended data can both help resolve single- 
frame observation ambiguities (the aperture problem) and 
greatly reduce noise sensitivity relative to the nontemporal 
formulation (3). 

Typically, it is desirable to compute an optical flow field 
corresponding to each new image frame as soon as the image 
data are recorded. In terms of the multiframe formulation 
(p), this means that the most recent (i.e., t = T )  solution 
f (s l ,  s 2 , ~ )  must be computed via optimization of a distinct 
3-D optimization problem for each T as T increases. It is a 
seemingly prohibitive computational task, particularly when 
the additional need for calculation of the uncertainty in the 
solution is also taken into account. Such solutions, however, 
can be computed efficiently by a Kalman filter [32]-[34], 
which has an attractive time-sequential computational structure 
wherein the flow estimate at the current time is recursively 
updated based on the new data, thus allowing us to calculate 
f (s l  , s2, T )  without resorting to repeated 3-D optimizations. 

Despite their efficiency, Kalman filters as applied to image 
data still represent computationally intensive tasks. In previ- 
ously reported applications of Kalman filtering algorithms to 
optical flow estimation [35], [36] (as well as to other “low- 
level” computational vision problems [24]), the formulations 
are simplified apparently to reduce such computational com- 
plexity. Specifically, the uncertainty in the dynamic model 
for the time-varying unknown field, and hence the uncertainty 
in the estimate itself, is not formally represented or properly 
propagated in these approaches. In an exact implementation of 
a Kalman filter, such uncertainty, as captured in the estimation 
error covariance matrix, is propagated along with the estimate 
itself [32]-[34] and allows for the optimal fusing of the 
current estimate with new observations. In this paper, we 
employ a more systematic and rational approach to address 
this computational issue and derive a computationally efficient 
yet near-optimal approximation to the Kalman filter algo- 
rithm for the multiframe optical flow estimation problem. The 
mathematical details of our approximation techniques can be 
found in [26] in the more general context of low-level visual 
reconstruction. 

IV. DISCRETIZATION AND PROBABILISTIC INTERPRETATION 

A. Single-Frame Case 
To obtain a discrete formulation of the single-frame problem 

(3), we sample the image frame D on an n1 x n2 rectangular 
grid containing N n1n2 points. Let f ( t )  be a vector or 

the flow values f ( s 1 ,  sa, t )  sampled on the grid and ordered 
lexicographically according to the sampled spatial coordinates 
(~1,s~). Since f is a 2-vector at each point, f ( t )  has 2N 
elements. We similarly define g( t )  to be an N-vector of 
the lexicographically ordered samples of ( - d E / d t )  taken 
on the same grid. Finally, let H ( t )  and W(t )  be the block 
diagonal matrices whose diagonal elements are the samples of 
[ d E / d s l ,  dE/dsz]  and v(s1, sp, t ) ,  respectively, taken on the 
same grid and sequenced in the same lexicographical order. 
A discrete version of the single-frame formulation (3) is then 
given by 

where 11z11h denotes the weighted norm z T M z ,  I ,  repre- 
sents the m x m identity matrix, and S1 and SZ are first-order 
difference operators along the s1 and s2 axes, respectively, 
given by 

l 7  
1.  

DZ(n1-1) 

Dz(n1- 1) 

l 7  
[ 

- [ ... ... 

- 1 2  I2 

-12  1 2  

s1 

DZ(nl-1) = 

-Iznl Izn, 

[ -12nl I2nl 

s2 

Solving the quadratic minimization problem (5) is equivalent 
to solving a maximum likelihood estimation problem [34] for 
f ( t )  with the following observation equation: 

ry ]  = El)] f ( t )  + r ( t ) ,  

I) Py112(N-n2) 

&11Z(N-n2) 

(6) 

where we have used the notation z N (m,C) to denote a 
Gaussian random vector z whose mean and covariance are m 
and C,  respectively. Thus, r ( t )  is a zero-mean Gaussian ran- 
dom noise process. Note that W-l ( t )  is a diagonal covariance 
matrix, whose nonzero elements v-l(s1, sa, t )  are variances 
representing probabilistically how much the measured image 
gradients deviate from the ideal brightness constraint (2). In 
addition, pT1 and pT1 are variances representing how much 
the first-order differences between neighboring flow vectors 
deviate from zero, effectively controlling the strength of the 
spatial coherence conspaint. The maximum likelihood estimate 
for the optical flow f(t) is obtained as the solution of the 
inverse problem 

wm = H T ( v v t ) g ( t >  (7) 
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where L(t)  = HT( t )W( t )H( t )  + ,ulSTSl + ~ u ~ S T S ~ .  Equa- 
tion (7) specifies a discrete version of the coupled Poisson 
equations of the Horn and Schunck formulation. The matrix 
operator L(t) has a sparse, nearest neighbor (a nested block 
tridiagonal) structure [37], whose sparseness enables us to use 
efficient iterative procedures, such as multigrid methods [38], 
in the solution of (7). 

The matrix L(t) is the informution matrix (the inverse of 
the covariance mat$x) associated with the posterior estimation 
error e( t )  f ( t ) - f ( t ) ,  i.e., e( t )  - (0 ,  L-’(t)) .  It is insightful 
to interpret this information matrix as a Markov random field 
(MRF) model specification for the estimation error process 
~ 4 1 ,  [261 

The nearest-neighbor structure of the matrix L(t) reflects the 
neighborhood (or the extent of local interactions among the 
components of e@)) in the MRF model [39]. The size of 
the neighborhood determines the order of an MRF model, 
just as the number of parameters determines the order of 
an autoregressive model. As we have just noted, the small 
size of the neighborhood facilitates the computation of the 
estimate by inversion of (7). An advantage of the MRF 
modeling framework is that it allows modeling/estimation of 
the pixel process as well as “line process” (e.g., contours 
traced by discontinuities in the pixel process) simultaneously 
[40]. An MRF-based motion estimation scheme can thus 
be expanded into an algorithm capable of coestimating the 
motion discontinuities (e.g., due to object boundaries), as 
demonstrated in [35]. 

B. Multiframe Processing 
The continuous optimization problem (4) for multiframe 

optical flow computation can be considered to be an optimal 
smoothing problem based on the temporal Gauss-Markov 
dynamic equation a/& f(s1, sa, t )  = q ( t ) ,  where q( t )  is a 
Gaussian white noise process of zero mean and intensity p-’ . 
Optimally smoothed estimates can be obtained by running a 
Kalman filter in each of the causal and anticausal directions 
[34]. As discussed earlier, in general, we wish to compute 
tnly the most recent estimate (termed the “filtered estimate”) 
~ ( s ~ , s z , T )  from (4) for each T 2 0. Such an estimate can 
be obtained by a single causal Kalman filter. To compute the 
filtered estimates, we discretize the first order Gauss-Markov 
dynamic equation as 

where the process noise q ( t )  is uncorrelated over time. This 
discrete dynamic model indicates that the optical flow evolves 
in time as the accumulation of a random perturbation at each 
time frame. Thus, the multiframe optical flow is formulated 
as a state estimation problem for the dynamic system whose 
dynamic equation is (9) and whose observation equation is 
given by the single-frame equation (6). State estimation for 
the dynamic system specified by (9) and (6) may be performed 

using the following implementation of the information form 
[32], [34] of the Kalman filter: 

prediction stage 

L(t)  = p l -  pa(& - 1 )  + p l y  
f ( t )  = j ( t  - 1) (11) 
z(t)  =L( t ) f ( t )  (12) 

i ( t )  + H T ( t ) W ( t ) H ( t )  + ,ulSTSl + pzs;s2 

q t )  =z(t)  + H T ( t ) W ( t ) g ( t )  (14) 
i ( t ) j ( t )  = i ( t )  (15) 

(10) 
- 

update stage 

(13) 

where f ( t )  is the one-step predicted estimate, and j ( t )  is 
the updated estimate !sing the new data available at time t. 
In addition z(t) and L(t) denote the predicted and updated 
information matrices, respectively. 

The filtering algorithm (lo)-( 15) directly calculates the 
model parameters for the estimation error processes for the 
prediction and update steps at each time interval. In particular, 
the information matrices L(t) and L(t)  specify the spatial 
models, which are analogous to the MRF model (8), that 
implicitly characterize the statistics of their respective error 
processes as 

- - 
L(t)E(t) =m, r( t )  ( O , W  (16) mw = m, (0 ,  m> (17) 

where E ( t )  and k ( t )  are predicted and updated estimation error 
processes, respectively. 

The domains of support, or neighborhoods, associated with 
these spatial models deserve some attention. Recall that in the 
single-frame problem, the sparse “nearest-neighbor” structure 
of the information matrix L(t) is reflected in the compact 
neighborhood for the corresponding MRF model (8) and that 
this small and local support of the model facilitates the efficient 
solution of (7) for the estimate through iterative inversion. To 
understand how we may use these insights from the single- 
frame problem in the multiframe formulation, consider first the 
update stage (13)-(15). If z(t) possesses a sparse and banded 
nearest-neighbor structure, then (1 3) preserves this structure 
in L(t) .  In this case, (15) can be solved efficiently for the 
updated estimate ]( t )  as this step would have exactly the same 
computational complexity as in the single-frame inversion step 
(7). Thus, preserving a nearest-neighbor structure in z(t) is 
desirable from the computational standpoint. Unfortunately, 
the prediction step (10) will not preserve this structure, instead 
yielding a z(t), which is a full matrix in general, even if 
- e(t - 1) on the right-hand side is initially sparse. A full 
L(t) will then lead to a full i ( t )  by (13). Having such full 
information matrices makes the solution of (15) for the updated 
estimate computationally impractical. It also means that the 
corresponding spatial models would, in general, have a domain 
of support covering the entire image frame. Because of this 
lack of spatial locality arising in the general filtering equations 
(as reflected in the fullness of the information matrices), the 



CHIN et al.: PROBABILISTIC AND SEQUENTIAL COMPUTATION OF OPTICAL FLOW 

where A is a block diagonal matrix whose 2 x 2 diagonal blocks 
Fe identical to the correspondiAng diagonal blocks of the matrix 
L(t - 1)) + p l ,  whereas R Lit - 1) + p l  - A is given by the 
remaining off-diagonal part of L(t - 1)) + p l .  Note that A-l is 
block diagonal. The series (1 8) may be truncated to any desired 
number of terms to obtain an approximation to the exact 
expression of the desired level of accuracy. The more terms 
are kept, the less sparse the approximated matrix will become. 
Thus, there is a tradeoff between accuracy and computational 
efficiency. Our experience has shown that retaining only the 
first two terms as 

- 
L(t)  = p l -  p 2 ( K 1  - h-lC2A-l) (19) 

yields excellent results. Our near-optimal filter is obtained 
by replacing the optimal prediction step (10) by this two- 
term approximation. Unlike (lo), the suboptimal prediction 

statistical properties of the multiframe estimates computed 
with the Kalman filter (10)-(15) do not have a compact MRF 
model representation. In Section V-A, however, we present 
a suboptimal Kalman filter that preserves a nearest-neighbor 
structure in the information matrices, leading to both a com- 
putationally efficient algorithm and an MRF-based statistical 
interpretation for the multiframe optical flow estimates. 

V. IMPLEMENTATIONAL ISSUES 

A. Suboptimal Kalman filtering 

A direct implementation of the optimal information Kalman 
filter (10)-(15) is impractical, as the number of pixels N in a 
frame of a typical image sequence is on the order of lo4 to 
lo6. The storage of the O ( N 2 )  elements of the information 
matrix as well as the inversion of the matrix in step (10) 
are particularly prohibitive to implement. Recall from the last 
section, however, that if z(t) had a nearest-neighbor structure, 
this structure would be preserved in the information matrix 
through the rest of the stages of the filter. Thus, the key to 
our suboptimal filter is to force all the information matrices 
to have a nearest-neighbor structure through approximation of 
the prediction step (10). 

From the viewpoint of the implicit statistical models (16) 
and (17), imposing a sparse structural constraint on the infor- 
mation matrix as above corresponds to constraining the support 
of the corresponding MRF models to be spatially local. In 
particular, if z(t) and L(t) are constrained to have a spatially 
local and symmetric nearest-neighbor structure, the estima- 
tion error models (16) and (17) now have representations as 
compact MRF models. Thus, our suboptimal filter propagates 
approximate, reduced-order models for the estimation error 
processes through the imposition of an MRF neighborhood of 
a fixed spatial extent on these processes. 

As detailed in [26] and [41], such a reduced-order approx- 
imation may be obtained by expanding the matrix inverse on 
the right hand of (10) in a series as follows: 

Fig. 1. Rotating ramp. Frames 0, 5, 10, 15, 20, and 25 are shown. 

step (19) does indeed preserve the desired nearest neighbor 
structure in the (approximated) information matrix E @ ) .  

Propagating the information matrix in the suboptimal filter 
as in (13) and (19) costs only O ( N )  flops per frame and 
has a local, modular computational structure suitable for 
parallel implementation. Throughout the filtering procedure, 
the approximated information matrices maintain the nearest- 
neighbor structure and have only O ( N )  nonzero elements. 
Thus, the approximate filter has significant computational and 
storage advantages over the optimal Kalman filter, which 
normally requires O ( N 2 )  storage elements and O ( N 3 )  flops 
per frame of data. 

B. Variance Computation 

The estimation error coyariance matrix P(t)  associated with 
the updated flow estimate f(t)  is the inverse of the information 
matrix i ( t ) .  This inversion can be performed recursively as 

where AL is a block diagonal matrix whose 2 x 2 diagonal 
blocks are identical to the corresponding diagonal blocks of 
L(t) ,  and RL L(t)  - AL is the remaining off-diagonal part 
of L(t) .  This is a matrix version of the Jacobi iteration that 
is guaranteed to converge, i.e., P ( t )  4 P(t )  as k 4 CO 

because @) is positive definite [42]. We initialize P ( O ) ( t )  = 
A i 1 ,  which makes the recursion (20) equivalent (in the limit) 
to the series expansion used to invert a matrix in (1 8) [26]. 

The recursive schemen(20) is attractive in our suboptimal 
filtering scheme, where L(t) is sparse at all times. Moreover, 
in practice, typically only certain elements of P(t ) ,  namely, 
the diagonal elements representing the variances as well as the 
elements near the diagonal, are desired. The recursion (20) 
can often be approximated effectively by updating only the 
diagonal and near-diagonal elements of the covariance matrix, 
e.g., by some nearest-neighbor or similar masking of the matrix 
after each recursion [26]. In such an approximate recursion, 
only U ( N )  matrix elements are updated. This, combined 
with the sparseness of L(t) ,  allows practical computation of 
variances. 

( k )  
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Fig. 2. 
vectors are magnified by 1.5 for clarity. 

Optical flow estimates for the rotating ramp example. The flow pattems at frames (from left to right) 0, 5,  15, and 25 are shown. The flow 

C. Image Processing 

Discretization of the image sequence in time and space 
affects the equivalence between the intensity invariance as- 
sumption (1) and the gradient constraint (2). Dense temporal 
sampling of the image sequence is especially critical in prac- 
tice for (2) to be useful for optical flow computation. Let 
the temporal sampling interval for the image sequence be At. 
Then, a discrete version of (1) can be written as 

(21) 

(At)f. By performing a Taylor 

E(" + As, t + At) - E(s ,  t )  = 0 

where s 
series expansion of (21) we obtain 

[SI, s2IT and As 

dE d E  d2 E 
d S  at dsdt 

+ - (  A s ) ~ - ( A ~ ) + - - - - + . . .  

0 = - (AS) + - (At) + - (As)(At) 

(22) 
1 d2E (At)2 d2E 
2 dS2 2 a t 2  

Then, by diving both sides by At, we see that (22) reduces to 
(2) only if all the second-order partial derivatives are zero 

or, alternatively, At 4 0. Thus, two ways to satisfy (2) are to 
increase the temporal sampling rate or to somehow reduce the 
high-frequency components in the intensity function. The latter 
can be achieved by presmoothing or intentionally blurring 
the images before gradient computations [43] so that the 
second and higher order brightness gradients are diminished. 
Presmoothing also reduces the effects of noise in the brightness 
measurement by providing spatial averaging. 

In the experiments to be presented in Section VI, pres- 
moothing is implemented by averaging over 9 x 9 local 
subframes,' and improvements in accuracy (over the cases 
in which no presomoothing has been applied) of the optical 
flow estimates are observed. We further ensure the quality 
of the measurement by computing the second-order gradients 
d2E/dsd t ,d2E/ds2 ,  and d 2 E / d t 2  at each pixel after pres- 
moothing and weighting the measurement by a function of the 
magnitudes of these second-order gradients. Specifically, we 
have found experimentally (see Section VI-C) that using the 

'An altemative to this simple averaging is local fitting of an analytic 
surface (e.g., [MI, [45]), which allows us to trade an increase in computational 
complexity with the advantage that image gradients can be obtained as the 
parameters of the surface. 
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weights 

with a constant parameter k is particularly effective in increas- 
ing accuracy of the optical flow estimates. 

VI. SIMULATIONS 

Synthetic image sequences of moving brightness patterns 
are processed by various multiframe and single-frame optical 
flow estimation methods, and the improvements gained by us- 
ing this particular temporal coherence constraint are discussed. 
The following three methods are considered: 

SF (Single Frame ): Each frame of optical flow is com- 
puted without any provision for temporal integra!ion of 
data by solving the inversion problem (7) for f ( t ) .  It 
corresponds to a discrete and single-frame version of the 
Horn and Schunck [ l ]  formulation. 
TCO (Temporal Coherence, Optimally Computed): The 
flow estimates based on the temporal coherence con- 
straint (9) are computed with the multiframe algorithm 
implemented as the optimal Kalman filter (lo)-( 15). 
TCS (Temporal Coeherence, Suboptimally Computed): 
This method is the approximate version of the TCO 
method: The prediction step (10) of the Kalman filter is 
approximated as (1 9). 

Variants of these methods arise in different computational 
environments. Specifically, the inversion steps (7) (for SF) and 
(15) (for TCO and TCS) can be implemented by one of the 
following computational procedures, leading to variations in 
the algorithms above: 

dm (direct matrix inversion): Direct matrix inversion 
provides us with the exact estimates. While its computa- 
tional requirements are too large for typical optical flow 
problems, in one of the experiments to be presented, we 
have chosen to use a very small image frame so that we 
may perform direct inversion for comparison purposes. 
ic (iterative inversion, iterations to convergence): In prac- 
tice, the inversion problems are solved iteratively. As in 
[ 11, we use Gauss-Seidel iterations in the experiments in 
this paper. This iterative solution should converge to the 
corresponding solution of dm in the limit. 
is (iterative inversion, single iteration): In time-sequential 
processing, it is natural to initialize the iterative inversion 
at time t with the estimate obtained at time t-1, providing 
a reasonably good estimate for time t even before the first 
iteration. By slightly “updating” this initial guess with a 
single (or a small number of) Gauss-Seidel iteration(s) 
at the present time, a fairly accurate estimate of the flow 
field can emerge after continuing the process over several 
time frames [l], although such estimates are suboptimal 
in the statistical sense. 

n 

Rotating Ramp 

80 

70 

0’ I 

time (frame #) 

10 20 30 40 50 60 

(a) 

Rotating Ramp 
50 

0‘ I 
10 20 30 40 50 60 

time (frame #) 

(b) 

Fig. 3. (a) Average estimation errors and (b) their associated standard 
deviations in the rotating ramp example for the four methods: SF-dm (dashed 
line), SF-is (dotted line), TCO-is (dash-dot line), and TCO-dm (solid line). 

In the experiments to be presented, each computational method 
is made explicit by the name of its main algorithm suffixed 
by the name of the variation, e.g., TCO-dm , TCS-ic, SF-is , 
etc. In addition, in each experiment, the initial frame of optical 
flow estimate is computed identically for every participating 
computational method in order to highlight the differences in 
the temporal effects of each method. Specifically, the initial 
estimates are computed by either the SF-dm or SF-ic method, 
depending on the experiment. 

Before proceeding, let us discuss the method SF-is. This 
method is the approach to multiframe optical flow estimation 
suggested by Horn and Schunck in [l], At each time t ,  it uses 
the estimate from the previous frame f(t - 1) to initialize an 
iterative solution to (7) at the current time but then performs 
only one Gauss-Seidel iteration on this equation. Unlike 
the SF-dm or SF-ic method, therefore, this method does 
have some provision for propagating the estimates temporally 
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information from adjacent image frames through the addition 
of a temporal coherence constraint, as demonstrated below. 

Experiment I-Rotating Ramp: Small image frames are 
used in this experiment so that the optical flow estimates 
of the various methods can be computed by direct matrix 
inversion, allowing comparison of the exact estimates of the 
different methods. 

(b) 
Fig. 4. Magnitudes of (a) the Kalman gain and (b) error variance for the 
TCO-dm method in the rotating ramp example. Frames 0, 5 ,  10, 15, 20, and 
25 are shown. 

(through the mechanism of the initial guess). Note that if, 
instead of only a single Gauss-Seidel step the iterations are 
allowed to converge for each frame of data, the resulting flow 
estimates would have lost all information from the previous 
frame and become exactly the same as the SF-ic estimates. 
Although the SF-is method is ad hoc in terms of its temporal 
integration of data, its ease in implementation is appealing 
from a practical point of view. 

A. Measurement Integration by Temporal Coherence 

Reconstruction of optical flow using only spatial data inte- 
gration (i.e., the SF methods) cannot be performed correctly 
when a complete set of the information necessary to estimate 
the flow vectors is not contained in each data frame. Specif- 
ically, optical flow computation methods employing only a 
spatial coherence constraint will have difficulties dealing with 
cases where all the spatial gradients happen to be oriented 
in nearly the same direction (including the cases where most 
of the spatial gradient vectors have small magnitudes). Such 
difficulties can be circumvented by allowing for the use of 

ramp is the only region in the image with nonzero spatial 
gradients; the rest of the image frame is featureless (constant 
brightness) so that motion is undetectable there. Note that all 
the spatial gradient vectors in each image frame are oriented 
in an identical direction. The image gradients are computed 
as averaged first-order differences, as performed by Horn and 
Schunck [l]. 

2) TheJlow estimates: Fig. 2 shows the estimated flow 
vectors using the four methods SF-dm, SF-is, TCO-is, and 
TCO-dm with the parameters p = 1, 1-11 = 1-12 = 0.00025, 
and W ( t )  = I .  With these values, the relative strength of 
spatial coherence normalized by the strength of the brightness 
constraint is about A, accommodating the large spatial 
variations among the motion vectors in rotational motion 
(especially for small image frames as in this example). As 
described before, all four methods begin with the same initial 
estimates as reflected in the results for frame 0 in the figure. 
The TCO-dm method produces a fairly accurate estimate 
at frame 25. The estimate by the SF-is method at frame 
25 appears to be fairly good as well. The SF-dm method, 
however, fails completely. This behavior demonstrates that 
some sort of temporal integration of measurements is 
necessary for correct estimation in this case. 

3) The estimation errors: Fig. 3 displays the percentage 
average estimation error for each t 

where f ( t )  is the true flow, and ] ( t )  is the estimated flow, 
for the four methods. The figure also displays the plot of 
standard deviation (representing the spatial variation of the 
estimation error f ( t )  - f ( t )  for each t )  associated with each 
of the four error curves. First, note the difference between the 
optimal estimates with and without the temporal coherence, 
as reflected by the performances of the SF-dm and TCO-dm 
methods, whose errors are plotted as the dashed and solid 
curves, respectively, in the figure. Clearly, the plot for SF-dm 
displays no reduction in error as more images are processed, 
whereas the error for TCO-dm decreases steadily down to 
below 5% in the first 30 frames. Next, comparison of the 
error curves for the SF-is (dotted line) and SF-dm (dashed 
line) methods shows that having even a weak provision for 
temporal data integration leads to much more accurate flow 
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SF-dm 

TCO-dm 

Fig. 5. 
vectors are magnified by 1.5 for clarity. 

Optical flow estimates for the noisy rotating ramp example. The flo 

estimates than having no such provision at all. The TCO- 
is method, with its explicit use of a temporal coherence 
constraint, however, performs better than the SF-is method 
as the error curve (dash-dot line) decreases to a lower value 
and in a more stable (smooth and near-monotonic) manner 
than the curve for SF-is. 

4 )  The Kalmun gains and variances for  the TCO-dm 
method: One can visualize the temporal integration process 
of the optimal Kalman filter in the TCO-dm method by 
observing the "images" of the magnitudes of the Kalman gains 
and variances. Fig. 4(a) shows the magnitudes of the Kalman 
gains at frames 0, 5, 10, 15, 20, and 25. The magnitude of the 
Kalman gain is an indication of how much the filter values the 
new data in updating the estimate. Lighter pixels have higher 
values than darker pixels. (Note that the frame size is only 
10 x 10, resulting in the jagged appearance of the images). 
Comparison of Figs. 4(a) and 1 reveals that the Kalman gain 
is high where the image contrast is high. Fig. 4(b) shows 
the magnitudes of the error variances. Pixels with low (dark) 
variances have high confidence in their associated flow vector 
estimates. Notice that the area of high confidence grows with 
time, indicating that the filter produces good estimates of 

IW patterns at frames (from left to right) 0, 5 ,  15, 2.5 are shown. The flow 

flow vectors over a wider region in the image frame as more 
measurements are integrated over time. 

B. Noise Reduction by Temporal Coherence 

A temporal coherence constraint can improve the quality of 
optical flow estimates by reducing the effect of measurement 
noise through the averaging of the noisy data over time. 
We have added white Gaussian noise of variance 0.0025 
independently to each pixel of the images in the rotating 
ramp sequence of Experiment 1. Although the magnitudes of 
the noise are small relative to the pixel values, the gradients 
computed from the corrupted images are noisy enough to make 
optical flow computation challenging. The sequence has been 
processed using the SF-dm, SF-is , TCO-is, and TCO-dm 
methods. Fig. 5 displays the estimated flow fields, and Fig. 6 
shows the estimation errors (25) and their associated standard 
deviations for the computed optical flows. The success of the 
TCO-type methods and the failure of the SF-type methods 
are evident in the figures. The difference in the performances 
of the SF-is and TCO-is methods can be clearly seen in this 
example (by comparing the respective 25th frame estimates in 
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Fig. 6. (a) Estimation errors and (b) associated standard deviations when the 
noisy rotating ramp image sequence is processed by the three methods: SF-dm 
(dashed-line), SF-is (dotted line), TCO-is (dash-dot line), and TCO-dm (solid 
line). 
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Fig. 7. Error introduced when the optimal Kalman filter in the TCO-dm 
method is approximated as in the TCS-dm method. The normalized approx- 
imation errors for the (a) estimates and (b) their standard deviations are 
shown. 

Fig. 5 or the dotted and dash-dot curves in Fig. 6), signifying 
the explicit use of the temporal coherence constraint in the 
algorithm formulation. 

C. Temporal Coherence in the Approximate Filter 

As discussed in Section V, for realistic applications, the 
large size of image data sets makes exact implementation of 
the optimal Kalman filter in the TCO method impractical. 
As a result, we developed an implementable yet near-optimal 
filter, i.e., the TCS method. Here, we present numerical 
experiments that demonstrate the efficacy of this near-optical 
TCS method. First, we will examine the performance of 
the approximate filter on the small rotating ramp images. 
For these small images, we can compare the output of the 
approximate filter to the optimal Kalman filter estimates and 
show that the approximate filter produces estimates that are 

almost indistinguishable from the optimal ones. Next, we will 
apply our approximate filter to the large images of realistic 
size, where the exact optimal Kalman filter cannot be used. 
Since the true flow field will be known, we will use the 
percent average estimation error (25) for each t for our flow 
comparisons. 

We start by comparing the approximate filter with the exact, 
optimal Kalman filter. The noise-free image sequence of the 
rotating ramp is processed with the approximate Kalman filter 
(see (19), (1 1)-( 15)) of the TCS-dm method, and the resulting 
estimates are compared with the estimates obtained with the 
corresponding optimal Kalman filter of the TCO-dm method. 
Qualitatively, the optimal and approximated optical flow es- 
timates appear to be identical. To quantify the difference 
between the two estimates, we have computed for each t the 
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Fig. 8. True flow in the stagnation flow experiment. Every other flow vector 
along each axes is shown with a magnification factor of 4 for clarity. 
(Reprinted with permission of Kluwer Academic Publishers). 
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Fig. 9. Stagnation flow image sequence. Frames 0 and 7 (top row) as well 
as 14 and 21 (bottom row) are shown. (Reprinted with permission of Kluwer 
Academic Publishers). 

difference in percent normalized average estimation errors 

where ],(t)  and f,(t) are the estimates by the suboptimal 
and optimal filters, respectively, and f ( t> is the true flow. 
Fig. 7 shows that this approximation error is at most 3% and 
is negligible for most t. The error is often negative, meaning 
that the suboptimal filter has estimated more accurately than 
the optimal filter in some frames. The figure also displays the 
plot of 

(27) 

comparing the variances (diagonals of the covariance matrices) 
p , ( t )  and p O ( t )  from the suboptimal and optimal filters, 
respectively. The values from the suboptimal filter are within 
7% of those from the optimal filter and are within 1% 
for most t. A more detailed comparison may be found in 

Fig. 10. Optical flow estimates for frame 18 of the stagnation flow sequence 
by the SF-ic and TCS-ic methods. (Reprinted with permission of Kluwer 
Academic Publishers.) 

[26]. The accuracy of the approximate filter along with its 
efficiency (both in terms of computational costs and storage 
requirements) allows us to impose the temporal constraint to 
process image sequences with a much larger and more realistic 
frame size than those in the experiments thus far, which we 
will do next. 

Experiment 2: Stagnation Flow: In this experiment,2 the 
SF-ic, TSC-ic, SF-is, and TSC-is methods are used to estimate 
the motion of a nonrigid body. 

I )  The Image Sequence: This image sequence is based on a 
model of stagnationjow [46], i.e., the flow of fluid obstructed 
perpendicularly by a solid object. In particular, Fig. 8 shows 
a flow pattern whose velocity vector at point (SI, sa) is given 
by (As1 - A S Z )  for A = 0.1, where the coordinate origin is at 
the midpoint of the bottom edge of the figure. A sequence of 
64 x 48 images are synthesized based on such a velocity field. 

*A portion of this experiment has appeared in [25] and is presented here 
with permission of Kluwer Academic Publishers. 
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Fig. 1 1 .  Optical flow estimates for the frame 18 of the stagnation flow 
sequence by the SF-is method and TCS-is method. (Reprinted with permission 
of Kluwer Academic Publishers.) 

Fig. 9 presents four images from the sequence. Note that the 
direction of the predominant contrasts in each image changes 
from mostly vertical in the early frames to mostly horizontal 
in later frames, implying that some type of temporal coherence 
constraint is necessary for correct estimation of the flow from 
this image sequence. We have corrupted the images by adding 
an independent Gaussian noise with a variance of 9 to each 
pixel and then requantizing the resulting pixel values to 256 
grey levels. 

2) Flow Estimates and Estimation Errors: As described 
in Section V-C, the 9 x 9 unit uniform stencil is used 
to spatially smooth the images before brightness gradients 
are computed. The computational parameters p = 10 and 
p1 = pz = 0.025 have been used. Fig. 10 shows frame 18 of 
the estimated flow vectors computed by the SF-ic and TCS- 
ic methods. The SF-ic method, without any provision for 
temporal data integration, has completely failed to estimate 
the flow field, whereas the TCS-ic method has performed 
a reasonable reproduction of the flow in Fig. 8. The flows 
computed by the SF-is and TCS-is are shown in Fig. 11, 
which also displays the importance of temporal coherence 
in estimation. The average estimation errors and associated 

Stagnation Flow 
100 

90- 

80 - 

3 70- 

'8 60- 5 
E 

cp 50- 

40- 

30 - 

5 10 15 20 25 

frame # 

(a) 

Stagnation Flow 
70 I 

65 I 

I 
I 

60- 

55 

50 - 

45 

40 - 

35 - 

30 - 

25 

- 

- 

- 

5 10 15 20 

frame # 

20 ' 

(b) 

Fig. 12. (a) Estimation errors and (b) associated standard deviations by the 
TCS-ic (solid-line), SF-ic (dashed line), SF-is (dotted-line), and TCS-is 
(dash-dot line) methods for the stagnation flow experiment. (The estimation 
error plot reprinted with permission of Kluwer Academic Publishers.) 

standard deviations for the four methods, which are shown 
in Fig. 12, are consistent with these observations. Again, 
superior performance of the TCS-type methods over the SF- 
type methods is displayed rather dramatically by the error 
curves. 

3) The Number of Iterations Required: Both the SF-ic and 
TCS-ic methods have been allowed to use a maximum of 
500 Gauss-Seidel iterations to compute the estimates at each 
t;  however, the actual numbers of iterations required for 
convergence of the solution (to within 10-7rms difference 
from iteration to iteration) are typically lower, as shown in 
Fig. 13. Note that both algorithms initialize each iterative ses- 
sion (except in the first frame) using the respective estimates 
from the previous frame. Fig. 13 indicates that the TCS-ic 
method requires progressively fewer iterations to compute the 
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Fig. 16. 
vector estimate for the second frame in the Yosemite image sequence. 

Filter variances associated with the two components of each flow 

dark stripes in the displays are the pixel locations where the 
variances are low and where the image gradients are heavily 
relied on by the filter to estimate the flow field. As can 
be observed, the filter has taken advantage of the long and 
mostly linear gradients along the outlines and striations of 
the cliffs and mountains as well as the edges of the river. 
The use of a stronger spatial coherence is also justified by 
the mostly translational nature of the motion represented 
by the flow field. In fact, with a larger frame size of the 
Yosemite image in mind, the spatial variation among the 
flow vectors in this example is less than that in the previous 
examples, allowing more rigid spatial coherence. Fig. 17 
shows the tenth frame of the estimated flow vectors. The 
noise-suppression effect of the temporal coherence constraint 
can be observed in the upper part of the frame. Finally, 
Fig. 18 shows the estimation errors in the first ten frames 
for the four flow computation methods. The TCS-ic method 

Fig. 17. Optical flow estimates for the tenth image frame by the SF-ic and 
TCS-ic methods. The flow vectors are reduced by a factor of 2 for display 
purposes. 

consistently yields more accurate estimates than the other 
three methods. 

VII. CONCLUSION 

We have demonstrated that the temporal coherence afforded 
by the use of the dynamic model (9) can improve the qual- 
ity of the optical flow estimates via temporal measurement 
integration and noise reduction. We have shown how to 
practically compute such flow estimates sequentially in time 
using a Kalman filter. In particular, the information form of 
the Kalman filter is shown to be approximable, leading to a 
computationally efficient formulation of an effective, general- 
purpose procedure for multiframe optical flow estimation. The 
key to this approximation was the interpretation of the update 
stage of the Kalman filter as an implicitly defined, static 
spatial estimation problem for the field estimation error with a 
prior model specified by the current information matrix of the 
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Fig. 18. (a) Estimation errors and (h) associated standard deviations by the 
TCS-ic (solid-line), SF-ic (dashed-line), SF-is (dotted-line), and TCS-is 
(dash-dot line) methods when the noisy Yosemite image sequence is processed. 

process. Our approximate filter then arises through the efficient 
specification of a reduced-order model of the desired sparse 
and banded form. Numerical experiments showed that the 
resulting filter provided near-optimal estimation performance. 
An important direction to extend this work is to consider how 
to deal with discontinuities in the flow field (due to object 
occlusion etc.) over space an time. This might involve studies 
on piece-wise smooth coherence constraints for the flow field 
(e.g., [35], [15]) and on spatio-temporal dynamic modeling 
of the discontinuity boundaries (e.g., [47]). In addition, more 
sophisticated (and perhaps more application specific) temporal 
modeling of the optical flow, such as Lagrangian model- 
ing, is another possibility for an interesting extension to the 
presented work. 
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